Глава 15. Емкостные цепи переменного тока

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать фазовое соотношение между током и напряжением в емкостной цепи переменного тока.

• Дать определение емкостного сопротивления (реактивного сопротивления емкости) в емкостной цепи переменного тока.

• Описать, как резистивно-емкостные цепи могут использоваться для фильтрации, в качестве элементов согласования и фазового сдвига.

• Объяснить как работают RC фильтры верхних и нижних частот.

Конденсаторы являются ключевыми компонентами цепей переменного тока. Конденсаторы вместе с резисторами и катушками индуктивности образуют полезные электронные цепи.

15-1. КОНДЕНСАТОРЫ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

Когда к конденсатору прикладывается переменное напряжение, создается впечатление, что во всей цепи есть поток электронов. Однако, электроны не проходят через диэлектрик конденсатора. При увеличении и уменьшении амплитуды переменного тока конденсатор заряжается и разряжается. Результирующее движение электронов от одной обкладки к другой представляет ток.

В емкостной цепи переменного тока фазовое соотношение между током и приложенным напряжением не такое, как в чисто резистивной цепи. В чисто резистивной цепи ток находится в фазе с приложенным напряжением. В емкостной цепи переменного тока ток и напряжение находятся не в фазе друг с другом (рис. 15-1). Когда ток максимален, напряжение равно нулю. Это соотношение обусловлено сдвигом по фазе на 90 градусов. В емкостной цепи ток опережает приложенное напряжение.

Рис. 15-1. Обратите внимание на то, что ток и напряжение в емкостной цепи переменного тока находятся не в фазе. Ток опережает приложенное напряжение.

В емкостной цепи переменного тока приложенное напряжение постоянно изменяется, вынуждая конденсатор. заряжаться и разряжаться. После того как конденсатор первоначально зарядится, напряжение на его обкладках противодействует любому изменению приложенного напряжения. Противодействие, которое конденсатор оказывает приложенному переменному напряжению, называется емкостным сопротивлением. Емкостное сопротивление обозначается и измеряется в омах.

Емкостное сопротивление может быть вычислено по формуле:

где π = 3,14, f — частота в герцах, С — емкость в фарадах.

Емкостное сопротивление является функцией частоты приложенного переменного напряжения и емкости. Увеличение частоты уменьшает емкостное сопротивление, что приводит к возрастанию тока. Уменьшение частоты увеличивает противодействие и приводит к уменьшению тока.

ПРИМЕР: Чему равно емкостное сопротивление конденсатора емкостью в 1 микрофараду при частоте 60 герц?

Дано: 

π = 3,14; f = 60 Гц; С= 1 мкф = 0,000001 Ф

Хс =? 

Решение: 

Хс = 1/(2)(3,14)(60)(0,000001)

Хс = 1/0,000377 = 2653 Ом.

ПРИМЕР: Чему равно емкостное сопротивление конденсатора емкостью 1 мкФ на частоте 400 герц?

Дано: 

π = 3,14; f = 400 Гц; С= 1 мкф = 0,000001 Ф

Хс =? 

Решение: 

Хс = 1/(2)(3,14)(400)(0,000001)

Хс = 1/0,00251 = 398 Ом.

ПРИМЕР: Чему разно емкостное сопротивление конденсатора емкостью в 0,1 микрофарад при частоте 60 герц?

Дано: 

π = 3,14; f = 60 Гц; С= 0,1 мкф = 0,0000001 Ф

Хс =? 

Решение: 

Хс = 1/(2)(3,14)(60)(0,0000001)

Хс = 1/0,0000377 = 26,525 Ом.

ПРИМЕР: Чему разно емкостное сопротивление конденсатора емкостью в 10 микрофарад при частоте 60 герц?

Дано: 

π = 3,14; f = 60 Гц; С= 10 мкф = 0,00001 Ф

Хс =? 

Решение: 

Хс = 1/(2)(3,14)(60)(0,00001)

Хс = 1/0,00377 = 265 Ом.

Емкостное сопротивление есть ни что иное, как противодействие изменениям приложенного к конденсатору переменного напряжения. Следовательно, в цепи переменного тока конденсатор является эффективным способом управления током. Согласно закону Ома ток прямо пропорционален приложенному напряжению и обратно пропорционален емкостному сопротивлению. Это можно выразить с помощью формулы:

I = E/XC

Замечание: В законе Ома емкостное (реактивное) сопротивление XC заменило активное сопротивление R.

Важно помнить, что емкостное сопротивление зависит от частоты приложенного напряжения и емкости цепи.

ПРИМЕР: К конденсатору емкостью 100 мкФ приложено напряжение 12 вольт частотой 60 герц. Какова величина текущего через него тока?

Дано: 

E = 12 В; π = 3,14; f = 60 Гц; С= 100 мкф = 0,0001 Ф

=? 

Решение: 

Сначала найдем емкостное сопротивление (Хс)

Хс = 1/ 2πfC

Хс = 1/(2)(3,14)(60)(0,0001)

Хс = 1/0,0377 = 26,5 Ом 

Теперь, зная Хс, найдем ток:

E/Хс = 12/26,5

I = 0,45 А или 450 мА.

ПРИМЕР: Через конденсатор емкостью 10 мкФ течет ток 250 мА. Какое напряжение частотой 60 Гц приложено к конденсатору?

Дано: 

π = 3,14; f = 60 Гц; С = 10 мкф = 0,00001 Ф; I = 250 мА или 0,25 А

Хс =?; E =?

Решение: 

Сначала найдем емкостное сопротивление (Хс):

Хс = 1/ 2πfC

Хс = 1/(2)(3,14)(60)(0,00001)

Хс = 1/0,00377 = 265 Ом 

Теперь найдем падение напряжения (Е):

E/Хс 

0,25 = E/265 

E = 66,25 В

Когда конденсаторы соединены последовательно, общее емкостное сопротивление равно сумме емкостных сопротивлений отдельных конденсаторов:

XCTXC1 + XC2 + XC3 +… + XCn

Когда конденсаторы соединены параллельно, обратная величина общего емкостного сопротивления равна сумме обратных величин емкостных сопротивлений отдельных конденсаторов.

1/XCT = 1/XC1 + 1/XC2 + 1/XC3 +… + 1/XCn

15-1. Вопросы

1. Опишите, как переменное напряжение создает впечатление протекания тока через конденсатор.

2. Каково фазовое соотношение между током и напряжением в емкостной цепи?

3. Что такое емкостное сопротивление?

4. Чему равно емкостное сопротивление конденсатора емкостью 10 мкФ при частоте 400 герц?

15-2. ПРИМЕНЕНИЕ ЕМКОСТНЫХ ЦЕПЕЙ

Конденсаторы могут использоваться отдельно или в комбинации с резисторами, образуя RC (резистивно-емкостные) цепи. Одним из применений RC цепей является фильтрация.

Фильтром называется цепь, выделяющая некоторую область частот, ослабляя токи одних частот и пропуская другие. Фильтры имеют частоту (точку) среза между частотами, которые пропускаются, и частотами, которые ослабляются. Наиболее широко используются два типа фильтров: фильтры нижних частот и фильтры верхних частот. Фильтр нижних частот пропускает низкие частоты и ослабляет верхние. Фильтр верхних частот пропускает частоты, находящиеся выше частоты среза, и ослабляет частоты ниже частоты среза.

Фильтр нижних частот (рис. 15-2) состоит из конденсатора и резистора, включенных последовательно.

Рис. 15-2. RC фильтр нижних частот.

Входное напряжение приложено к последовательной цепочке из конденсатора и резистора. Выходное напряжение снимается с конденсатора. На низких частотах емкостное сопротивление больше, чем сопротивление резистора, так что большая часть напряжения падает на конденсаторе. Следовательно, большая часть напряжения появляется и на выходе. При повышении частоты входного напряжения емкостное сопротивление уменьшается, и на конденсаторе падает меньшее напряжение. Следовательно, на резисторе падает большее напряжение, и выходное напряжение уменьшается. Частота среза не является резкой границей. Чем выше частота входного сигнала, тем больше он ослабляется. На рис. 15-3 показана амплитудно-частотная характеристика RC фильтра нижних частот.

Рис. 15-3. Амплитудно-частотная характеристика RC фильтра нижних частот.

Фильтр верхних частот также состоит из резистора и конденсатора, включенных последовательно (рис. 15-4).

Рис. 15-4. RC фильтр верхних частот.

Однако выходное напряжение снимается с резистора. На высоких частотах емкостное сопротивление низкое и большая часть напряжения падает на резисторе. При уменьшении частоты емкостное сопротивление увеличивается и на конденсаторе падает большее напряжение. В результате уменьшается выходное напряжение на резисторе. И опять уменьшение выходного напряжения является постепенным. На рис. 15-5 показана амплитудно-частотная характеристика RC фильтра верхних частот.

Рис. 15-5. Амплитудно-частотная характеристика RC фильтра верхних частот.

Большинство электронных цепей используют как переменное, так и постоянное напряжения. Это приводит к тому, что сигнал переменного тока накладывается на сигнал постоянного тока. Если постоянный ток используется для питания оборудования, то желательно удалить из него сигналы переменного тока. Для этой цели можно использовать фильтр нижних частот. Развязывающая цепь (рис. 15-6) пропускает сигнал постоянного тока и ослабляет или устраняет сигнал переменного тока.

Рис. 15-6. Развязывающая RC цепочка.

Сигнал переменного тока может иметь форму колебаний, шумов или переходных импульсов. Путем подбора частоты среза большинство сигналов переменного тока может быть отфильтровано, и останется только постоянное напряжение на конденсаторе.

В других случаях желательно пропустить сигнал переменного тока и блокировать постоянное напряжение. Цепи этого типа называются связывающими (рис. 15-7). Для этих цепей можно использовать RC фильтр верхних частот.

Рис. 15-7. RC цепочка связи.

Сначала конденсатор заряжается до уровня постоянного напряжения. Когда конденсатор зарядится, постоянный ток уже не сможет течь по цепи. Источник переменного напряжения заставит конденсатор заряжаться и разряжаться с частотой переменного тока, создавая ток через резистор. Номинальные значения конденсатора и резистора выбираются таким образом, чтобы сигнал переменного тока проходил без затухания.

Иногда бывает необходимо сдвинуть фазу выходного сигнала переменного тока по отношению к входному сигналу. Для сдвига фазы могут также использоваться RC цепи. RC цепи фазового сдвига используются только тогда, когда желателен небольшой сдвиг фаз, порядка 60 градусов.

На рис. 15-8 показана цепь фазового сдвига, в которой входное напряжение приложено к комбинации резистор-конденсатор, а выходное напряжение снимается с резистора. Ввиду наличия конденсатора в этой цепи ток опережает напряжение. Напряжение на резисторе находится в фазе с током. Это приводит к тому, что выходное напряжение опережает по фазе входное.

Рис. 15-8. Цепь фазового сдвига, в которой выходное напряжение опережает по фазе входное.

На рис. 15-9 выходное напряжение снимается с конденсатора. Ток в цепи опережает приложенное напряжение. Однако напряжение на конденсаторе отстает от приложенного напряжения.

Рис. 15-9. Цепь фазового сдвига, в которой выходное напряжение на конденсаторе отстает от приложенного напряжения.

Для достижения большего сдвига фаз несколько фазосдвигающих RC цепочек можно включить последовательно (каскадно) (рис. 15–10). Однако каскадное включение цепочек уменьшает выходное напряжение. Для повышения выходного напряжения до необходимого уровня нужен усилитель.

Фазосдвигающие цепочки пригодны только на одной частоте, так как емкостное сопротивление изменяется с частотой. Изменение емкостного сопротивления приводит к различным фазовым сдвигам.

Рис. 15–10. Каскадные фазосдвигающие RC цепи.

15-2. Вопросы

1. Каковы три основных применения резистивно-емкостных цепочек в электронных цепях?

2. Нарисуйте амплитудно-частотную характеристику фильтра нижних частот и расскажите, как он работает.

3. Нарисуйте амплитудно-частотную характеристику фильтра верхних частот и расскажите, как он работает.

4. Для чего предназначена развязывающая цепь?

5. Где используются фазосдвигающие RC цепочки?

РЕЗЮМЕ

• Когда к конденсатору приложено переменное напряжение, появляется ток.

• Зарядка и разрядка конденсатора создает впечатление протекания тока.

• В емкостной цепи ток опережает по фазе приложенное напряжение на 90 градусов.

• Емкостное сопротивление — это противодействие заряженного конденсатора изменению приложенного напряжения.

• Емкостное сопротивление обозначается Хс.

• Емкостное сопротивление измеряется в омах.

• Емкостное сопротивление может быть вычислено по формуле:

Хс = 1/2πfc

• RC цепочки используются для фильтрации, связи и сдвига фаз.

• Фильтр — это цепь, которая ограничивает пропускание некоторых частот.

• Фильтр нижних частот пропускает частоты ниже частоты среза. Он состоит из резистора и конденсатора, соединенных последовательно.

• Фильтр верхних частот пропускает частоты выше частоты среза. Он состоит из резистора и конденсатора, соединенных последовательно.

• Цепочки связи пропускают сигналы переменного тока и блокируют сигналы постоянного тока.

Глава 15. САМОПРОВЕРКА

1. Каково фазовое соотношение между током и приложенным напряжением в емкостной цепи?

2. Чему равно емкостное сопротивление конденсатора емкостью 1000 мкФ на частоте 60 герц?

3. Чему равен ток, текущий через конденсатор, указанный в предыдущем вопросе, при приложенном напряжении 12 вольт?

4. Перечислите три основных применения емкостных цепей.

5. Почему важны емкостные цепочки связи?