Горячее дыхание светила

Древо жизни на Земле зародилось, окрепло и продолжает расти и развиваться под благодатными солнечными лучами. Познакомимся же поближе с источником этих лучей, попробуем понять секреты той щедрости, с которой Солнце освещает и обогревает наш уголок необъятного космоса.

Размеры Солнца огромны: его диаметр 1400 тыс. км, т. е. в 110 раз больше, чем у Земли. Современная наука позволяет вычислить даже такой немалый груз, как вес Солнца. Эту величину (2·1027 т) довольно трудно представить себе. Если бы Солнце ежесекундно теряло по 1 млрд. т своей массы, то и в этом случае половину своей массы оно потеряло бы только через 30 млрд. лет. Благодаря своей огромной массе и, следовательно, большой силе тяготения Солнце удерживает на разных расстояниях от себя девять больших планет, несколько тысяч маленьких (так называемых астероидов), множество комет и других, более мелких небесных тел, образующих единую солнечную систему.

Среди планет солнечной системы Земля имеет средние размеры: самая маленькая планета — Меркурий — в 18 раз меньше Земли, а гигант Юпитер — в 1345 раз больше. Расстояние Земли от Солнца —149,5 млн. км. Только благодаря громадным размерам и ослепительной яркости Солнца мы видим его на небосклоне в виде сверкающего диска, а не крохотной точки. Астроном Юнг писал по этому поводу: представьте себе ребенка с такой длинной рукой, что он может коснуться Солнца. Он прикоснулся к Солнцу и обжегся, но скончался бы в глубокой старости, прежде чем почувствовал боль, так как нервное раздражение распространяется, согласно Гельмгольцу, со скоростью около 30 м в секунду.

Если бы звук мог распространяться через межпланетное пространство, то это расстояние он преодолел бы за 14 лет; аппарат, летящий со скоростью 800 км/ч, — за 21 год. А луч света, который в это мгновение влетает в ваше окно, покинул поверхность Солнца всего 8 минут тому назад. Скорость света, достигающая 300 тыс. км/сек,— непревзойденный рекорд в материальном мире.

Если на границе земной атмосферы перпендикулярно лучам Солнца расположить площадку в 1 см2, то на нее ежесекундно будет падать около 2 кал солнечной энергии (более точно — 1,93 кал). Не менее половины этой энергии поглощается и рассеивается атмосферой. Солнечная энергия обусловливает испарение воды с поверхности водоемов и суши, а значит, и циркуляцию облачности, и выпадение осадков. В круговороте воды играют роль и величина поверхности водоемов, и характер почв, и рельеф суши, но главная, активная роль принадлежит, бесспорно, Солнцу.

Не менее важно влияние Солнца на циркуляцию воздушных масс в атмосфере. Нагрев поверхности суши и водоемов солнечными лучами приводит к повышению температуры и уменьшению удельного веса прилегающих к ним воздушных слоев, вызывает конвекционные токи воздуха, перемещения воздушных масс из областей высокого давления в области низкого давления. Циклоны и антициклоны, бризы, муссоны и пассаты, тропические ураганы и пустынные самумы — все это различные способы расходования энергии солнечных лучей.

На Землю поступает всего одна двухмиллиардная часть лучей Солнца. Энергии, излучаемой Солнцем за 1 сек (3,7·1026 дж), достаточно для того, чтобы растопить и довести до кипения слой льда вокруг Земли толщиной более 1000 км. Это ежесекундное излучение превышает то количество энергии, которое использовано человечеством за всю его историю. Каждые трое суток Солнце дарит Земле больше тепла и света, чем можно было бы получить при сжигании всех запасов угля и нефти, всех лесов планеты. И это излучение продолжается не секунду, не сутки, а на протяжении миллиардов лет.

Только один источник энергии способен поддерживать нужную температуру в солнечной печи в течение десятков миллиардов лет — это термоядерные реакции слияния легких ядер в более тяжелые. Атомный вес водорода 1,008, а гелия 4,003. Значит, ядро гелия тяжелее ядра водорода почти в четыре раза. Если возможно слияние четырех ядер водорода в ядре гелия (а этот процесс осуществляется во время взрыва водородной бомбы), то как объяснить уменьшение массы вещества? Ведь атомный вес четырех ядер водорода — 4,032.

Свет, подобно другим видам энергии, долгое время считавшийся чем-то нематериальным, в XX в. получил, наконец, права гражданства, как особая разновидность материи, столь же фундаментальная, как вещество. Первым шагом к этому выводу стало блестящее открытие русского физика П. Н. Лебедева, установившего в 1899— 1909 гг. материальность светового луча, его способность оказывать давление на тела. Затем Эйнштейн доказал, что превращение массы и энергии происходит одновременно и параллельно; для всех видов энергии справедливо соотношение Е = mc2, где Е — количество энергии, m — масса вещества, с — скорость света.

Таким образом, кажущуюся потерю массы при слиянии ядер водорода в ядро гелия можно объяснить тем, что выделяющаяся в процессе слияния энергия «уносит» эту массу в виде квантов излучения. О том, как велика энергия, выделяющаяся в результате синтеза ядер, можно судить по таким данным: 1 г массы водорода соответствует 20 триллионам (20·1012) ккал тепла. Для получения такого количества энергии нужно сжечь 20 тыс. т каменного угля.

Общее количество энергии, выделяемой Солнцем, колоссально лишь потому, что размеры светила громадны. Но если подсчитать, сколько энергии выделяется на каждый килограмм его массы, то окажется, что удельная теплоотдача Солнцем (4,4 кал/кг) существенно меньше, чем теплоизлучение человеческого тела (22 кал/кг).

В глубинах гигантского термоядерного котла Солнца плотность вещества в 11,4 раза превышает плотность свинца, но оно остается газообразным. Точнее, это плазма — четвертое состояние вещества, при котором ядра атомов, лишенные электронных оболочек, упаковываются более плотно. Лучистая энергия, освобождающаяся в центральных областях Солнца,— это рентгеновское излучение, рожденное ядерными реакциями и столкновениями движущихся атомов и электронов. Бесчисленное множество зигзагов, поглощений и новых излучений совершает пучок рентгеновских лучей, прежде чем вырваться ив солнечных недр к поверхности. И хотя он распространяется со скоростью света, его путешествие по извилистому маршруту к поверхности занимает в среднем около 20 тыс. лет. На этом пути рентгеновское излучение постепенно преображается. После каждого зигзага длина волны излучения несколько увеличивается, пока рентгеновские лучи не превращаются почти полностью в ультрафиолетовый и видимый свет.

В результате бесчисленного количества поглощений и излучений энергия достигает, наконец, такого сравнительно разреженного слоя солнечной атмосферы, который ужа не поглощает полностью идущий из глубин лучистый поток, хотя сам еще светится довольно ярко. Этот слой солнечной атмосферы, называемый фотосферой, толщиной около 300 км образует видимую глазом в телескоп блестящую поверхность Солнца, четкие контуры солнечного диска. О более высоких слоях атмосферы мы можем судить с помощью специальных приборов, либо в периоды солнечных затмений, когда яркий солнечный диск закрыт Луной. В эти краткие моменты удается обнаружить по самому краю Солнца тонкую полоску розового сияния с отходящими от нее во все стороны розовыми выступами различной формы — протуберанцами. Это так называемая хромосфера. Далее, на расстоянии иногда нескольких радиусов Солнца распространяется бледно-серебристое сияние — солнечная корона.

Вся фотосфера Солнца состоит как бы из отдельных зерен, гранул, величиной 700—2000 км, которые разделены между собой темными промежутками. Продолжительность жизни гранулы — всего 3—5 мин.

На видимой поверхности Солнца можно часто наблюдать и другие интересные образования — солнечные пятна. Двести лет назад астрономы полагали, что темные пятна — это вершины солнечных гор, возвышающиеся над океаном жидкой лавы во время отливов. На рубеже XIX в. английский астроном Уильям Гершель высказал предположение, что пятна представляют собой участки твердой холодной поверхности Солнца, видные в просветы между сверкающими раскаленными облаками. Сейчас мы знаем, что пятна лишь относительно темны и холодный на ярком солнечном диске они кажутся темными, так как их температура на 1100—1200° К [Величина 1 градуса по шкале Кельвина совпадает с величиной 1 градуса по Цельсию. Нулевая точка соответствует температуре —273° С (абсолютный нуль)] ниже температуры фотосферы. Размеры солнечных пятен различны: в среднем их диаметр 7—15 тыс. км, а наиболее крупные достигают в поперечнике 50—100 и даже 230 тыс. км. Пятна размером больше 40 тыс. км видны на Солнце невооруженным глазом. Возникают пятна на уровне фотосферы. Но дно пятна, образующее тень, располагается в среднем на 1000—1400 км глубже его краев. Таким образом, пятно представляет собой воронку, стенки которой видны как полутень. Крупные пятна более глубоки (см. рис. на вклейке). Вещество Солнца в пределах пятен находится в медленном вихревом движении, причем направление вращения в северном полушарии по часовой стрелке, в южном — против. Холодная материя поднимается в области пятна и растекается вдоль поверхности, постепенно прогреваясь.

Самое интересное в солнечных пятнах — наличие колоссальных магнитных полей (2—5 тыс. гаусс). Величина их в тысячи раз превышает напряженность общего магнитного поля Солнца. Силовые линии располагаются так, как будто пятно представляет собой полюс гигантского прямого магнита с осью, направленной в глубь Солнца. Чем больше пятно, тем выше напряженность его поля. Источником этих полей служат электрические токи чудовищной силы — до 10 тыс. млрд. ампер. Струи горячего ионизированного газа выносят сгоревшее ядерное топливо в наружные слои, а охлаждающийся газ переносит свежие порции горючего к центру «котла». Вследствие вращения Солнца газовые потоки закручиваются в вихри, которые отрываются, как кольца дыма, поднимаются к поверхности и, пробиваясь сквозь фотосферу, образуют пары солнечных пятен. И пятна, и сопровождающие их мощные магнитные поля — проявления гигантских термоядерных процессов, происходящих в глубинах Солнца. Газ внутри пятен движется вдоль магнитных силовых линий и охлаждается за счет расширения.

Пятна на Солнце наблюдаются главным образом по обе стороны экватора, чаще всего группами. Головное и хвостовое пятна группы обычно наиболее велики по размерам и имеют противоположную полярность. В северном и южном полушарии головные пятна групп всегда имеют противоположную полярность. Количество, размеры и длительность существования пятен на Солнце подчиняются своеобразным циклическим закономерностям. Самый короткий цикл имеет продолжительность 27 суток и связан с вращением Солнца вокруг своей оси. Наибольшее значение и известность имеет 11-летний цикл. Годы «спокойного Солнца», в течение которых пятен наблюдается очень мало, сменяются годами максимальной солнечной активности. С началом нового 11-летнего периода полярность пятен в северном и южном полушариях Солнца меняется на противоположную. Поэтому полный цикл солнечной активности составляет 22 года. Астрономы различают и более длительные циклы солнечной активности; их продолжительность 78—80, 190 лет и более.

С солнечными пятнами, с ритмом их образования и исчезновения связаны и другие проявления солнечной активности — протуберанцы, факелы (гигантские светящиеся облака, имеющие более высокую температуру, чем окружающая фотосфера), вспышки. Они возникают всегда в непосредственной близости от пятен, где перепады напряженности магнитных и связанных с ними электрических полей достигают максимальной величины. Во время вспышки гигантские массы солнечного вещества со скоростью 1000—3000 км/сек и более выбрасываются из хромосферы. Вспышки возникают очень быстро — в течение 10—30 сек; они носят характер взрыва. Яркость вспышки в момент ее максимума может быть в три-четыре раза выше яркости фотосферы; солнечный диск на ее фоне кажется темным. Температура солнечного вещества в месте вспышки достигает 10—15 тыс. градусов, а ионизация атомов хромосферы увеличивается в 10 раз.

Вспышки — источники мощного ультрафиолетового и рентгеновского излучений, радиоволн, а также больших потоков заряженных и быстро летящих частиц солнечного вещества, чаще всего протонов с энергией 100 млн. эв и больше. Протонные потоки, возникающие во время хромосферных вспышек на Солнце, представляют очень серьезную опасность для космонавтов, покидающих плотные слои земной атмосферы. Самая толстая оболочка космического корабля пока не в состоянии защитить людей от воздействия мощного излучения, от опасности лучевой болезни. В связи с этим очень большое значение имеет прогнозирование солнечных вспышек. Работы в этом направлении уже ведутся на протяжении нескольких лет. По величине, количеству и характеру пятен, по крутизне перепадов напряженности их магнитных полей ученые предсказывают (и не без успеха) не только время появления, но и мощность предполагаемых вспышек.

Однако события, происходящие на Солнце, непосредственно касаются не только космонавтов. Вся наша Земля — не что иное, как гигантский космический корабль, летящий со скоростью 30 км/сек сквозь бездну космического пространства. И хотя воздушная оболочка — атмосфера — надежная защита земной поверхности, все же раскаты космических бурь, гигантские потрясения, охватывающие Солнце, доносятся и до нее всего за 8 минут, а солнечная корона столь широка, что, быть может, соприкасается с земной атмосферой.

Если вспомнить, каковы масштабы явлений, происходящих на Солнце в периоды максимума его активности, легко понять, что ни расстояние, ни толстая воздушная оболочка не защищают полностью Землю от воздействия солнечных вихрей. Потоки невидимых излучений, колоссальные облака солнечного газа вторгаются тогда в верхние слои атмосферы. Наши органы чувств под покровом толстого воздушного одеяла остаются в неведении о штормах, прокатывающихся по окраинам атмосферы. Но неистовство этих бурь находит отражение во множестве грозных явлений. 12 ноября I960 г. астрономы увидели ослепительный взрыв на Солнце. Всего через шесть часов гигантское облако солнечного водорода (16 млн. км в поперечнике) столкнулось с Землей (скорость его движения в момент столкновения равнялась примерно 6,5 тыс. км в 1 сек). Вторжение посланников солнечной вспышки вызвало целую цепь сильнейших потрясений. Стрелки компасов заметались. На протяжении многих часов не действовала дальняя радиосвязь: ионизация воздуха настолько усилилась, что ионосфера перестала отражать радиоволны. Телетайпы отстукивали несусветную тарабарщину. Пилоты потеряли связь с контрольными станциями и радиомаяками. Красные сполохи полярных сияний просвечивали даже сквозь облака и были видны не только за Полярным кругом, но и в средних широтах. На севере электрические лампочки в домах мигали, как во время неистовой пурги, хотя погода стояла ясная, безветренная. Хаос продолжался больше недели. Конечно, такие вспышки бывают не часто, но в годы максимума солнечной активности опасность нарушений связи вполне реальна.

Воздействие солнечной активности на земную жизнь не ограничивается моментами хромосферных вспышек. Циклоны, бури, смерчи нередко возникают в периоды максимумов активности Солнца. Первые упоминания о солнечных пятнах встречаются в древних китайских рукописях II—IV вв. н. э. Наши предки считали появление пятен на Солнце божьим знамением, сулившим стихийные бедствия, войны, эпидемии. В Никоновской летописи 1371 г. отмечается: «Того же лета бысть знамение на Солнце, места черны по Солнцу, аки гвозди...» Наводнения, грозы, ураганы, засухи, проливные дожди и другие сугубо «земные» явления причинно связаны с мерным пульсом жизни Солнца. В 1957 г., когда солнечная активность была высокой, согласно данным метеорологов, на Земле произошло 110 больших катастроф типа наводнений, засух и т. п. В 1961 г. Солнце было относительно спокойнее, и таких катастроф отмечено 30.

В 20-х годах нашего столетия советский ученый А. Л. Чижевский поставил перед собой цель проследить причинную связь между событиями на Солнце и земной жизнью. Он обратился к летописям, к монастырским хроникам, дневникам путешественников, запискам астрономов, к данным статистики, медицины, ботаники и других наук. Столь разнообразные источники помогли ему выяснить удивительные закономерности: холера, чума, дифтерия и другие инфекционные болезни активизируются в годы, совпадающие с максимумами солнечной активности или непосредственно следующие за ними. Вмешательство человека — проведение вакцинаций, успешное лечение и изоляция больных — нарушили природную цикличность эпидемий (рис. 9). С колебаниями солнечной активности связаны также циклические изменения количества лейкоцитов в крови, содержания в ней сахара, солей калия и кальция, свертываемости крови, сдвиги электрического потенциала кожи людей, периодические колебания плодовитости коров. Даже толщина колец на срезах деревьев, характеризующая скорость нарастания их живой массы, обнаруживает 11-летшою периодичность (см. рис. на вклейке).

С точки зрения механизмов влияния сдвигов солнечной активности на земную биосферу следует различать две группы факторов.

1. Вспышки и другие гигантские катаклизмы, характерные для периодов максимума солнечной активности, оказывают возмущающее воздействие па верхнюю атмосферу Земли и в сочетании с некоторым увеличением количества излучаемой Солнцем энергии довольно существенно нарушают глобальную схему циркуляции воздушных масс и воды в атмосфере. В результате в разных районах земного шара увеличивается или, наоборот, резко уменьшается количество осадков, возрастает количество наводнений, засух и других стихийных бедствий. Когда солнечная активность относительно мала, циклоны, несущие влагу с Атлантики, проносятся над Средиземным и Черным морями, Кавказом и Казахстаном. При этом орошаются и зеленеют степи, покрываются растительностью пустыни, наполняются водой Балшах и Аральское море, а Каспий, питаемый на 80% Волгой, мелеет. В лесной полосе беднеют водой реки, высыхают болота. Там стоят суровые малоснежные зимы, летом жарко. На севере укрепляется вечная мерзлота. Но вот солнечная активность возросла, «дорога циклонов» сместилась к северу и прошла над Францией, Средней Россией. Сохнут степи, мелеют Балхаш и Арал, переполняются водой Волга и Каспий. Леса между Окой и Волгой заболачиваются, выпадают обильные снега, зимой часты оттепели, а лето дождливое. Солнечная активность достигает максимума — и циклоны несутся над Шотландией, Скандинавией, над Белым и Карским морями. Степь превращается в полупустыню, мелеет Волга. На севере тают льды, отступает вечная мерзлота, тундровые озера мелеют.

Рис. 9. Зависимость заболеваемости дифтерией (а) и острыми сердечными заболеваниями (б) от солнечной активности

Пунктирная линия — заболеваемость, сплошная — солнечная активность, вертикальная линия — начало противодифтерийных прививок

Изменение закономерностей круговорота воды и циркуляции воздушных масс вторично вызывает разнообразные сдвиги в биосфере: интенсивность нарастания годичных колец древесины, активность размножения различных сапрофитных микроорганизмов почвы, насекомых (саранчи, клопа-черепашки), грызунов (полевых мышей, ондатр на юге, леммингов на севере), урожайность основных сельскохозяйственных культур обнаруживает более или менее четко выраженную 11-летнюю периодичность. В разных районах земного шара максимумы и минимумы кривой урожайности не совпадают. Массовое размножение грызунов приводит к развитию эпизоотии, а затем и эпидемий чумы, туляремии, безжелтушного лептоспироза, инфекционного гепатита и т. п., которые в эпоху отсутствия эффективных средств борьбы также периодически повторялись. Колебания водного режима рек, обусловленные все теми же глобальными нарушениями циркуляции, служили причиной периодического ухудшения условий водоснабжения, а с ними — и условий распространения водных эпидемий холеры, брюшного тифа, дизентерии. Тот же механизм лежит в основе периодических увеличений численности комаров, москитов, клещей и вспышек переносимых ими заболеваний — малярии, желтой лихорадки, клещевых энцефалитов и т. п.

2. Однако не все проявления реакции биосферы на колебания солнечной активности развиваются за счет периодических сдвигов в системе атмосферной циркуляции и выпадения осадков. Наряду с описанным существует и механизм более прямого, непосредственного влияния солнечных вспышек и генерируемого ими коротковолнового излучения на многие биологические процессы. Так, непосредственно после возникновения вспышки на Солнце статистически достоверно увеличивается число уличных автомобильных катастроф в крупных городах и общее число смертельных исходов, существенно возрастает число нервно-психических заболеваний, точнее, случаев их обострений, частота инфарктов миокарда и гипертонических кризов у сердечно-сосудистых больных.

По статистическим данным, полученным советскими учеными в Свердловске, около 73% случаев инфаркта происходит именно в дни магнитных бурь. Частота инфарктов в эти периоды возрастает вдвое, а число внезапных смертей от разных причин — в 2,6 раза. Причем чем сильнее буря, тем значительнее учащение острых, внезапных заболеваний и смертельных исходов. Магнитные бури сопровождаются также резким кратковременным снижением количества лейкоцитов и протромбинового индекса (показателя свертываемости крови), электрического потенциала кожи человека и т. п. Причем все эти события развиваются даже раньше, чем потоки солнечного вещества достигают земной орбиты. Приходится допускать существование механизма непосредственного воздействия электромагнитных возмущений, возникающих в результате солнечных вспышек, па человека, на его нервную и сосудистую систему, на биосферу в целом. Такие возмущения, распространяющиеся, по-видимому, со скоростью света, могут иметь электрическую, магнитную, электромагнитную природу; это может быть радиоизлучение Солнца, изменение солнечного излучения в оптическом диапазоне, корпускулярное излучение Солнца. Под их влиянием, очевидно, возникают изменения, непериодические вариации электрического и магнитного поля Земли, низко- и высокочастотные поля и т. п. Однако вся многозвенная цепь причинно-следственных связей и отношений, протянувшаяся из недр Солнца к глубинам клеток земной биосферы, еще не прослежена во всех деталях.

Бесспорно лишь, что влияние Солнца на земную жизнь еще значительнее, многообразнее и сложнее, чем можно было бы думать. Горячее дыхание светила подчиняет своему ритму жизнь на поверхности одной из его планет. Какова природа этих волн солнечной активности, волн времени, на которых покачивается хрупкая лодка жизни? Какие таинственные силы приводят в движение солнечный маятник? Поиски ответа на эти вопросы ведутся давно.

На рубеже XX столетия английский ученый Э. Браун предположил, что возникновение пятен — вихрей в солнечном веществе — связано с притяжением планет, вызывающим приливы на Солнце. Браун, в частности, отметил, что 11-летний ритм солнечной активности почти совпадает с периодом обращения Юпитера — самой массивной планеты солнечной системы, равным 11,86 года. В своем первоначальном виде эта гипотеза была недостаточно убедительна: ведь приливообразующая сила Меркурия, гораздо меньшего по размерам, но расположенного значительно ближе к Солнцу, превышает влияние Юпитера в семь раз. Однако колебаний солнечной активности, соизмеримых с периодом обращения Меркурия (около трех месяцев), не обнаружено.

Существенный шаг вперед был сделан после того, как с помощью электронно-вычислительных машин рассчитали положение и движение общего центра тяжести солнечной системы в целом. Благодаря вращению планет вокруг Солнца с различной угловой скоростью этот общий центр тяжести смешивается и не совпадает с центром Солнца. Хотя общая масса планет не достигает и пятисотой доли массы Солнца, но они в силу своего положения на разных расстояниях от центрального светила влияют на положение центра тяжести. Американский астроном П. Джозе вычислил, что Солнце само вращается вокруг этого гравитационного центра с периодом 178,77 земных лет, а это соответствует длительности одного из циклов солнечной активности.

Расчеты американских математиков К. Вуда и Р. Вуда показали, что сложная орбита движения центра тяжести солнечной системы регулярно (при определенном расположении планет вокруг Солнца) претерпевает резкие сдвиги, «скачки», отделенные друг от друга уже знакомым нам интервалом в 11,08 лет! Весьма вероятно (хотя окончательно еще не доказано), что эти «рывки» влияют на движение масс вещества в недрах Солнца, а через них — и на скорость термоядерных реакций. Отсюда — уже один шаг до объяснения причин колебаний солнечной активности, происхождения пятен, вспышек, выбросов солнечного вещества и т. п. Влиянием планет, по данным этих ученых, можно объяснить и смену магнитной полярности пятен, и широту их возникновения на солнечном диске, и существование других солнечных циклов. Следовательно, не только Солнце влияет на разнообразные стороны бытия планет, но имеет место и обратное, по-видимому, также существенное влияние. Близость к нам Солнца, его роль в нашей жизни, его беспокойный характер делают необходимым постоянное внимательное наблюдение за ним. Не только подсчет ударов солнечного пульса, но и проникновение в движущие им механизмы — вот достойная задача для науки нашего времени!

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК