Глава 12. Переменный ток
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Описать получение напряжения переменного тока с помощью генератора переменного тока.
• Дать определения цикла, герца, синусоиды, периода и частоты.
• Описать части генератора переменного тока.
• Дать определения пикового значения, полного размаха колебания и эффективного или среднеквадратичного значения.
• Объяснить соотношение между временем и частотой.
• Описать три основных вида несинусоидальных сигналов.
• Знать, что несинусоидальный сигнал имеет основную частоты и гармоники.
Переменный ток широко используется в настоящее время. В отличие от постоянного тока, который течет только в одном направлении, переменный ток периодически изменяет свое направление. Переменный ток сначала течет в одном направлении, а потом меняет направление и течет в противоположном.
Переменный ток легче генерировать и передавать на большие расстояния. Генераторы переменного тока проще и более экономичны в работе. Напряжение переменного тока может быть увеличено или уменьшено с помощью трансформатора с очень малой потерей мощности. Кроме того, переменный ток легко преобразуется в постоянный.
Переменный ток можно использовать для передачи информации из одного пункта в другой по линиям передачи, а также преобразовать в электромагнитные волны и передавать и принимать с помощью антенных систем.
В этой главе описываются способы производства и важные электрические характеристики переменного тока.
12-1. ПОЛУЧЕНИЕ ПЕРЕМЕННОГО ТОКА
Генератор переменного тока преобразует механическую энергию в электрическую. Генератор переменного тока вырабатывает переменное напряжение, используя принципы электромагнитной индукции. Электромагнитная индукция — это процесс индуцирования напряжения в проводнике, движущемся в магнитном поле.
Как описано в главе 9, правило левой руки для генераторов может быть использовано для определения направления тока в проводнике, который перемещается в магнитном поле: когда большой палец указывает направление движения проводника, а указательный (расположенный под прямым углом к большому) указывает направление магнитных силовых линий от севера к югу, то средний палец (расположенный под прямым углом к двум другим) укажет направление тока в проводнике. Максимальное напряжение индуцируется, когда проводник движется перпендикулярно силовым линиям. Если же проводник перемещается параллельно силовым линиям, напряжение не индуцируется.
На рис. 12-1 показана рамка, вращающаяся в магнитном поле.
Рис. 12-1. Генератор переменного тока, индуцирующий выходное напряжение.
В положении А рамка (т. е. ее горизонтальные проводники) перемещается параллельно силовым линиям, и напряжение при этом не индуцируется. Повернувшись в положение Б, рамка при движении пересекает максимальное число магнитных силовых линий и, следовательно, индуцируется максимальное напряжение. При перемещении рамки в положение В количество пересекаемых силовых линий уменьшается, и индуцированное напряжение уменьшается также. Поворот рамки из положения А в положение В представляет собой поворот на 180 градусов. Перемещение рамки в положение Г приводит к возникновению тока противоположного направления. Как и в предыдущем случае, максимальное напряжение индуцируется, когда плоскость рамки находится под прямым углом к силовым линиям. При возвращении рамки в исходное положение Д индуцируемое напряжение падает до нуля.
Каждый раз, когда рамка генератора переменного тока делает полный оборот, говорят о завершении одного цикла. Величина выходного напряжения за время одного цикла возвращается к исходному значению. Время, в течение которого совершается полный цикл, называется периодом.
Аналогично, генератор вырабатывает в замкнутой цепи выходной ток, имеющий периодическую форму. Каждую половину периода происходит изменение полярности напряжения (рис. 12-2).
Рис. 12-2. Каждый цикл состоит из чередования положительных и отрицательных значений величин.
Напряжение имеет одну полярность в течение половины цикла (периода) и противоположную полярность в течение следующей половины цикла (периода). В первую половину периода вырабатывается напряжение положительной полярности, во вторую половину периода вырабатывается напряжение отрицательной полярности. Один цикл в секунду определяется как герц.
Вращающаяся рамка называется якорем. Напряжение переменного тока, индуцируемое во вращающемся якоре, снимается с концов рамки с помощью скользящих контактов, расположенных с двух сторон якоря (рис. 12-3).
Рис. 12-3. Напряжение снимается с якоря генератора переменного тока с помощью токосъемных колец.
Два металлических кольца, называемых токосъемными кольцами, подсоединены к двум концам рамки. Скользящие щетки, прилегающие к токосъемным кольцам, снимают переменное напряжение. На практике генератор переменного тока должен содержать много рамок для увеличения амплитуды индуцируемого напряжения.
Форма вырабатываемого генератором переменного тока напряжения называется синусоидой (рис. 12-4).
Рис. 12-4. Синусоида — основная форма переменного тока.
Синусоида является основной и наиболее широко используемой из всех форм переменного тока. Ее можно получить как механическим, так и электронным методом. И напряжение, и ток изменяются в виде синусоиды.
12-1. Вопросы
1. В чем функция генератора переменного тока?
2. Объясните, как работает генератор переменного тока.
3. Дайте определения следующих терминов:
а. Цикл
б. Период
в. Герц
г. Синусоида
4. Опишите главные части генератора переменного тока.
5. В чем разница между двумя половинами периода?
12-2. ВЕЛИЧИНА ПЕРЕМЕННОГО ТОКА
Каждая точка синусоиды характеризуется двумя параметрами. Один из них — угол, на который повернулся якорь. Второй указывает амплитуду индуцируемой величины. Амплитуда — это максимальное значение переменного тока или синусоиды. Существует несколько методов определения этих значений.
Пиковое значение синусоиды — это наибольшее значение функции в течение периода (рис. 12-5).
Рис. 12-5. Пиковое значение синусоиды — это точка ее наибольшего значения. Пиковое значение может быть как положительным, так и отрицательным.
Существуют два пиковых значения — одно положительное, а другое отрицательное, они равны по абсолютной величине.
Значение полного размаха синусоиды означает вертикальное расстояние между двумя пиковыми значениями (рис. 12-6).
Рис. 12-6. Размах можно определить как сумму абсолютных величин пиковых значений разного знака.
Значение полного размаха можно определить сложением абсолютных значений пиковых величин.
Эффективное значение переменного тока — это такое значение постоянного тока, при котором на данном сопротивлении выделяется столько же тепла, что и при переменном токе. Эффективное значение можно определить, вычислив среднеквадратичное значение, поэтому эффективное значение часто называют среднеквадратичным. Вычисление среднеквадратичного значения показывает, что эффективное значение синусоиды равно 0,707 от пикового значения. Когда указывается значение переменного тока или напряжения без каких-либо уточнений, предполагается, что это эффективное значение. Большинство измерительных приборов проградуировано в эффективных значениях тока или напряжения.
Еэфф = 0,707∙Емакс
где Еэфф — эффективное значение напряжения, Емакс — максимальное или амплитудное значение напряжения.
Iэфф = 0,707∙Iмакс
где Iэфф — эффективное значение тока, Iмакс — максимальное или амплитудное значение тока.
ПРИМЕР: Синусоида тока имеет максимальное (пиковое) значение 10 ампер. Чему равно эффективное значение?
Дано:
Iмакс = 10 А
Iэфф =?
Решение:
Iэфф =0,707∙Iмакс =(0,707)(10)
Iэфф =7,07 А
ПРИМЕР: Синусоида напряжения имеет эффективное значение 40 вольт. Чему равно максимальное (пиковое) значение синусоиды?
Дано:
Eэфф = 40 В
Eмакс =?
Решение:
Еэфф = 0,707∙Емакс
40 = 0,707∙Емакс
Eмакс = 56,58 В
Время, требуемое для завершения одного цикла синусоиды называется периодом. Период обычно измеряется в секундах. Для обозначения периода используется буква t.
Количество циклов, совершаемых за заданный промежуток времени называется частотой. Частота синусоиды переменного тока обычно выражается в количестве циклов за секунду. Единицей частоты является герц. Один герц равен одному циклу в секунду.
Период синусоиды обратно пропорционален ее частоте.
Чем выше частота, тем короче период. Соотношение между частотой и периодом синусоиды выражается следующими формулами:
f = 1/t;
t = 1/f
где f — частота, a t — период.
ПРИМЕР: Чему равна частота синусоиды с периодом 0,05 секунд?
Дано:
t = 0,05 сек
f =?
Решение:
f = 1/t = 1/0,05
f = 20 Гц
ПРИМЕР: Если синусоида имеет частоту 60 герц, то чему равен ее период?
Дано:
f = 60 Гц
t =?
Решение:
t = 1/f = 1/60
t = 0,0167 с или 16,7 мс.
12-2. Вопросы
1. Дайте определения следующих величин:
а. Пиковое (максимальное) значение;
б. Размах синусоиды;
в. Эффективное значение;
г. Среднеквадратичное значение.
2. Синусоида напряжения имеет пиковое значение 125 вольт. Чему равно эффективное значение?
3. Каково соотношение между временем и частотой?
4. Синусоида тока имеет эффективное значение 10 ампер. Чему равно ее пиковое значение?
5. Чему равен период синусоиды с частотой 400 герц?
12-3. НЕСИНУСОИДАЛЬНЫЕ КОЛЕБАНИЯ
В большинстве случаев форма переменного тока бывает синусоидальной. Однако в электронике используются не только синусоидальные колебания. Колебания, форма которых отличается от синусоиды, называются несинусоидальными периодическими колебаниями. Несинусоидальные колебания генерируются специальными электронными цепями.
На рисунках 12-7, 12-8 и 12-9 изображены три основных вида несинусоидальных колебаний. Они могут представлять и ток, и напряжение. На рис. 12-7 изображены прямоугольные колебания, названные так потому, что положительные и отрицательные прямоугольные импульсы чередуются. Это указывает на то, что ток или напряжение мгновенно достигают максимального значения и остаются такими в течение половины периода. Когда полярность изменяется, ток или напряжение мгновенно достигают противоположного пикового значения и остаются неизменными до конца следующей половины периода. Ширина импульса равна половине периода. Ширина импульса — это отрезок времени, в течение которого напряжение имеет свое пиковое или максимальное значение. Прямоугольное колебание очень полезно как электронный сигнал, так как его характеристики могут быть легко изменены.
Рис. 12-7. Колебание прямоугольной формы.
На рис. 12-8 показан один период колебания треугольной формы. В течение первой половины периода сигнал возрастает по линейному закону от нуля до пикового значения, а затем опять уменьшается до нуля. В течение второй половины периода сигнал продолжает уменьшаться по линейному закону в отрицательном направлении до пикового значения, а после этого опять возрастает до нуля.
Треугольные колебания используются главным образом как электронные сигналы.
Рис. 12-8. Колебание треугольной формы
На рис. 12-9 показаны пилообразные колебания. Пилообразное колебание — это частный случай треугольного колебания. Сначала величина напряжения или тока возрастает по линейному закону, а после этого быстро падает до своего отрицательного пикового значения. Участок с положительным наклоном имеет относительно большую длительность и меньший по абсолютной величине угол наклона к оси времени, чем короткий участок. Пилообразные сигналы используются для переключения операций в электронных цепях. В телевизорах и осциллографах они используются для развертки электронного луча по экрану для создания изображения.
Импульсные колебания и другие несинусоидальные сигналы могут описываться двумя способами. Один метод рассматривает несинусоидальные сигналы как сумму скачкообразных изменений напряжения, следующих через некоторый интервал времени друг за другом. Второй метод рассматривает сигнал как алгебраическую сумму бесконечного числа синусоид, имеющих различные частоты и амплитуды. Этот метод полезен при расчете усилителей. Если усилитель не может пропустить все синусоидальные частоты, то он искажает сигнал.
Несинусоидальные сигналы состоят из колебаний основной частоты и гармоник. Основная частота соответствует скорости повторения сигнала. Гармоники являются синусоидами с более высокими частотами, которые кратны основной частоте. Четные гармоники имеют частоты, которые являются произведениями четных чисел и основной частоты. Нечетные гармоники имеют частоты, которые являются произведениями нечетных чисел и основной частоты.
Прямоугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник.
Треугольные колебания также состоят из колебаний основной частоты и всех нечетных гармоник, но, в отличие от прямоугольных колебаний, нечетные гармоники сдвинуты по фазе на 180 градусов относительно колебания основной частоты.
Пилообразные колебания содержат как четные, так и нечетные гармоники. Четные гармоники сдвинуты на 180 градусов по фазе относительно нечетных гармоник.
12-3. Вопросы
1. Что такое несинусоидальные колебания?
2. Нарисуйте два цикла (периода):
а. Прямоугольного колебания;
б. Треугольного колебания;
в. Пилообразного колебания.
3. Где применяются эти несинусоидальные колебания?
4. Опишите основную частоту и гармоники трех различных несинусоидальных колебаний.
РЕЗЮМЕ
• Переменный ток — это наиболее широко используемый в технике тип тока.
• Переменный ток представляет собой ток, текущий сначала в одном направлении, а затем в противоположном.
• Один оборот якоря генератора переменного тока называется циклом.
• Герц — это один цикл в секунду.
• Форма переменного тока, вырабатываемого генератором, называется синусоидой.
• Пиковое значение синусоиды — это наибольшее значение функции за время периода.
• Размах синусоиды — это вертикальное расстояние между пиками противоположного знака.
• Эффективное значение переменного тока — это такое значение постоянного тока, при котором на данном сопротивлении выделяется столько же тепла, что и при переменном токе.
• Эффективное значение можно определить, вычислив среднеквадратичное значение величины.
• Среднеквадратичное значение синусоиды равно 0,707 от пикового:
Еэфф = 0,707∙Емакс
Iэфф = 0,707∙Iмакс
• Время, необходимое для завершения одного цикла синусоиды, называется периодом (t).
• Количество циклов, совершаемых за заданный промежуток времени, называется частотой (f).
• Соотношение между частотой и периодом синусоиды выражается следующей формулой:
f = 1/t
• Прямоугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник.
• Треугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник, сдвинутых по фазе на 180 градусов относительно основной частоты.
• Пилообразные колебания содержат как четные, так и нечетные гармоники. Четные гармоники сдвинуты на 180 градусов по фазе относительно нечетных гармоник.
Глава 12. САМОПРОВЕРКА
1. Что надо сделать для наблюдения электромагнитной индукции?
2. Объясните, как правило левой руки применяется к генераторам переменного тока?
3. Дайте определение полного размаха колебаний.
4. Как определяется эффективное значение переменного тока?
5. Нарисуйте примеры трех несинусоидальных колебаний, которые могут представлять и ток и напряжение.
6. Почему при изучении несинусоидальных колебаний важны гармоники?