28. Построение уравнения регрессии
Целью регрессионного анализа является установление формы зависимости между результативным и одним или несколькими факторными признаками. Для решения этой задачи определяется функция (уравнение) регрессии. В статистике под регрессией понимают величину, которая выражает зависимость среднего значения случайной величины у (результативного признака) от значений случайной величины х (факторного признака). Уравнение регрессии выражает среднюю величину одного признака как функцию другого.
Функция регрессии — это модель (уравнение) вида yx = f(x), выражающая зависимость переменной у от определяющего ее независимого фактора х.
При построении уравнения регрессии выбирают тип аналитической функции, характеризующей механизм взаимосвязи между результативным признаком и одним или несколькими признаками-факторами. В статистике применяют следующие типы аналитических функций:
1) у = а + bх — линейная;2) — гиперболическая;
3) у = а + bх+ сх2 — параболическая.
Множественная регрессия — регрессия между зависимой переменной у и независимыми переменными x1, x2, …, xn, т.е. это модель вида: у = f( x1, x2, …, xn ). Парная регрессия — регрессия между зависимой переменной у и независимой переменной х, т.е. это модель вида: у = f(x).
Уравнения регрессии подбирают на основании эмпирической линии связи. Выбрав форму связи, находят числовые значения параметров уравнения регрессии. В случае парной линейной зависимости строится регрессионная модель по уравнению линейной регрессии: у = а + bх.
Параметры этого уравнения находят методом наименьших квадратов.
Метод наименьших квадратов (МНК) — метод оценки параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции:где уi — статические значения зависимой переменной;
f — теоретические значения зависимой переменной, рассчитанные с помощью уравнения регрессии.
Для нахождения минимума данной функции приравнивают к нулю ее частные производные и получают систему двух линейных уравнений:Это система нормальных уравнений для линейной функции у = а+bх. Решение этой системы в общем виде дает параметры уравнения линейной регрессии: