Действие инфракрасных лучей на организм
Наиболее мощный источник инфракрасного излучения в земных условиях — это Солнце, свет которого более чем наполовину состоит из инфракрасных лучей с длиной волны 0,75—2 мк. Ежегодно Земля получает с инфракрасным излучением Солнца 6,7·1020 кал. тепла. Нагретые Солнцем поверхность Земли и атмосфера, в свою очередь, непрерывно излучают тепловые лучи в том же спектральном диапазоне.
Наряду с прямым влиянием инфракрасной радиации на животный организм, о чем речь пойдет ниже, немалое значение имеет и косвенное ее влияние в результате изменения температуры и других физических параметров воздуха.
Поглощение инфракрасных лучей атмосферой, зависящее от присутствия в ней водяных паров, возрастает при увеличении абсолютной влажности. В спектре Солнца появляется, широкая полоса поглощения между 0,9 и 3 мк. Воздух нагревается не только за счет прямого поглощения инфракрасных лучей, но и вторично, путем конвекции в результате нагрева земной поверхности. По мере увеличения температуры воздуха изменяется его газовый состав: уменьшается содержание кислорода (на экваторе оно на 0,5% меньше, чем в средних широтах). Этот процесс усиливается с повышением содержания в воздухе водяных паров. Кроме того, при нагреве воздух расширяется, в связи с чем снижается давление кислорода у поверхности Земли. Такие атмосферные явления, как ветер, дождь, гроза, в значительной степени обусловлены неравномерным солнечным нагревом земной поверхности и атмосферы. Тропические ураганы — наиболее могучее явление природы, связанное с испарением влаги и образованием конвекционных токов воздуха,— не что иное как способ отдачи тепла, аккумулированного водами тропических морей вследствие нагрева лучами Солнца. Морская вода поглощает до 95% падающей лучистой энергии Солнца. Именно деятельность Солнца, неравномерный нагрев и испарение влаги обусловливают движение воздушных и водных масс, глобальную систему ветров, циклонов и антициклонов, теплых и холодных течений, разнообразие климатических зон, погодных «условий, непосредственно влияющих на жизнедеятельность животных и растений, на самочувствие и состояние людей. Колебания атмосферного давления и температуры, особенно падение давления и увеличение температуры в сочетании с повышенной влажностью воздуха, действуют крайне неблагоприятно на людей, особенно с сердечно-сосудистыми заболеваниями.
Изменение температуры воды, нагрев ее лучами Солнца влияет на растворимость ряда веществ, а это, в свою очередь, может вносить изменения в жизнедеятельность растительных и животных организмов. Чем ближе к экватору, тем больше в океане кораллов и других организмов, накопляющих в теле известь, тем больше степень окостенения рыб. Для северных холодных морей характерны крупные бурые водоросли, своя богатая фауна и флора.
Микроорганизмы, простейшие, одноклеточные водоросли и грибы переносят значительные колебания температуры, не погибая (состояние анабиоза). Они выживают при температуре значительно ниже нуля, вплоть до температур жидкого азота (77° К). Разумеется, при этой температуре их жизненные процессы резко угнетены, размножение невозможно. Но одноклеточные сохраняют способность оживать при переносе в обычные температурные условия. Они выдерживают нагрев, в том числе и лучистый, до 60°С и выше. Отдельные организмы выработали специальные приспособления, позволяющие им переносить и более высокие температуры. Споры некоторых бактерий, грибков имеют толстую оболочку, защищающую их от колебаний температуры, влажности и других неблагоприятных воздействий. Семена растений также очень устойчивы к изменениям условий среды.
Более сложно устроенные организмы не могут переносить сильного охлаждения, но и у них выработались приспособления, помогающие им выживать в зимнюю стужу и летнюю жару. Земноводные, пресмыкающиеся, рыбы при понижении температуры среды впадают в состояние оцепенения, забираются в норы, речной ил, уходят в глубины воды. При повышении температуры они постепенно оживают, становятся подвижными, начинают отыскивать пищу, размножаются.
У наиболее сложно устроенных животных, млекопитающих и птиц температура тела поддерживается на постоянном уровне. Специальные системы терморегуляции помогают развитию сложнейших жизненных процессов, совершенствованию мозга и других органов животных. Однако и у части млекопитающих выработалась система приспособлений, например зимняя спячка, позволяющих переносить неблагоприятные сезоны года.
Для обеспечения стабильной температуры тела необходимо, чтобы внутри организма вырабатывалось достаточное количество тепла. В организме человека и других высших животных вся энергия, образующаяся при сгорании, окислении пищевых веществ, в конечном счете превращается в тепло и отдается в окружающую среду. Тепловой баланс организма зависит от количества выработанного тепла (теплопродукции) и его выведения, удаления (теплоотдачи). Работа системы терморегуляции осуществляется автоматически с помощью центральной нервной и эндокринной систем.
Отдача тепла телом человека осуществляется тремя путями: конвекцией (нагревом воздуха), излучением и испарением. Наиболее важное значение имеет теплоотдача путем излучения инфракрасных лучей, на долю которой в обычных условиях приходится от 45 до 60% выводимого организмом тепла. Чем выше температура окружающих нас предметов, тем менее эффективна отдача тепла радиацией. Если воздух, так же как и тело, имеет высокую температуру, главную роль в теплоотдаче играет испарение. Однако возможности механизма отдачи тепла испарением тоже не беспредельны.
Когда теплоотдача затруднена, температура тела повышается, кровяное давление резко падает, пульс учащается, становится слабым, кожа лица багровеет, наступает потеря сознания — тепловой удар. Такое состояние развивается при особо неблагоприятных условиях чаще всего у людей, страдающих заболеваниями сердечно-сосудистой системы. Обычно организм справляется с неблагоприятными условиями среды, пуская в ход свой богатый арсенал средств регуляции теплообмена.
Помимо самочувствия, один из наиболее точных показателей теплового состояния организма — температура кожных покровов, которая всегда ниже температуры тела. Если человек находится в благоприятных температурных условиях (например, при температуре воздуха в комнате около 21° С и такой же температуре стен), температура кожи туловища, лба равняется примерно 33,5° С. Кожа конечностей даже в состоянии полного теплового комфорта холоднее кожи туловища (ниже на 2—5°С). За счет изменения температуры конечностей поддерживается постоянство температуры туловища и головы, в которых размещены жизненно важные органы. Если воздух и предметы вокруг нас становятся холоднее, наш организм отвечает на это понижением температуры конечностей. С повышением температуры среды кровь начинает двигаться более мощным потоком по сосудам конечностей, приливает к коже. Ее температура (и теплоотдача) увеличивается. Еще более чувствительным и точным показателем теплообмена и теплового равновесия человека, чем температура кожи, может служить инфракрасный лучистый поток от отдельных участков тела.
Кожа животного имеет нервные чувствительные образования — рецепторы, которые служат приемниками температурных раздражений. Рецепторы представляют собой чувствительные окончания нервных клеток, имеющие на конце утолщения в виде шляпки гриба размером 0,25—1,35 мм. Холодовые рецепторы расположены в сосочковом слое кожи, на границе между эпидермисом и собственно кожей, тепловые — немного глубже. Функцию температурных рецепторов кожи можно сравнить с работой палочкового аппарата сетчатки глаза. Подобно палочкам, они не различают цветов, т. е. не чувствуют разницы в длине волны излучения, а реагируют лишь на повышение или понижение температуры.
Из кожных рецепторов нервное возбуждение по нервным стволам направляется в спинной мозг, а оттуда в так называемый промежуточный мозг, ведающий поддержанием постоянства температуры тела. Ощущения холода и тепла осознаются нами; следовательно, нервное раздражение достигает уровня коры головного мозга. Из центральной нервной системы соответствующие указания поступают к мускулам, кровеносным сосудам, сердцу, железам внутренней секреции, потовым железам и др. Система терморегуляции, так же как и весь организм, работает по принципу рефлекса, реагируя на внешние температурные воздействия.
Инфракрасные лучи, оказывая тепловое действие на организм, повышают температуру тех слоев кожи, в которых они поглощаются. Роговой слой кожи, весь эпидермис прозрачны для лучей видимого света, в особенности для красных. Красные и ближние инфракрасные лучи (с длиной волны до 1,5 мк) поглощаются преимущественно в дерме, но некоторая их часть (25—30%) проникает глубже, на 2,5—4 см, достигая подкожного жирового слоя и даже расположенных под ним органов. Более длинноволновые лучи целиком поглощаются в эпидермисе.
Используя инфракрасные лучи различного диапазона, можно достичь нужного лечебного результата. Так, для глубинного прогрева тканей рекомендуется использовать источники коротковолновых инфракрасных лучей, а для поверхностного обогрева — источники длинноволновой радиации.
Если мощность лучистого потока велика, ощущение тепла при действии радиации на кожу переходит в болевое ощущение; его порог для волн разной длины различен. Видимые лучи вызывают ощущение резкой боли при интенсивности 3,11 кал/см2·мин, коротковолновые инфракрасные лучи — при 1,79, а длинноволновые — при 1,33 кал/см2·мин. Такое различие объясняется глубиной проникновения лучей в кожу. Тонкие безмякотные нервные волокна, дающие ощущение боли, разветвляются на границе эпидермиса и собственно кожи. Поэтому боль появляется прежде всего при действии лучей, поглощающихся ближе к поверхности кожи. Чем больше проникающая способность лучей, тем легче они переносятся нашей кожей.
По данным специальных опытов, ощущение боли появляется при повышении температуры кожи примерно до 43,5°С, на 10°С выше нормальной температуры кожи. Источники радиации, дающие поверхностный нагрев, быстрее 'повышают температуру кожи и раньше вызывают неприятные ощущения. Наиболее глубоко проникает в ткани инфракрасное излучение Солнца, поэтому переносится оно значительно легче, чем более длинноволновое излучение искусственных источников.
Какие же изменения возникают в организме человека под действием инфракрасной радиации? Небольшие по величине кванты инфракрасных: лучей несут слишком мало энергии, чтобы вызвать типичнее фотохимическое действие, хотя для ближних лучей (0,76—1,5 мк) такой эффект полностью исключить нельзя. Нельзя исключить также возможность фотосенсибилизированного возбуждения молекул при поглощении этих лучей, несмотря на то, что присутствие в организме специфических фотосенсибилизаторов пока не установлено.
Главное, а возможно, и единственное действие инфракрасных лучей состоит в глубинном (ближние лучи) или в более поверхностном (дальние лучи) прогреве живых тканей. Повышение температуры под действием инфракрасных лучей усиливает биологическую активность микроорганизмов и клеток кожи, ускоряет их размножение, темп обменных реакций, увеличивает подвижность клеток, способных к самостоятельному движению,— лейкоцитов и гистиоцитов, усиливает способность поглощать инородные тела и микроорганизмы. Повышение температуры увеличивает скорость обменных процессов.
В присутствии некоторых красителей (метилвиолета, цианиновых красителей) действие инфракрасных лучей на микроорганизмы значительно усиливается, наступает гибель клеток.
Таким образом, фотосенсибилизация в принципе возможна и в инфракрасных лучах.
При действии инфракрасных лучей на кожу человека глубина их проникновения зависит не только от длины волны лучей, но и от степени пигментации кожи, ее увлажнения, величины кровенаполнения кожных покровов (вода прекрасно поглощает инфракрасные лучи). Увлажнение кожи и легкий ее отек создают как бы жидкую подушку, своеобразный защитный экран, поглощающий инфракрасную радиацию. Усиливая ток крови в сосудах, расположенных в подсосочковых слоях кожи, инфракрасные лучи повышают обмен между кровью и тканями, облегчают вымывание из клеток продуктов обмена. Повышение температуры кожи оказывает легкое раздражающее действие на нервные окончания и, таким образом, на деятельность нервной системы в целом. Дозированный прогрев кожи оказывает болеутоляющее действие. Благодаря ускорению кровотока и оживлению деятельности потовых желез инфракрасное излучение способствует рассасыванию кожных поражений (абсцессов, фурункулов), ускоряет их созревание, облегчает удаление ядовитых веществ. Тепловые процедуры, ускоряя размножение клеток, способствуют заживлению кожных ран и накоплению пигмента в коже.
Наконец, достоверно установлено, что после воздействия инфракрасных лучей на кожу в крови человека появляются активные продукты распада белков, похожие на те, которые образуются в результате ультрафиолетового облучения. Можно предполагать, что повышение температуры кожи усиливает деятельность ферментов, расщепляющих белки.
Активные продукты распада белков наряду с нервными импульсами, возникающими в коже, распространяют местное действие инфракрасных лучей на весь организм. Эти нервные и гуморальные (жидкостные) влияния при умеренных дозах инфракрасной радиации нормализуют тонус вегетативной нервной системы, снимают чрезмерное напряжение, расслабляют тонус мышц, сосудов, оказывают болеутоляющее, противовоспалительное действие. Вот почему инфракрасные лучи широко используются в медицине для лечения самых разнообразных заболеваний.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК