На грани фантастики
При обсуждении проблемы Контакта часто всплывает вопрос о еще не открытых законах науки. Подумаем, в самом деле, что осталось бы от наших дискуссий, проводись они лет сто назад?
Ни радио, ни мощные источники когерентного излучения — лазеры известны тогда не были, никто не знал, как поддерживают свое долгое и яркое существование звезды, наконец, не летали ракеты и даже самолеты (учесть, что писалось это все-таки в начале 80-х ХХ века).
В этих условиях сама постановка задачи межзвездного сигнального Контакта выглядела бы несколько странной. Астрономы быстро догадались бы, что для надежной связи понадобится что-то вроде настоящих звезд, но такие проекты (цивилизация II типа и т. п.) были бы расценены как слишком далекая мечта с обязательной оговоркой — возможно, неосуществимая, ибо источники энергии неизвестны и неясно даже, как подойти к их исследованию… Ну, а элементарные и экологически губительные проекты гигантских костров и таежных треугольников не в счет — дальше соседних планет таким способом никого о своем существовании не оповестишь.
Разумеется, в обрисованной ситуации единственная серьезная возможность — транспортный Контакт. Поскольку принцип ракетного движения в определенной степени был известен (он целиком лежит в рамках ньютоновой механики), вариант считался бы осуществимым и, пожалуй, не слишком фантастическим с точки зрения сроков. Участники дискуссии вполне резонно указали бы, что полет к ближайшим звездам в радиусе 20 парсек займет чуть больше 22 лет, если допустить ускорение 2g (туда и обратно в режимах разгон-торможение). Конечно, всплыли бы проблемы энергетики и огромной стартовой массы, но оставалась возможность уповать на те же еще не открытые звездные источники энергии.
Из этой воображаемой дискуссии можно извлечь пару хороших уроков.
Во-первых, разгон ракеты на первом же участке в 10 пс привел бы к восьмикратному превышению скорости света. Рассчитать это на основе классической механики легко (v= v2ar), но как догадаться о том, что превышение недопустимо, и вообще о непригодности великолепных ньютоновских формул при больших скоростях? Вскоре после дискуссии будут открыты законы теории относительности, и все станет на свои места. Станет ясно, что в смысле сроков полета несколькими десятилетиями не отделаешься, что нужно рассматривать расщепление цивилизации и т. д., и т. п.
Во-вторых, еще через несколько десятилетий физики поймут природу термоядерных реакций и научатся устраивать вспышки звездной температуры. Но окажется, что даже идеальные варианты управляемых термоядерных реакторов будущего проблемы межзвездных транспортных Контактов не решат. Они должны быть полезны для земной энергетики 21 века, для освоения Солнечной системы, но вряд ли сумеют сыграть решающую роль в полетах галактических масштабов.
Суть уроков в том, что источник надежды иногда подводит, а, казалось бы, бесспорные истины сталкиваются с качественно новым уровнем понимания и неузнаваемо преобразуются.
Обсуждая средства Контакта, мы, возможно, кое-где впали в аналогичные ошибки. Не исключено, что аннигиляционные реакторы вообще не смогут работать на реактивном транспорте, а развитие теории пространства-времени подкинет принципиально новые идеи движения. В общем, к линейной экстраполяции современных технических достижений надо относиться с опаской. Полезно помнить, что фундамент научных законов, на которых покоятся представления о транспортном и сигнальном Контакте, тоже систематически реконструируется и это вполне нормальный процесс.
Но попробуем обсудить отклонения от прогнозов на более высоком уровне, когда дело не сводится к действию в каких-то областях Вселенной еще неизвестных законов физики.
Можно ставить вопрос шире: универсальна ли наша физика, не следует ли вообразить себе совсем иные ее варианты?
В такой постановке проблема выглядит фантастично, гораздо фантастичней любых межгалактических полетов. При всем том, она очень интересна и глубока и, как мы убедимся вскоре, в какой-то степени уже существует.
Чтобы конкретно почувствовать ситуацию многих физик, начнем издалека.
Нетрудно уловить, например, ситуацию многих биологий. Можно полагать, что в несколько иных условиях в итоге первого миллиарда лет эволюции на Земле мог бы закрепиться иной генетический код. Планета, где жизнь развивается на той же белково-нуклеиновой основе, но с несколько иным кодом, дала бы нам пример другой биологии. Известную классификацию живых существ пришлось бы, конечно, сильно расширить, однако у нее нашелся бы общий корень — на уровне протобионтов с еще не сформированным генетическим аппаратом. Единой основой служила бы при этом биохимическая структура общий набор молекулярных блоков. Видимо, развитые формы жизни с иным кодом были бы экологически несовместимы с земными формами.
Можно представить себе и принципиально иной вариант биохимического реактора, где в основу жизни заложены иные молекулярные блоки. Наглядный пример на эту тему строится путем замены двухвалентного иона кислорода аминовой группой NH. Это сразу меняет вид обоих пиримидиновых оснований ДНК — цитозина и тимина. Соответственно, подставив вместо одновалентного гидроксила ОН амин NH2, получим качественно новый аналог пуринового основания — гуанина. Незатронутым остается только второе пуриновое основание ДНК — аденин. Такие же замены ведут к новой структуре белков группа СООН в аминокислотах переходит в группу CNHNH2. Таким образом выстраиваются сколь угодно сложные бескислородные «белково-нуклеиновые» комплексы. Не видно причин, по которым на аминовой основе не могли бы возникнуть весьма сложные формы жизни[187]. Другой очевидный вариант фтористый аналог белково-нуклеиновых комплексов, где фтор замещает кислород, а плавиковая кислота (HF) — обычную воду. Оценить характер сложных организмов, возникших на аминовой или фтористой основе, очень трудно, ясно только, что такие существа в биологическом отношении были бы полностью изолированы от нас, хотя возможности информационного Контакта оставались бы достаточно широкими. Учет многих биохимий заметно увеличивает шансы встретить жизнь и разум во Вселенной, хотя речь идет об уже довольно далеких от нас эволюционных ветвях. Классификация организмов теперь не могла бы вестись чисто биологическим путем, однако важно, что для них существует единая химическая основа на атомно-молекулярном уровне.
Поверить в то, что известные нам законы строения химических соединений могут привести к очень далеким по свойствам биологическим системам, не так уж трудно. Тем более развесистая эволюционная крона должна получаться на уровне, скажем, технологически развитых социальных структур. Во всем этом нет ничего слишком необычного. Земные образцы метаболизма и репродукции живых организмов не обязательно наилучшие и тем более единственно возможные во Вселенной. Соответственно с их относительностью мы можем допускать и совершенно нереализуемые в земных условиях пути социализации. Кое-что в этом смысле выдвинуто фантастами — мы имеем в виду, прежде всего, лемовский Солярис и хойловское Черное облако как примеры социальных структур с практически неиндивидуализированными элементами[188]. Естественно допустить, что далекие ветви социализации связаны с совершенно иными типами передачи небиологической наследственной информации, то есть их система обучения и науки может резко отличаться от известной нам, совершенно иной характер может носить и их технологическая активность.
Интересные перспективы открываются при обсуждении искусственных систем типа компьютеров. С одной стороны, они открывают особую эволюционную ветвь организмов, где запись и переработка информации осуществляется на уровне технических микроэлементов. С другой — главное стремление создателей компьютеров заключается в перезаписи информации на молекулярный уровень, что по современным представлениям выглядит самым компактным и выгодным способом содержания информационных массивов. Молекулярные структуры, которые лягут в основу будущих разумных машин, могут заметно отличаться от известных белково-нуклеиновых комплексов и порождать новую биохимическую (киберхимическую?) линию эволюции.
Короче говоря, широчайший спектр возможностей эволюции, начиная с биохимического уровня и выше, — явление вполне допустимое и, вероятно, во многом доступное обсуждению.
Но попробуем отступить немного назад и поискать более ранние разветвления общей эволюции. Биохимические, биологические и социокультурные разбежки в конечном итоге можно рассматривать как обширную крону на едином химическом стволе. Едином ли? Не могли ли физические условия в отдельных областях Вселенной привести к устойчивой репродукции совсем иных атомно-молекулярных структур?
Очевидно, речь идет об условиях, изменяющих параметры и, возможно, состав атомов и молекул. Такого типа условия известны и в какой-то степени изучены.
При определенных температурных режимах и высоком давлении можно ожидать появления необычных молекулярных структур — в недрах планет или на поверхности черных карликов. Было бы интересно выяснить, допустима ли в этих случаях какая-то полимеризация и длительное существование более или менее сложных квазиорганических соединений, иными словами — исходные условия для зарождения жизни. Другая любопытная ситуация — соединения атомов, деформированных сильными внешними полями.
Наконец, можно рассматривать атомы, где роль некоторых орбитальных частиц играют не электроны, а мюон,? — лептон и даже адроны. Мюонные атомы изучены неплохо. Поскольку масса мюона в 200 раз больше массы электрона, размеры такого атома во столько же раз меньше, а объем уменьшается уже в 8 млн. раз. Еще большие изменения имеют место при орбитировании? — или К-мезонов. Мезоатомная химия требует особых условий наблюдения — мюон живет около 2.10-6 секунды, а? — мезон, который ко всему прочему способен сильно взаимодействовать с ядром, — всего 2,6.10-8 с. Это большие времена лишь по ядерным масштабам (то есть в единицах 10–23 с). Однако можно вообразить ситуацию с относительным изобилием, скажем, мюонов, когда мезоатомные структуры постоянно возобновляются и это оказывает существенное влияние на ход химических реакций — создаются необычные каталитические условия. Еще один вариант — атомы с необычными ядрами, включающими, например, гипероны или переходящими в сверхплотное состояние. В вакууме гипероны распадаются довольно быстро, но на поверхности нейтронных звезд, где гравитационный потенциал может достигать огромных величин (до?~0,1 с2), некоторые каналы распадов должны запираться и гиперядра станут стабильными. Вообще поверхности нейтронных звезд, в соответствии с довольно давними гипотезами Коккони, Моррисона и Дайсона, подозрительны с точки зрения особой химии, которая может там разыгрываться.
Речь идет о гипотезе так называемой «ядерной жизни». В соответствии с ней, на поверхности нейтронных звезд могут возникать сложные ядерные структуры молекулярного типа, что и позволяет говорить о кодировании информации по аналогии с обычным атомно-молекулярным уровнем. Сами ядерные молекулы простейшего типа были открыты еще в 1960 г. в экспериментах Чок-Риверской Лаборатории (США) при изучении столкновений ядер углерода. Наряду со слиянием двух ядер углерода в ядро марганца (12С6 + 12С6 > 24Mg12) возникали своеобразные слабо связанные двууглеродные состояния гантелевидной формы. По обычным меркам ядерные молекулы крайне неустойчивы — их время жизни порядка 10–21 с, но оно весьма велико в масштабе характерного времени ядерных реакций (10–23 с), и с этой точки зрения вполне можно говорить о существовании особых объектов, чья структура сложнее отдельных ядер. Сейчас ведется активное исследование различных ядерных молекул на новых ускорителях тяжелых ионов, но, разумеется, делать выводы о появлении особой ветви жизни пока рано. Тут лишь начинается прорыв в область химии на ядерном уровне, и получены лишь примитивнейшие соединения. Пока не обнаружено чего-либо, напоминающего эффект полимеризации, так что до прямой проверки гипотезы очень далеко. Однако понятно, что в условиях мощной энергетики пульсаров при обилии ядерного вещества могут возникать и эффекты, пока недоступные нашему эксперименту. Остается только мечтать о тех временах, когда мы сумеем (в духе экспериментов Юри-Миллера для условий древнейшей Земли) смоделировать соответствующую обстановку для пульсаров…
Надо понимать, что, вступая в очерченную несколькими штрихами область иных химий, мы попадаем на значительно более зыбкую почву, чем это было в ситуации со многими биологиями. Уровень четкости аналогий здесь резко падает, и, заводя, скажем, речь о каких-то живых и разумных существах, развившихся в подобных условиях, мы, не имеющие ясного представления даже о любителях принимать аммиачные ванны, рискуем удариться в не омраченную научными доводами фантастику. Но такова судьба всех очень далеких экстраполяций.
Иные химии, основанные на необычных атомах, могут оказаться и пустым номером, не порождая достаточно гибких структур. Однако если они и дают что-то, соответствующее самым широким представлениям о жизни и разуме, возникают очень серьезные проблемы нашей, так сказать, относительной коммуникабельности.
Мы знаем, что Контакт можно осуществить, имея какую-то общую зону практической деятельности. На простейших пересечениях практики (пища, ее добыча, орудия охоты и труда, жилища) строились первичные контакты народов Земли. И этот фрагмент географической модели Контакта обнадеживает в том плане, что достаточно близкие нам по практике инопланетяне будут поняты и поймут нас. Уже гипотеза разных биологий порождает немалые трудности — зоны пересекающейся практики могут оказаться весьма ограниченными, и взаимопонимание сильно затруднится. Что же говорить тогда об эволюционных ветвях разных химий? Здесь, пожалуй, теряется даже надежда на какую-то схожесть технологических систем, то есть непонятен сам характер их способов преобразования окружающей среды — эта среда очень уж отличается от всего известного в окрестностях Земли. Что может означать, например, искусственная фаза в жизни нейтронной звезды или черного карлика, до каких тонкостей мы должны довести теорию их строения, чтобы выяснить природу такой фазы? Видимо, немалое еще время эти вопросы будут непосредственно волновать одних фантастов…
Заскочив достаточно далеко, попробуем донести полную чашу своего любопытства до какого-то совсем уж непроницаемого барьера. Разные химии все-таки имеют единое физическое объяснение. Обратимся к, казалось бы, монолитному стволу ранней эволюции Вселенной, когда плотность вещества и температура вообще не позволяют говорить об атомных структурах, состоящих из обычных элементарных частиц. По довременным представлениям, где-то через 10-6–10-5 с после Первовзрыва кварки, разбегаясь на слишком большие средние расстояния, неизбежно конденсируются в адроны — самые ранние структурные объекты.
В свою очередь, мы отнюдь не уверены, что кварки, лептоны и фотон истинно элементарны, а не синтезируются из чего-то более элементарного при t~10–21 с или в иную эпоху. И, разумеется, не известно, единственные ли это ветви эволюции недоступного пока субэлементарного уровня? В любом случае они синтезируются (в неком очень общем смысле) не ранее t~10–43 с, поскольку заведомо нет смысла рассуждать об элементарных частицах внутри планковской области. Собственно, не ранее того же момента синтезируется (в не менее общем смысле) и само пространство-время, то есть включаются эволюционные часы нашей Вселенной. И здесь, на самой кромке доступной нашему воображению физики, вспыхивает вопрос: а является ли планковский синтез единственным исходным стволом эволюции или следует сразу же рассматривать иные ответвления, где начальные пути синтеза материи и пространства-времени совершенно не похожи на тот, который приводит к наблюдаемому нами миру? По сути, мы вышли на вопрос об уникальности Вселенной. Допустить множественность путей эволюции уже на уровне планковского синтеза — это и значит рассматривать множество вселенных, реализуемых отличными наборами элементарных частиц и пространства-времени, то есть ввести разные физики.
Вот такая картина получается при попытке распространить идеи ветвящейся эволюции вплоть до границ научного воображения. Вместо «древа эволюции», с могучим физико-химическим стволом и обширной биосоциальной кроной, мы получили любопытный «эволюционный кустарник». Возможности подробного его анализа — дело далекого будущего, и он допустим как гипотеза очень дальнего прицела независимо от того, будем ли мы предполагать, что самые нижние ветви способны генерировать что-то типа жизни и разума, не выходя на привычный нам биологический уровень (с нормальными атомно-молекулярными структурами).
Не так уж трудно предвидеть, что земная наука, как следует разогнавшись в исследованиях молекулярного конструирования, когда-нибудь прорвется к иным биологиям и даже осуществит полимеризацию, а быть может, и более сложный синтез в иных химиях. Можно даже указать один из важнейших практических стимулов для такой деятельности — необходимость перекодировки земной биологии на уровень более компактных (или удобных в ином смысле) молекулярных структур. Очень вероятно, что в свое время нам потребуется не только трансформировать себя в новый вид, но и переделать всю биохимическую основу жизни. Не исключено, что впоследствии нас перестанут устраивать атомно-молекулярные параметры, естественные в условиях Земли, и будут сформированы особые условия (внешние поля, состав элементарных частиц) для перекодировки жизни в структуры иной химии.
Но пока практически невозможно представить цивилизацию (скажем, IV типа, пользуясь схемой Кардашова), умеющую творить искусственный планковский синтез и строить какие-то обширные участки Вселенной (или фактически иные вселенные), где действуют правила иной физики. С современной точки зрения это выглядело бы как игра с фундаментальными законами природы (искусственная регулировка эволюционных часов на всех уровнях), и фактический масштаб воображаемой космологически активной цивилизации был бы еще очень долго недоступен нашим экспериментальным средствам[189].
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК