Почему свет рассеивается в морской воде?

Представим себе, что путем многократных перегонок и фильтраций нам удалось получить некоторое количество воды, не содержащей ни одной даже мельчайшей частички пыли. Зальем эту «оптически пустую» воду в аквариум. Вообразим, кроме того, что ее молекулы равномерно распределены по всему объему и застыли на какое-то мгновение в таком положении. Направим теперь на одну из стенок нашего аквариума параллельный пучок света и посмотрим сбоку. Оказывается, ничего не видно.

Но стоит слегка подогреть воду, заставить шевелиться молекулы, и сейчас же станет различим едва заметный пучок проходящего через воду света.

Добавим в воду немного пыли или несколько капель молока. Пучок света теперь виден совершенно отчетливо.

Что же произошло?

Пока свет проходил через абсолютно однородную воду, рассеяние отсутствовало, поэтому мы ничего не видели через боковую стенку аквариума. Однако достаточно было нарушить однородность среды, подогрев ее или засорив посторонними включениями, и пучок сразу стал заметен, так как произошло частичное рассеяние света пучка. Чем же это объяснить?

Рис. 5. Флуктуация молекул:

1 — объем со средним количеством молекул; 2 — флуктуация с уменьшением плотности; 3 — флуктуация с увеличением плотности

С повышением температуры «застывшие» молекулы пришли в движение, беспорядочно собираясь в одном месте и образуя «пустоты» в другом, т. е. равномерное распределение молекул в объеме воды нарушилось. Такие нарушения называют флуктуациями плотности вещества.

Наглядно представить себе происшедшее можно, взглянув на рис. 5. Когда мы добавляли в «оптически пустую» воду пыль или капли молока, то тем самым нарушали однородность воды посторонними включениями, которые оказались в ней во взвешенном состоянии в виде твердых частиц (пыль) или эмульсии жира (молоко). Таким образом, в первом случае мы наблюдали рассеяние света, вызванное молекулами вещества, т. е. молекулярное рассеяние света, а во втором — рассеяние, обусловленное взвешенными частицами. Надо отметить, что оптические свойства этих частиц должны отличаться от оптических свойств воды, иначе никакого нарушения однородности не произойдет и свет рассеиваться не будет.

Впервые рассеяние света мелкими частичками, размеры которых меньше длины световой волны, исследовал английский физик Рэлей. Интенсивность рассеяния такими частичками обратно пропорциональна четвертой степени длины волны. Другими словами, если мы возьмем равный по интенсивности фиолетовый и красный свет, то энергии в рассеянном пучке фиолетового света будет почти в 17 раз больше, чем в красном.

Рис. 6. Индикатриса рэлеевского рассеяния

Если интенсивность излучения, рассеянного под углом 90° относительно первоначального направления, обозначить I90, то интенсивность рэлеевского рассеяния по всем другим направлениям (IY) будет подчинена определенной закономерности:

Произведя элементарно простой расчет и отложив на графике интенсивность рассеяния под различными углами в виде векторов соответствующей длины, можно, соединив концы этих векторов плавной кривой, получить так называемую индикатрису рассеяния (рис. 6). По форме этой индикатрисы видно, что при рэлеевском рассеянии вперед рассеивается столько же света, сколько и назад, т. е. рассеяние симметрично относительно осей х и у. Естественно, чем больше в воде рассеивающих частиц, тем сильнее будет рассеиваться свет.

В 1908 г. М. Смолуховский предположил, что скопления молекул, возникающие из-за флуктуаций плотности, могут рассеивать свет так же, как и материальные частицы. А. Эйнштейн дал дальнейшую математическую разработку теории Смолуховского. Выведенные уравнения позволили рассчитать величину рассеяния, которое происходит в воде за счет флуктуаций плотности. Полученные величины оказались настолько малы, что объяснить ими рассеяние, наблюдаемое в море, было невозможно. Даже в самых чистых океанских водах молекулярное рассеяние играет отнюдь не главную роль. Чем же рассеивается свет в чистейших водах морей и океанов?

Дело в том, что эти воды чисты, если ими любоваться с палубы корабля. Однако стоит каплю морской воды поместить под микроскоп, как мы обнаружим в ней одноклеточные планктонные организмы, диаметр которых в 100 раз больше длины волны голубого света (рис. 7).

Рассматривая каплю воды под электронным микроскопом (рис. 8), легко убедиться, насколько грязна на первый взгляд чистая морская вода. В ней всегда во взвешенном состоянии присутствуют мельчайшие обломки диатомовых и радиоляриевых организмов, каолинита, гидрослюд и многих других частичек органического и минерального происхождения.

Всем известны чистота и прозрачность лазурных вод Средиземного моря. А вот морские геологи, занимающиеся изучением взвеси в море, Е. Емельянов и К. Шимкус, подсчитали, что в 1 м3 поверхностного слоя средиземноморской воды содержится в среднем около 1,5 г взвеси, состоящей из частичек отмерших организмов и пылинок, занесенных в море реками и ветрами. Геологи не только определили вес взвеси, но и подсчитали под микроокопом количество частиц и их распределение по размерам (рис. 9). Оказалось, что неорганических частичек размером 1–5 мк в кубическом метре воды около 250 млн., а органических — порядка 135 млн. Поэтому не случайно морская вода для распространяющегося в ней света считается мутной средой.

Впервые детальные исследования рассеяния света в мутных средах были проведены английским физиком Тиндалем в 1868 г. (это явление получило наименование тиндаль-эффекта). Затем немецкий ученый Густав Ми в 1908 г., изучая рассеяние света на частичках распыленного в воде золота, разработал теорию рассеяния на частицах, размеры которых больше длины волны света.

Оказалось, что такие «большие» частицы рассеивают свет совершенно иначе, чем при рэлеевском рассеянии. Значительная часть рассеянного света направлена вперед, и лишь небольшая — назад, навстречу падающему пучку. Ни о какой симметрии уже не может быть речи. Причем доля рассеянного вперед света определяется главным образом размером частиц. Это так называемый эффект Ми.

Рис. 7. Фотография взвешенных частиц в прибрежных водах Тихого океана

Рис. 8. Микрофотография частиц, содержащихся в пробе воды из Индийского океана

В. В. Шулейкин рассчитал индикатрисы рассеяния для крупных частиц. Некоторые из них представлены на рис. 10. С увеличением размера частиц индикатриса все больше и больше вытягивается вперед. При этом наблюдается еще одно любопытное явление: рассеяние перестает подчиняться рэлеевскому закону обратной пропорциональности четвертой степени длины волны. Шулейкин установил зависимость между размерами частиц и показателем степени при ?, которым следует заменять «рэлеевскую четверку»:

Показатели степени при ? 4,0 3,5 3,0 2,5 2,0 1,5 Диаметр рассеивающих частиц ? 0,07 0,1 0,15 0,23 0,30 0,35

Из данных видно, что если размер частицы примерно равен длине волны видимой части спектра, то рассеяние перестает быть селективным, т. е. свет всех цветов рассеивается одинаково.

До сих пор все наши рассуждения относились к рассеянию на одной частице или совокупности одинаковых частиц. А как же оценить рассеяние в реальных условиях моря? Геологи достаточно убедительно показали, что в каждой капле морской воды содержится огромное количество самых разнообразных частиц. Причем надо учесть, что рассеяние зависит не только от их размеров, но и от оптических свойств того материала, из которого они состоят.

Мы уже говорили об индикатрисах, рассчитанных Рэлеем и Шулейкиным. Можно ли рассчитать с достаточной точностью индикатрису морской воды?

Принципиально такой расчет возможен, но для этого нужно иметь полное представление о количестве, размерах и оптических свойствах взвешенных в морской воде частиц. Современная техника исследований не позволяет получить всю необходимую нам информацию.

Зная индикатрису рассеяния во всем интервале углов от 0 до 180°, можно исследовать размеры взвешенных в воде частиц. Оптические методы определения размеров рассеивающихся частиц в различных средах, разработанные К. С. Шифриным, в настоящее время начинают использоваться и в оптике моря.

Рис. 9. Распределение частиц взвеси по крупности в водах Средиземного моря

1 — неорганическая; 2 — органическая

Рис. 10. Индикатрисы рассеяния для крупных частиц (по В. В. Шулейкину)

Для определения рассеивающих свойств морской воды необходимо проводить непосредственные измерения, либо доставив пробу воды в судовую лабораторию, либо опустив прибор в море. Такие приборы обычно называют нефелометрами.

Одним из первых приборов такого рода была установка, разработанная А. А. Гершуном и М. М. Гуревичем в Государственном оптическом институте им. С. И. Вавилова. На рис. 11 приведена схема измерений рассеяния этим прибором. Сосуд с водой через оптическую систему освещался параллельным пучком света. Как и в примере с аквариумом, в этом сосуде из-за рассеяния света создается светящийся след, яркость которого под различными углами оценивает фотометр путем сравнения ее с яркостью матовой пластинки с известным коэффициентом отражения, помещенной в центре сосуда.

Получив ряд значений яркости для различных углов, во-первых можно построить индикатрису рассеяния, а во-вторых, рассчитать показатель рассеяния.

Если собрать весь свет, рассеянный по различным направлениям, мы получим общее число фотонов ?N, рассеянных нашим объемом воды. Точно так же, как и в случае поглощения, это число пропорционально количеству фотонов N, падающих на слой, и толщине слоя ?z:?N = ?N?z. По аналогии с показателем поглощения коэффициент пропорциональности ? в этой формуле носит название показателя рассеяния. Он равен вероятности того, что фотон, пробегая в веществе слой единичной толщины, изменит направление своего движения.

Оригинальную конструкцию прибора для измерения рассеяния света разработал и применил В. В. Шулейкин. В его установке источником света служило солнце, лучи которого гелиостатом направлялись в систему линз и объективов, а оттуда в виде интенсивного пучка параллельного света в прибор. Многократно преломившись в коленчатой трубе установки, свет под разными углами освещал исследуемый объем воды, а яркость его сравнивалась фотометрическим устройством с яркостью эталонной пластинки.

Одним из современных «индикатрисомеров» является гидронефелометр СГН-57, сконструированный в ГОИ под руководством В. Б. Вейнберга. На рис. 12 изображен внешний вид этого прибора, а на рис. 13 — его оптическая схема. Как же ведут измерения этим прибором?

Рис. 11. Нефелометр Гершуна — Гуревича

Он устанавливается на специальном столе в судовой лаборатории. Так как измерения зачастую приходится вести во время качки, то прибор крепится к столу надежными зажимами. Первоначально предполагалось, что вода в прибор будет подаваться из-за борта по специальному шлангу с помощью насоса, но это оказалось очень трудно выполнить практически. Кроме того, этим путем можно было получить только воду самого поверхностного слоя моря. А как быть, если надо измерить рассеивающую способность воды, допустим, из Марианской впадины в Тихом океане, с глубин, превышающих 10 000 м или, более скромно, 1000–2000 м? Пришлось воспользоваться батометрами[8]. Но как ни мыли горячей водой с мылом, паром, специальными химикалиями и другими способами металлические батометры, которыми пользуются гидрологи, они оказались «грязными» для оптических исследований.

Тогда инженер А. С. Сусляев создал несколько типов «чистых» батометров из винипласта (рис. 14), позволяющих взять семилитровую пробу воды с любой глубины океана. В кювету прибора заливается около пяти литров воды, а остальная часть пробы может быть использована для исследования взвеси или других целей.

Рис. 12. Внешний вид спектрогидронефелометра СГН-57

Рис. 13. Схема прибора СГН-57, используемого в качестве нефелометра

1 — оптическое устройство; 2 — источник света; 3 — зеркало; 4 — объектив; 5 — освещенный объем воды, находящийся в поле зрения наблюдателя; 6 — осветитель узла сравнения прибора; 7 — окуляр

Измерения проводятся следующим образом. Оптическое устройство 1 концентрирует свет от лампы 2 в виде параллельного пучка, который, отразившись от зеркала 3 и пройдя через объектив 4, попадает в воду, осветив в ней определенный объем. Этот освещенный объем, естественно, как бы сам становится источником света, имеющим разную яркость в зависимости от того, под каким углом ? мы на него посмотрим. Наблюдатель, глядя в окуляр 7, выравнивает яркость фотометрических полей, создаваемую освещенным объемом воды и светом от осветителя узла сравнения прибора 6, и по отсчету на специальном барабане определяет яркость рассеянного света. Осветительное устройство жестко соединено с диском, закрывающим кювету прибора. На нем имеются градусные деления. Вращая диск, наблюдатель под различными углами освещает объем воды и измеряет яркость. По результатам измерений строятся графики индикатрисы и вычисляется показатель рассеяния. В приборе установлены также цветные светофильтры для того, чтобы все измерения можно было проводить в разных участках спектра.

В описанных исследованиях есть, однако, элемент искусственности. Пробу воды «вырывают» из родной стихии, переливают в прибор и т. д. Это несколько искажает естественные условия, в которых распространяется свет. Потому в последние годы гидрооптики все чаще измеряют рассеивающие свойства вод, погружая приборы непосредственно в море.

Внешний вид одного из таких приборов представлен на рис. 15. Принцип работы измерителя довольно прост. При измерениях блок осветителя 1 начинает медленно поворачиваться относительно центра рассеивающего объема 3. Перед фотоумножителем 2 при вращении последовательно проходят 12 окошек, прорезанных в лимбе прибора через каждые 10°. Ширина этих прорезей пропорциональна синусу угла, так что измеряемое рассеяние создается постоянным объемом. Как видим, это уже не визуальный, а объективный фотометр, в котором человеческий глаз заменен фотоумножителем.

Ерлов, описывая измерения, проведенные указанным прибором в верхних слоях моря, отмечал, что чувствительность фотоумножителя была столь велика, что наблюдения можно было проводить только в безлунные ночи с выключенным освещением на палубе судна. Благодаря этим мерам в иллюминатор фотоумножителя не попадал посторонний свет.

Рис. 14. Гидрооптический батометр конструкции Сусляева

Рис. 15. Внешний вид измерителя рассеяния Ерлова

1 — осветительное устройство; 2 — приемник излучения; 3 — ось вращения

В последнее время для измерения индикатрис рассеяния начали использовать приборы, у которых в качестве источника излучения применяется лазер. Это позволяет упростить оптическую схему прибора и в то же время получить интенсивный, направленный и монохроматический пучок света.

Какой же вид имеют индикатрисы морских вод?

Им присуща остро вытянутая, кинжальная форма (рис. 16, 3), чем они резко отличаются от индикатрисы рэлеевского рассеяния (рис. 16, 1) и индикатрисы рассеяния света в атмосфере (рис. 16, 2). Для практических расчетов индикатрисы рассеяния морских вод удобнее представлять в виде графиков, показанных на рис. 17.

Рис. 16. Сопоставление формы индикатрис рассеяния света при рэлеевском рассеянии 1, в атмосфере 2 и в морской воде 3

Здесь приведено пять индикатрис, измеренных в разных водах как лабораторными приборами 1, 2, так и приборами, погружаемыми в море, 3, 4 и 5. Для удобства сопоставления рассеяние под углом 90° принято за единицу. Мы видим, что характер рассеяния вперед на углах менее 90° у всех вод более или менее схож. Интенсивность света, рассеянного вперед, в тысячи раз больше интенсивности света, рассеянного назад.

Рис. 17. Индикатрисы рассеяния света, измеренные исследователями в разных водах

1 — Хальбарт (1945) — Чезапикский залив; 2 — Козлянинов (1957) — Восточно-Китайское море; 3 — Ерлов (1961) — северо-восточная часть Атлантического океана; 4 — Тайлер (1961) — калифорнийские прибрежные воды; 5 — Дантли (1963) — озеро Виннипесаки

Все предыдущие рассуждения относились к рассеянию в параллельном световом пучке, направленном от какого-либо осветительного устройства.

Процесс рассеяния естественного света, идущего от поверхности моря к его глубинам, несоизмеримо более сложен. Здесь мы имеем дело с многократным рассеянием. Солнечные лучи, проникая в море, в самом поверхностном его слое еще сохраняют вид направленного света. С глубиной каждый «конкретный луч» из-за рассеяния как бы делится на многие лучи, расходящиеся в разных направлениях. Эти лучи вновь делятся, и процесс длится до тех пор, пока свет не станет полностью рассеянным.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК