Глава 19. Основы полупроводников
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Перечислить полупроводниковые материалы.
• Дать определение ковалентной связи.
• Описать процесс легирования для получения полупроводниковых материалов n-типа и р-типа.
• Объяснить, как легирование поддерживает ток в полупроводниковых материалах.
Полупроводники являются основными компонентами электронного оборудования. Наиболее часто используются полупроводниковые диоды (для выпрямления сигналов), транзисторы (используются для усиления сигналов) и интегральные микросхемы (используются для переключения схем или усиления сигналов). Основная функция полупроводниковых приборов — управление напряжением или током для получения желаемого результата.
Полупроводники имеют следующие преимущества:
• Малые размеры и вес.
• Низкую потребляемую мощность при низком напряжении.
• Высокий коэффициент полезного действия.
• Высокую надежность.
• Способность работать в сложных условиях.
• Немедленно начинают работать при включении питания.
• Недорогое массовое производство.
Полупроводники имеют следующие недостатки:
• Высокую восприимчивость к изменениям температуры.
• Для стабилизации режима необходимы дополнительные компоненты.
• Легко повреждаются (при превышении допустимых пределов по току или напряжению, при перемене полярности питающего напряжения, от перегрева при пайке).
19-1. ПОЛУПРОВОДНИКОВЫЕ СВОЙСТВА ГЕРМАНИЯ И КРЕМНИЯ
Проводимость полупроводниковых материалов лежит между проводимостью изоляторов и проводников. Чистыми полупроводниковыми элементами являются углерод (С), германий (Ge) и кремний (Si). Наиболее подходят для применения в электронике германий и кремний.
Германий — это хрупкий серовато-белый элемент, открытый в 1886 году. Порошкообразную двуокись германия получают из золы некоторых сортов угля. Из этого порошка получают твердый чистый германий.
Кремний был открыт в 1823 году. Он широко распространен в земной коре в виде белого или иногда бесцветного соединения — двуокиси кремния. Двуокисью кремния богат песок, кварц, агат и кремень. Из двуокиси кремния химическим путем получают чистый кремний. Кремний является наиболее широко используемым полупроводниковым материалом.
Полупроводниковый материал после получения должен быть модифицирован, чтобы он приобрел качества, необходимые для полупроводниковых устройств.
Как описано в главе 1, в центре атома находится ядро, которое содержит протоны и нейтроны. Протоны имеют положительный заряд, а нейтроны заряда не имеют. Электроны движутся по орбитам вокруг ядра и имеют отрицательный заряд. На рис. 19-1 показана структура атома кремния.
Рис. 19-1. Атомная структура кремния.
Первая орбита содержит два электрона, вторая орбита восемь, а внешняя орбита или валентная оболочка содержит четыре электрона. Валентность — это показатель способности атома присоединять или отдавать электроны, она определяет электрические и химические свойства атома. На рис. 19-2 показана упрощенная схема атома кремния, на которой изображено только четыре электрона на валентной оболочке.
Рис. 19-2. Упрощенная схема атома кремния, па которой показаны только валентные электроны.
Материалы, которым необходимы электроны для заполнения их валентной оболочки, являются нестабильными и относятся к активным материалам. Для приобретения стабильности, активные материалы должны добавить электроны в свои валентные оболочки. Атомы кремния способны объединить свои валентные электроны с другими атомами кремния с помощью процесса, который называется ковалентной связью (рис. 19-3).
Рис. 19-3. Кристаллическая структура кремния с ковалентными связями.
Ковалентная связь — это процесс совместного использования валентных электронов различными атомами, приводящий к образованию кристалла.
Каждый атом в такой кристаллической структуре имеет четыре своих собственных электрона и четыре совместно используемых электрона от четырех других атомов, а всего — восемь валентных электронов. Ковалентная связь ввиду своей стабильности не может поддерживать электрическую активность.
При комнатной температуре кристаллы чистого кремния являются плохими проводниками. Они ведут себя, как изоляторы. Однако если кристаллу сообщить тепловую энергию, то некоторые электроны получат эту энергию и переместятся на более высокую орбиту, нарушая ковалентную связь. Это позволяет кристаллу проводить ток.
Кремний, подобно другим полупроводниковым материалам, имеет отрицательный температурный коэффициент сопротивления, потому что при повышении температуры его сопротивление уменьшается. Сопротивление кремния падает в два раза при каждом повышении температуры на б градусов Цельсия.
Как и кремний, германий имеет четыре электрона на валентной оболочке и может образовывать кристаллическую структуру. Сопротивление германия падает в два раза при каждом повышении температуры на 10 градусов Цельсия. Таким образом, германий является более стабильным по отношению к изменениям температуры, чем кремний. Однако германий требует меньше тепловой энергии для освобождения электронов, чем кремний. При комнатной температуре кремний имеет в тысячу раз большее сопротивление, чем германий.
Тепло при работе с полупроводниками является потенциальным источником трудностей, который нелегко поддается контролю. Правильный расчет цепи минимизирует влияние изменений температуры. Высокое сопротивление — вот что дает преимущество кремнию перед германием в большинстве цепей. В тех цепях, где температурный коэффициент сопротивления германия имеет преимущество, используется германий.
Все первые транзисторы были сделаны из германия. Кремниевых транзисторов не было до 1954 года. В настоящее время в большинстве случаев используются кремниевые полупроводниковые приборы.
19-1. Вопросы
1. Что такое полупроводниковый материал?
2. Дайте определения следующим терминам:
а. Ковалентная связь.
б. Отрицательный температурный коэффициент сопротивления.
3. Почему кремний и германий считаются полупроводниковыми материалами?
4. Почему кремний предпочтительней германия?
19-2. ПРОВОДИМОСТЬ В ЧИСТОМ ГЕРМАНИИ И КРЕМНИИ
Электрическая активность полупроводниковых материалов сильно зависит от температуры. При крайне низких температурах валентные электроны сильно связаны с атомами ковалентными связями. Поскольку эти валентные электроны не способны дрейфовать, материал не может проводить электрический ток. Кристаллы германия и кремния при низких температурах являются изоляторами.
При повышении температуры валентные электроны приобретают дополнительную энергию. Некоторые электроны разрывают ковалентные связи и хаотично дрейфуют от атома к атому. Эти свободные электроны в состоянии поддерживать небольшой электрический ток, если приложено напряжение. При комнатной температуре тепловой энергии достаточно для того, чтобы создать небольшое количество свободных электронов и поддержать небольшой ток.
При увеличении температуры материал начинает приобретать характеристики проводника. Но только при очень высоких температурах кремний проводит ток, как обычный проводник. Обычно, при нормальных условиях эксплуатации такие высокие температуры не встречаются.
Когда электрон разрывает ковалентную связь и уходит от атома, пространство, которое он занимал прежде, называют дыркой (рис. 19-4).
Рис. 19-4. Дырка образуется, когда электрон разрывает свою ковалентную связь.
Как отмечалось в главе 2, дырка — это просто отсутствие электрона. Поскольку электрон имеет отрицательный заряд, его отсутствие представляет собой потерю отрицательного заряда, и, следовательно, дырка может считаться положительно заряженной частицей. Если электрон перемещается от одной валентной оболочки к другой, он оставляет за собой дырку. Если это движение непрерывно, то дырка движется в направлении, противоположном направлению движения электрона.
Каждый электрон и соответствующая ему дырка называются электронно-дырочной порой. Количество электронно-дырочных пар увеличивается при увеличении температуры. При комнатной температуре существует небольшое количество электронно-дырочных пар.
Когда к чистому полупроводниковому материалу приложено напряжение, свободные электроны притягиваются к положительному выводу источника тока (рис. 19-5).
Рис. 19-5. Ток в чисто полупроводниковом материале.
Дырки, созданные движением свободных электронов, дрейфуют по направлению к отрицательному выводу. Сколько электронов втекает в положительный вывод, столько же электронов покидает отрицательный вывод источника. После рекомбинации электроны и дырки перестают существовать.
Короче говоря, дырки постоянно дрейфуют по направлению к отрицательному выводу источника тока. Электроны всегда движутся по направлению к положительному выводу. Ток, текущий через полупроводник, состоит из движения и электронов, и дырок. Величина тока определяется количеством электронно-дырочных пар в материале. Способность поддерживать ток увеличивается при увеличении температуры материала.
19-2. Вопросы
1. Как чистый германий может поддерживать ток?
2. Когда к чистому германию приложена разность потенциалов, в каком направлении двигаются электроны и дырки?
3. Что определяет величину тока в чистом полупроводниковом материале?
19-3. ПРОВОДИМОСТЬ В ЛЕГИРОВАННОМ ГЕРМАНИИ И КРЕМНИИ
Чистые полупроводники являются объектом, главным образом, теоретического интереса. Основные исследования полупроводников связаны с влиянием добавления примесей в чистые материалы. Если бы этих примесей не было, то большинства полупроводниковых приборов не существовало бы.
Чистые полупроводниковые материалы, такие как германий и кремний, содержат при комнатной температуре небольшое количество электронно-дырочных пар и поэтому могут проводить очень маленький ток. Для увеличения проводимости чистых материалов используется процесс, называемый легированием.
Легирование — это процесс добавления примесей в полупроводниковый материал. Используются два типа примесей. Первая, которая называется пятивалентной, состоит из атомов с пятью валентными электронами. Примерами являются мышьяк и сурьма. Вторая, называемая трехвалентной, состоит из атомов с тремя валентными электронами. Примерами являются индий и галлий.
Когда чистый полупроводниковый материал легируется пятивалентным материалом, таким как мышьяк (As), некоторые атомы полупроводника замещаются атомами мышьяка (рис. 19-6). Атом мышьяка размещает четыре своих валентных электрона в ковалентные связи с соседними атомами. Его пятый электрон слабо связан с ядром и легко может стать свободным.
Рис. 19-6. Кремний, легированный атомом мышьяка.
Атом мышьяка называется донорским атомом, поскольку он отдает свой лишний электрон. В легированном полупроводниковом материале находится много донорских атомов. Это означает, что для поддержки тока имеется много свободных электронов.
При комнатной температуре количество дополнительных свободных электронов превышает количество электронно-дырочных пар. Это означает, что в материале больше электронов, чем дырок. Следовательно, электроны называются основными носителями. Дырки называются неосновными носителями. Поскольку основные носители имеют отрицательный заряд, материал называется полупроводником n-типа.
Если к полупроводнику n-типа приложено напряжение (рис. 19-7), то свободные электроны, добавленные донорскими атомами, начнут двигаться по направлению к положительному выводу. Кроме того, к положительному выводу начнут двигаться электроны, которые смогут разрушить свои ковалентные связи. Эти электроны, разрушив ковалентные связи, создадут электронно-дырочные пары. Соответствующие дырки будут двигаться по направлению к отрицательному выводу.
Рис. 19-7. Ток в полупроводнике n-типа.
Когда полупроводниковый материал легирован трехвалентным материалом, таким, как индий (In), атомы индия разместят свои три валентных электрона среди трех соседних атомов (рис. 19-8). Это создаст в ковалентной связи дырку.
Рис. 19-8. Кремний, легированный атомом индия.
Наличие дополнительных дырок позволит электронам легко дрейфовать от одной ковалентной связи к другой. Так как дырки легко принимают электроны, атомы, которые вносят в полупроводник дополнительные дырки называются акцепторными.
При обычных условиях количество дырок в таком материале значительно превышает количество электронов. Следовательно, дырки являются основными носителями, а электроны — неосновными. Поскольку основные носители имеют положительный заряд, материал называется полупроводником р-типа.
Если к полупроводнику p-типа приложено напряжение, дырки начинают двигаться по направлению к отрицательному выводу, а электроны — по направлению к положи- тельному выводу (рис. 19-9). Кроме дырок, которые создали акцепторные атомы, возникают дырки, образованные из-за разрыва ковалентных связей, создающие электронно-дырочные пары.
Рис. 19-9. Ток в полупроводнике р-типа.
Полупроводниковые материалы n-типа и p-типа имеют значительно более высокую проводимость, чем чистые полупроводниковые материалы. Эта проводимость может быть увеличена или уменьшена путем изменения количества примесей. Чем сильнее полупроводниковый материал легирован, тем меньше его электрическое сопротивление.
19-3. Вопросы
1. Опишите процесс легирования полупроводникового материала.
2. Какие два типа примесей используются для легирования?
3. Что определяет тип проводимости (n-тип или p-тип) легированного полупроводника?
4. Как легирование поддерживает ток в полупроводниковом материале?
5. Чем определяется проводимость полупроводникового материала?
РЕЗЮМЕ
• Полупроводниковыми материалами являются любые материалы, проводимость которых лучше проводимости изоляторов, но хуже проводимости проводников.
• Чисто полупроводниковыми материалами являются углерод (С), германий (Ge) и кремний (Si).
• В большинстве полупроводниковых приборов используется кремний.
• Валентность — это показатель способности атома присоединять или отдавать электроны.
• Полупроводниковые материалы имеют наполовину заполненные валентные оболочки.
• Кристаллы образуются из атомов, которые совместно используют свои валентные электроны путем образования ковалентных связей.
• Полупроводниковые материалы имеют отрицательный температурный коэффициент сопротивления: при повышении температуры их сопротивление падает.
• Тепло создает проблемы в полупроводниковых материалах, позволяя электронам разрывать ковалентные связи.
• При повышении температуры, электроны в полупроводниковом материале дрейфуют от одного атома к другому.
• Дырка представляет собой отсутствие электрона в валентной оболочке.
• Разность потенциалов, приложенная к чисто полупроводниковому материалу, создает поток электронов, движущийся к положительному выводу и поток дырок, движущийся к отрицательному выводу.
• Ток в полупроводниковых материалах состоит из направленного движения электронов и направленного движения дырок.
• Легирование — это процесс добавления примесей в полупроводниковый материал.
• Трехвалентные материалы имеют атомы с тремя валентными электронами и используются для изготовления полупроводников р-типа.
• Пятивалентные материалы имеют атомы с пятью валентными электронами и используются для изготовления полупроводников n-типа.
• В полупроводнике n-типа электроны являются основными носителями, а дырки — неосновными носителями.
• В полупроводнике р-типа дырки являются основными носителями, а электроны — неосновными носителями.
• Полупроводниковые материалы n- и р-типа имеют значительно более высокую проводимость, чем чистые полупроводниковые материалы.
Глава 19. САМОПРОВЕРКА
1. Что делает кремний более желательным для использования, чем германий?
2. Почему при образовании полупроводниковых материалов важна ковалентная связь?
3. Опишите, как перемещаются электроны в образце чистого кремния при комнатной температуре?
4. Опишите процесс превращения образца чистого кремния в полупроводник n-типа.
5. Опишите, что случится в образце полупроводника n-типа, когда к нему будет приложено напряжение?