5. Вселенная — физический объект?!

Данный подзаголовок в XIX веке прозвучал бы как ужасное кощунство. Статус вместилища всего сущего предполагал, что Вселенная — это то, в чем разворачивается история, внутри нее работают законы мироздания, а вопрос «Есть ли какие-либо законы, управляющие Вселенной как таковой?» не имеет смысла. Но уже в 1920-х годах Вселенная была необратимо разжалована из высших философских категорий в объект, описываемый уравнениями. В простейшем случае однородной изотропной Вселенной это уравнение Фридмана.

Решения уравнений говорили следующее: вселенная типа нашей (пишем «вселенная» с маленькой буквы, имея в виду вселенную вообще, любую) может либо расширяться из бесконечно плотного состояния, либо сжиматься в бесконечно плотное состояние. Наша Вселенная расширяется. Она может быть либо «замкнутой» — конечной, либо «открытой» — бесконечной, либо — в промежуточном случае — «плоской». «Замкнутую» вселенную в принципе можно обогнуть, вернувшись с противоположной стороны, если снять ограничение на скорость передвижения. «Открытую» и «плоскую» — нельзя. Определить, в какой Вселенной мы находимся, просто — надо измерить сумму углов очень большого треугольника (миллиарды световых лет): если она больше 180° — Вселенная «замкнута» и описывается геометрией Римана, если меньше 180° — «открытая» и описывается геометрией Лобачевского, если равна — «плоская» и описывается геометрией Евклида. Если Вселенная заполнена обычной материей (с неотрицательным давлением), то в первом случае расширение когда-нибудь сменится сжатием, во втором — вселенная будет расширяться вечно. В третьем — будет тормозиться до нулевой скорости расширения в бесконечном будущем. Первый случай (вероятно, достаточно близкий к «плоскому») с точки зрения физики кажется более естественным. То, какой из этих сценариев реализован, определяется средней плотностью энергии во вселенной (или массы, поскольку для обычной материи E = mc2). Если она в точности совпадает с критической плотностью, которая в настоящее время близка к 10-29 г/см3, то реализован «плоский» вариант. Если плотность выше — вселенная «замкнута», если ниже — «открыта». По современным данным сумма вкладов всех типов материи (включая так называемую темную энергию) в пределах ошибок совпадает с критической.

Как представить замкнутую конечную вселенную? С самым простым способом автор познакомился на первом курсе Физтеха на лекции Сергея Петровича Капицы. Тот брал воздушный шарик, на котором нарисованы завитки-галактики, подсоединял его к трубке компрессора и открывал вентиль. Шар медленно надувался, а Сергей Петрович, разводя руками, показывал, как галактики разбегаются — чем дальше друг от друга, тем быстрей, как и наблюдал Хаббл. Потом шарик громко лопался, и лектор обводил аудиторию победным взглядом.

Победный взгляд оправдан: демонстрация снимает глупые вопросы: «Где произошел Большой взрыв?», «Откуда разбегаются галактики?» и «Где у Вселенной край?». Многие воспринимают Большой взрыв по аналогии с обычным взрывом: разлет вещества из некоего эпицентра в пустоту. Смотрите на надуваемый шарик, на его поверхность! Там нет и не было центра разлета. Вообразите, что шарик стал раздуваться от микроскопических размеров — сначала быстро, потом медленней. Большой взрыв и есть начало расширения «шарика» — «замкнутой» Вселенной. Надо лишь добавить, что в этой демонстрации есть третье измерение, откуда мы можем рассматривать шарик. Пример будет точнее, если допустить, что все движения возможны только вдоль поверхности шарика, а третьего, перпендикулярного измерения (в случае реальной Вселенной — четвертого пространственного) нет вообще.

Коль скоро мы признали, что Вселенная — физический объект, имеет смысл, не откладывая, перечислить основные геометрические и физические характеристики этого объекта.

Определить размер «шарика», в «поверхности» которого мы живем, мы не можем — он слишком велик и весь не доступен наблюдениям (см. ниже про горизонт). Впрочем, были попытки найти объекты, видимые с противоположных направлений, в предположении, что лучи от них обогнули замкнутую Вселенную с противоположных сторон, как взрывная волна от падения Тунгусского метеорита обогнула земной шар. В таком случае можно было бы примерно оценить размер, но сейчас мы точно знаем, что подобное невозможно — Вселенная слишком велика. Зато мы в принципе можем измерить пространственную кривизну Вселенной. Например, зная настоящий размер очень далекого объекта и расстояние до него, можно оценить кривизну пространства по углу, под которым мы видим этот объект. Другой способ измерения кривизны — определить среднюю плотность всех видов энергии во Вселенной и постоянную Хаббла (эти величины связаны через уравнения Фридмана). Сейчас мы знаем, что кривизна в пределах ошибки неотличима от нуля.

Вместо размера Вселенной для описания ее расширения можно использовать масштабный фактор. Он описывает, как меняется расстояние между точками вместе с расширением Вселенной, например расстояние между двумя галактиками, не связанными гравитацией. Нельзя сказать: «Масштабный фактор при красном смещении z = 1 был 100 мегапарсек», — это бессмыслица (величина z определяется через соотношение ?1 = ? (1 + z), где ? — длина волны испущенного, ?1 — принятого фотона). Зато можно сказать: «Масштабный фактор с эпохи z = 1 к настоящему времени увеличился в два раза», «Две данные галактики разлетелись со 100 мегапарсек на 200» и т.п. Этот термин относится только к относительному увеличению расстояний. Объем, который, подобно увеличению масштабного фактора, расширяется вместе со Вселенной, называется сопутствующим объемом. Число частиц в единице объема уменьшается. А число частиц в сопутствующем объеме, как правило, сохраняется.

Для описания темпа расширения Вселенной используется постоянная Хаббла, обозначаемая H. Астрофизики ее выражают в привычных себе единицах — свежайшее значение постоянной Хаббла H = 68 ± 0,9 км/с на мегапарсек. Смысл тот, что галактики, отстоящие от нас на один мегапарсек, удаляются в среднем со скоростью 68 км/с. Однако внимательный читатель может заметить, что мегапарсек можно выразить в километрах (31019 км), и тогда расстояние вообще выпадает из определения величины, остаются обратные секунды, а именно 2,3·10-18 с-1, что равно единице, поделенной на 14 млрд лет. В знаменателе не случайно оказалась величина, близкая к возрасту Вселенной: если бы темп расширения был постоянным, то стартовать оно должно было бы 14 млрд лет назад. Но в классическом варианте Фридмана Вселенная расширяется с замедлением, значит, ее возраст заметно меньше 14 млрд лет, что приходит в противоречие с возрастом самых старых звезд. Это противоречие нашло разрешение лишь в конце 1990-х годов. Но не будем на сей раз забегать вперед.

Еще одна важнейшая геометрическая вещь во Вселенной — горизонт. Если Вселенная возникла 13,8 млрд лет назад, то ее первые лучи не могли распространиться дальше, чем на 13,8 млрд световых лет. В принципе, это расстояние можно принять за размер горизонта — это проще всего, и большой ошибки не будет. Но то, что мы видим, например, на карте реликтового излучения, испущенного 13,8 млрд лет назад, сейчас из-за расширения Вселенной ушло от нас более чем в два раза дальше (какое-то время точки, где сейчас находимся мы и где был испущен первый видимый луч, удалялись друг от друга со сверхсветовой скоростью). Поэтому размер области, о которой мы можем что-то знать, — это 45 млрд световых лет. Если мы видим, например, пятно пониженной яркости на карте реликтового излучения, то можем сказать, что в данном направлении на расстоянии примерно 45 млрд световых лет от нас находится войд — область, где нет скоплений галактик. То есть мы имеем информацию о том, что находится за 45 млрд световых лет от нас, точнее, информацию о том, что было там давным-давно. А то, что сейчас, можем грубо прикинуть. Это и есть общепринятое определение горизонта. О том, что еще дальше, мы ничего не знаем в принципе.

Если Вселенная — физический объект, то какова ее температура? Температура нашей среды обитания никакого отношения к температуре Вселенной не имеет — мы живем вблизи источника энергии и вдали от теплового равновесия. Что покажет градусник, если поместить его в межгалактическом пространстве, подальше от всех галактик и их скоплений?

В принципе, показания термометра в межгалактической пустоте никак не связаны с энергией редких частиц газа, находящихся там, — их слишком мало. Показания определятся балансом поглощения и излучения электромагнитных волн телом термометра. Если падающие на термометр электромагнитные волны — лишь свет звезд и излучение пыли в далеких галактиках, то термометр покажет около градуса Кельвина или чуть меньше. Но это будет не та температура! В нынешней Вселенной глобального теплового равновесия нет. А в ранней — было!

Первые 380 тыс. лет во Вселенной вещество и излучение находились в состоянии термодинамического равновесия при общей температуре. Отклонения от равновесия на некоторых этапах были, но скорее как исключение. Вселенная расширялась, и ее температура падала с расширением по адиабатическому закону (грубо говоря, тепло совершает работу по расширению Вселенной). Затем, когда плазма превратилась в нейтральный газ, Вселенная вышла из термодинамического равновесия: была потеряна связь между излучением и веществом. Часть вещества стала сгущаться и разогреваться. Но излучение, которое с тех пор живет само по себе, продолжая остывать по тому же самому адиабатическому закону, осталось тепловым по всем своим характеристикам. У этого излучения, называемого реликтовым, есть определенная температура и логично именно ее приписать нынешней Вселенной. Оказывается, именно она определяет показания термометра в межгалактическом пространстве. В 1965 году это излучение зарегистрировали и вскоре его температуру измерили с хорошей точностью. Она оказалась равной 2,7 градуса Кельвина. Именно эту температуру покажет термометр в межгалактическом пространстве. Кстати, разница между градусом (равновесие со светом звезд) и 2,7 градуса очень велика — плотность энергии излучения пропорциональна четвертой степени температуры. Плотность энергии реликтового излучения в сотню раз выше, чем у света звезд вдали от галактик.

В физической Вселенной менялось также состояние вещества. Одно из самых важных изменений состояния — рекомбинация водорода, произошедшая в возрасте 380 тыс. лет. Вещество из состояния полностью ионизованной плазмы перешло в газ нейтральных атомов — именно поэтому тогда тепловое излучение потеряло связь с веществом.

Вселенная также характеризуется уравнением состояния. Оно определяется как связь между плотностью энергии, е (куда входит и энергия покоя вещества), и давлением. До конца 1990-х годов думали, что давление близко к нулю; такое уравнение состояния называется «пылевым». Оказалось, что сейчас давление материи во Вселенной отрицательно — об этом пойдет речь ниже. Отрицательным давление было не всегда. Первые 80 тыс. лет в энергетическом балансе Вселенной доминировала радиация, и давление было положительным и очень высоким. На возраст 80 тыс. лет пришлось равенство энергий излучения и вещества, а еще раньше имел место предельный случай ультрареля-тивистского уравнения состояния: р = 1/3 ?.

Выше речь шла о Вселенной, подчиняющейся решению Фридмана, но с давних пор существует еще решение де Ситтера для однородной пустой вселенной с лямбда-членом. Это вечно расширяющаяся вселенная, причем расширяющаяся экспоненциально: за каждую единицу времени расстояние между любыми двумя точками увеличивается в (не «на» а «в») постоянное число раз:

В своем чистом виде решение описывает некий парадоксальный стационарный мир. Тем не менее, запомним о его существовании! Решение де Ситтера, оказывается, имеет близкое отношение к действительности.

Если Вселенная — физический объект, не значит ли это, что таких объектов много? Конечно, значит! И из множественности вселенных вытекает возможное решение ряда каверзных вопросов, касающихся нашей собственной, единственной доступной для наблюдений. Но об этом тоже ниже.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК