Открытие Солнечной системы — 3 акт
Обнаруженный Вильямом Гершелем Уран оказался своеобразной копилкой сюрпризов.
Прежде всего, выяснилось, что задолго до Гершеля эту планету наблюдали другие астрономы, причем регистрировали ее не менее 19 раз. Первым это сделал Джон Флемстид в самом конце 1690 года. В течение последующих 25 лет он повторял этот результат еще четырежды. В 1750–1771 гг. целых 12 наблюдений Урана провел французский астроном Пьер Лемонье (1715–1799), уже современник Гершеля. В общем, видели ее многие, но до поры до времени никому не пришло в голову выделить ее среди слабых звезд.
Но это полбеды — новые явления нередко исчезают из поля восприятия. Главное то, что Уран очень быстро продемонстрировал необычное поведение. Строгое вычисление его орбиты в рамках ньютоновской теории тяготения, даже с учетом поправок на влияние гигантов — Юпитера и Сатурна, не привело к успеху. Уран ускользал с предназначенной ему траектории. В 20-х годах 19 века астрономы пришли к выводу, что такая модель не описывает наблюдаемых положений новой планеты.
Естественно, появились гипотезы, подчас весьма причудливые, но лишь две из них оказались жизнеспособны и некоторое время конкурировали друг с другом. Реальный выбор свелся к тому, что либо закон тяготения неверен, например, сила убывает не как квадрат расстояния, а более сложным образом, либо существует какая-то новая планета, сбивающая Уран с пути. Первый вариант весьма авторитетно поддерживался директором Гринвичской обсерватории Джорджем Бидделом Эри (1801–1892). Однако столь радикальное решение привлекало немногих — модификация закона Ньютона вела к перестройке всей теории движения планет, а для этого нужны были более веские экспериментальные и теоретические причины.
Реальное решение проблемы Урана было найдено в рамках второго подхода. Тут и развернулась отчасти забавная и отчасти драматическая история открытия Нептуна, история, описанию которой посвящены целые книги.
Вкратце она выглядит так. К 1820 году французский астроном Алексис Бювар (1767–1843) четко показал, что все старые (догершелевские) и последующие наблюдения не согласуются с теорией движения Урана. И даже поправки на влияние Юпитера и Сатурна, модель движения которых он только что завершил, не спасают дела. Видимо, Бювар первым и высказал гипотезу о влиянии на Уран какого-то неизвестного тела. Однако сам он первоначально больше склонялся к версии катастрофического воздействия — то есть кратковременного влияния некой кометы, столкнувшейся с Ураном или очень сильно сблизившейся с ним как раз в промежутке между ранними и поздними наблюдениями Лемонье.
Но результаты последующего десятилетия показали, что непоседливая планета продолжает все дальше уходить от предписанной орбиты. Значит, дело не в катастрофе, а в каком-то систематическом влиянии. Так сложилась конкретная гипотеза о трансурановой планете, фактически общепринятая к концу 30-х годов. Поиск трансурановой планеты несколько затягивался многие полагали, что расчет ее орбиты по очень неполным данным преждевременен и нужны тщательные наблюдения на протяжении одного-двух полных оборотов Урана. Эта точка зрения подкреплялась и сомнениями в точности старых данных Флемстида и других астрономов, посеянными Бюваром.
Чтобы поверить в достаточную точность всех данных и предпринять на этой основе трудоемкую работу по расчету орбиты возмутителя, нужна была немалая смелость и вера в свои силы.
Всем этим в избытке обладал молодой английский математик и астроном Джон Кауч Адаме (1819–1892), который летом 1843 года приступил к вычислениям. Необычайно тщательная и самокритичная деятельность Адамса увенчалась успехом — к сентябрю 1845 года он получил удовлетворившие его результаты с конкретным указанием ожидаемого положения трансурановой планеты на 30 сентября 1845 года. Эти результаты были переданы директору Кембриджской обсерватории Джеймсу Челлису, который тогда же имел возможность провести успешный поиск на своем 12-дюймовом рефлекторе предсказание Адамса расходилось с истинным положением Нептуна менее чем на 2°. Но Челлис переадресовал молодого математика к лидеру английской астрономии Джорджу Эри. Эри, по-видимому, не сразу поверил в возможность открытия, но главное — он сам искал причину отклонений Урана совсем в ином, и вычисления Адамса не показались ему достаточно убедительными.
В результате до лета 1846 года официальные руководители английской астрономии никаких попыток наблюдения трансурановой планеты не предприняли. Адамc же, понадеявшись на них, ограничился «донесением по инстанции» и не сделал необходимой публикации.
Лишь летом 1845 года во Франции к анализу проблемы приступает Урбен Жан Жозеф Леверье (1811–1877) и блестяще формулирует решение в двух статьях, опубликованных к весне 1846 года. Эти работы сразу же привлекли внимание не только соотечественников, но и англичан. Срабатывает известный принцип социальной психологии — нет пророков в своем Отечестве. Благодаря работам Леверье (а не Адамса!) меняет свою веру сам Эри, который обратился к Челлису с просьбой начать наблюдения.
Челлис в течение 2 месяцев (до 29 сентября) проводит необычайно громоздкую регистрацию положений почти 3 тысяч звезд в заданной области неба площадью в 300 кв. градусов, надеясь найти среди них подвижный объект. По ряду несчастливых совпадений он трижды наблюдает Нептун, но не фиксирует свое открытие и вообще завершает серию наблюдений в уверенности, что планета не обнаружена. И буквально сразу же — 1 октября — узнает из газеты, что трансурановая планета открыта молодым ассистентом Берлинской обсерватории Иоганном Готфридом Галле (1812–1910) и его помощником Генрихом Луи д'Аррестом 23 сентября на том же участке неба.
Леверье оказался гораздо практичней Адамса и не стал обращаться к руководителям обсерваторий, ибо уже тогда включить ту или иную работу в планы научного учреждения было не так-то просто. Инициативный Галле буквально отвоевал право на внеочередные наблюдения и провел их с блеском Нептун был обнаружен в первую же ночь. Этому очень способствовала идея д'Арреста — непосредственно сопоставлять вид звездного неба с картами астрономического атласа Берлинской Академии наук, изданного в конце предыдущего года. Это давало фантастическую экономию времени. Дополнительно Галле и д'Аррест (в отличие от Челлиса) ориентировались на то, что Нептун должен иметь угловой размер около 3.
История подпольной первопроходческой деятельности Адамса всплыла как раз в момент величайшего триумфа Леверье и наделала много шума[70]. Не слишком благожелательно воспринятая в научных кругах Франции весть о том, что некий безвестный Адаме опередил их кумира Леверье, превратилась прессой в проблему покушения на национальную честь.
Но время — линза истины. Оба ученых, несмотря на ажиотаж, стали друзьями.
Леверье впоследствии возглавил Парижскую обсерваторию и много сделал для расцвета астрономии и небесной механики у себя на родине. Он провел в жизнь гигантскую программу по составлению таблиц планетных орбит — многими его данными успешно пользуются до сих пор. Он же впервые обратил внимание на вековое смещение перигелия Меркурия, необъяснимое в рамках теории Ньютона.
Адамc со временем занял пост директора Кембриджской обсерватории и даже в течение одного выборного срока возглавлял Английское астрономическое общество.
История планетных открытий на этом не завершилась — Нептун привнес новые загадки и даже не решил всех проблем с движением Урана. Однако поиск следующей 9 планеты, Плутона, развивался как бы по известному сценарию.
Достаточно полные вычисления орбиты Плутона провел американский астроном Персиваль Ловелл (1855–1916), который всего за год до смерти приступил к систематическому его поиску на телескопе своей обсерватории в штате Аризона. Здесь же, в Ловелловской обсерватории, ассистент Клайд Томбо в 1929 году стал фотографировать подозреваемые участки неба. Годичная работа привела к успеху — новая планета была зафиксирована 18 февраля 1930 года.
Я относительно подробно (хотя и не так подробно, как хотелось бы) остановился на истории открытия Нептуна вовсе не из желания лишний раз пересказать ее хитросплетения. Важнее другое — в ней ярко проявились некоторые новые тенденции науки, на которых стоит немного задержать внимание.
Во-первых, наука 19 века принимает выраженные организационные формы. Астрономия уходит из рук любителей-одиночек, все большую роль играют учреждения, стягивающие единой структурой более или менее крупные коллективы исследователей. Даже самый похвальный энтузиазм талантливых одиночек, не включенных в систему научного поиска, с трудом пробивает себе дорогу, как это видно в истории Адамса. Уже во времена Ньютона в науке было тесновато, и из-за одновременно проводимых исследований вспыхивали конфликты. В 19 веке, когда одним и тем же вопросом иногда начинают заниматься десятки людей, проблема включенности ученого в хорошо функционирующий коллектив, необходимость постоянного потока информации о его работе выступают на первый план. Это значительно повышает требования к уровню профессионализма. Иной темп жизни и развития науки предъявляет свой счет. Небольшие частные обсерватории и лаборатории потихоньку уходят в тень — они, как правило, не могут обеспечить необходимых масштабов и темпов работы.
Если в коперниковские времена ученый мог жить ощущением собственного течения мысли, ориентируясь по ярким и практически неподвижным звездам веками возвеличенных классиков, то теперь он чувствовал себя песчинкой — в лучшем случае островком — в общем потоке идей. Интеллектуальная вселенная стала переменной — многие маяки замерцали и погасли. На протяжении одной жизни, а не веков и тысячелетий стали меняться существенные детали картины мира. Мнения, в высшей степени правдоподобные и обоснованные вчера, назавтра могли развеяться совокупностью более точных вычислений и наблюдений. И это был лишь ветер из будущего — лишь неспешные тени того фантастического калейдоскопа новизны, которым заискрился 20 век.
В связи с этим выделяется и второй важнейший аспект — всеохватность увлечений, свойственная Возрождению и основанная на убеждении, что существует некая простая и универсальная картина мира, лишь до поры сокрытая от безграничного ума высшего творения Господня, — эта всеохватность постепенно исчезает, хотя ее остаточные явления сохранялись до недавних времен.
Ученые в отличие от общеобразованных дилетантов почувствовали это весьма остро. Дело не только в том, что один человек просто физически не был способен вести серьезные исследования во многих областях знаний. Возникало новое разделение труда, характерное для коллективной работы, экспериментальная деятельность, требующая тренировки органов чувств и глубоких технических навыков, зачастую не позволяла сосредоточиться на отыскании новых моделей и применения сложных математических методов, и наоборот.
Так произошло разделение ученого мира на экспериментаторов и теоретиков. Еще Коперник и Тихо Браге использовали свои наблюдения для построения собственных теоретических схем. Но уже Кеплер выступает в основном как теоретик по отношению к наблюдениям Тихо Браге и математическим путем выводит свои законы. Ньютон, ставивший превосходные механические и оптические эксперименты, в небесной механике выступает как чистый теоретик — здесь его исходным материалом были в первую очередь даже не данные наблюдений, а эмпирические законы Кеплера. Галлей совмещал функции астронома-наблюдателя и теоретика, выводившего из общей теории Ньютона конкретные предсказания для наблюдений.
На рубеже 18–19 веков в этой области намечается явное разделение. Уильям Гершель, открыв Уран, не слишком интересовался неприятностями, внесенными новой планетой в царство теоретической небесной механики. Адамc и Леверье приложили огромные усилия для проецирования ньютоновской теории на экспериментальный материал, но сами не стремились провести наблюдения, перепоручив их Челлису и Галле.
Именно это характерно для развитой науки. Люди, способные одинаково хорошо работать в эксперименте и в теории, на любом ее уровне — это и в 19 веке, а тем более теперь — редкое исключение из правил.
Итак, наука усложнилась, и постепенно стали вырисовываться важные элементы ее структуры — расслаиваться стали сама теория и сам эксперимент.
До поры считалось естественным, что астроном сам конструирует и изготовляет свои телескопы. Но изготовление крупных приборов требует особых навыков и средств, наконец, немало времени. Выделяются специальные мастерские, где умеют делать хорошие зеркала, монтировать сложные конструкции. Обилие приборов и большой объем наблюдений влекут за собой участие многочисленных помощников в каждой крупной программе.
Еще наглядней процесс усложнения структуры в теории.
Когда мы говорим о триумфе ньютоновской системы в 19 веке, то надо понимать, что у самого Ньютона задавалась лишь принципиальная структура подхода к задачам небесной механики, проиллюстрированная очень простыми и сильно идеализированными моделями.
Истинное движение планет гораздо сложней, чем это следует из Кеплеровых законов, прежде всего потому, что Солнечная система состоит из многих взаимодействующих тел. Аналитически точно решить систему уравнений для многих планет невозможно — уже задача трех тел составляет крупную проблему (едва ли не самостоятельный раздел механики). Поэтому для учета дополнительных влияний на данную планету требуется немалое искусство — ведь истинная орбита, которую с превеликой точностью определяют астрономы, представляет собой, строго говоря, очень сложную волнистую кривую, и ее лишь приближенно можно считать эллипсом.
Трудности в расчете орбиты Урана выглядят еще безобидно по сравнению с теми сюрпризами, которые поднесла астрономам 18 века старая добрая Луна. В значительной степени именно на описании движения Луны создавались и оттачивались мощные методы небесной механики — теория возмущений.
Интенсивное развитие ньютоновской теории началось именно с этого в середине 18-го века. В работах блестящих математиков французской школы Алекси Клеро (1713–1765) и Жана Лерона д'Аламбера (1717–1783) родились корректные методы учета относительно слабых воздействий. Их работы по теории взаимного возмущения планетных орбит обусловили настоящее подтверждение ньютоновского закона тяготения. До того отклонение от строгой эллиптичности движения на равных правах рассматривалось как возможное нарушение этого закона.
Почти сразу же вслед за первой весьма удачной моделью движения Луны, построенной Клеро к 1751 году, появилась еще более точная модель, основные идеи которой использовались впоследствии для всей небесной механики.
Автор этой модели Леонард Эйлер (1707–1783), уникально результативный ученый, сыгравший выдающуюся роль в становлении научных исследований сразу двух стран — России и Германии. 20-летним юношей Эйлер приехал в Петербург по приглашению столичной Академии наук и художеств. В 1741 году Эйлер, завоевавший уже мировой авторитет в науке, приглашается Фридрихом П для организации работ в Берлинской академии. Однако связи с Петербургом он не терял и через четверть века возвратился на свою научную родину. В 1756 году Петербургская академия присудила ему премию именно за работу по теории движения Луны.
Главное достижение Эйлера заключалось в разработке так называемого метода оскулирующих элементов. Эллипс, по которому должен двигаться одинокий спутник центрального тела, принимается за основу, но элементы, характеризующие эту фигуру (эксцентриситет и т. д.), считаются теперь переменными. В их периодическом изменении и сказывается влияние других тел Солнечной системы. Иными словами, поправки к идеальному кеплерову движению приобрели теперь ясный и наглядный смысл.
На рубеже 18-19-х веков серьезных успехов в создании методов обработки астрономических данных добивается немецкий математик Карл Фридрих Гаусс (1777–1855). Его интересует задача о восстановлении параметров орбиты по данным наблюдений. Совокупности точек, которые получают наблюдатели и теоретики, никогда полностью не совпадают, и возникает проблема — какую именно совокупность теоретически вычисленных точек предпочесть, какая из них наилучшим образом соответствует совокупности экспериментальной. Гаусс получил решение, строго обосновав так называемый метод наименьших квадратов. Лучшей оказывалась та теоретическая кривая, для которой сумма квадратов отклонений от наблюдаемых значений принимает наименьшее значение. Этот метод положен в основу всей техники обработки экспериментальных данных в различных областях науки.
Интерес Гаусса к задаче реконструкции орбит обострился после открытия астероидов, когда соответствующие вычисления «стали на поток». В 1809 году в своей «Теории движения небесных тел» он доказал, что для полного определения элементов эллиптической орбиты необходимо как минимум 3 наблюдения.
Гаусс первым обратил внимание на описание кривых поверхностей независимо от конкретной системы координат. Размышления об этом и обширная работа по составлению геодезических карт привели его уже в 1818 году к идеям неевклидовой геометрии, сыгравшей впоследствии огромную роль в построении современной теории гравитации. К сожалению, он всячески избегал любой формы публикации этих идей и, в конце концов, добился своего создателями неевклидовой геометрии стали Лобачевский, Больяи и Риман. И на своем памятнике Гаусс велел выбить правильный 17-угольник — задачу его построения с помощью циркуля и линейки великий геометр считал лучшим своим достижением…
В стройное здание, основанное на немногих общих принципах, превратил ньютоновскую механику французский математик Жозеф Луи Лагранж (1763–1813). Развивая идеи Эйлера, он добился чрезвычайно прозрачного описания планетных движений. Вселенная, считал Лагранж, должна описываться простейшим образом, и эта простота непосредственно отражается в законах механики. Эти законы он воспринимал как нечто объективное, заложенное в самой природе, и отсюда возникал механицизм как мировоззрение.
Но по-настоящему попытался превратить ньютоновскую картину Вселенной в мировоззренческую систему французский математик и физик Пьер Симон Лаплас (1749–1827), сын нормандского крестьянина, человек очень интересной судьбы.
Рано приобщившись к идеям французского просветительства, Лаплас в определенной степени пошел дальше традиционных деистических взглядов и стал атеистом. Годы расцвета его деятельности приходятся на бурный период истории Франции — Великую революцию, консульство, наполеоновскую империю и реставрацию. Его положение и взгляды эволюционизируют от события к событию. Он приветствует восстание и защищает республиканские взгляды, при Наполеоне становится даже министром внутренних дел (!)[71], потом — вице-председателем сената, получает графский титул. Падение императора застает его сторонником реставрации, и Бурбоны, в свою очередь, жалуют ему титул маркиза и пэра Франции…
Но главное, разумеется, не эти колебания, а воистину титаническая работа Лапласа по созданию 5-томной «Небесной механики», где картина Солнечной системы получила до мельчайших деталей ясное и красивое оформление.
Лаплас сделал очень важный шаг не только в создании моделей движения Луны и планет. Он показал, что Солнечная система — устойчивое образование и может существовать, по крайней мере, миллионы лет. Баланс гравитационных сил таков, что все параметры планетных орбит могут меняться лишь в довольно узких пределах. Отсюда следовало, что никакого внешнего вмешательства для периодического восстановления равновесия просто не требуется. Тем самым одна из ролей, которую Ньютон отводил Богу — текущий ремонт вселенской машины, оказалась излишней.
Лаплас впервые блестяще обосновал тот факт, что все крупные небесные тела должны иметь более или менее схожую форму немного сплющенной из-за вращения сферы. Эта проблема была связана с из ряда вон выходящим явлением — кольцами Сатурна, которые выглядели весьма искусственным образованием на фоне других объектов Солнечной системы[72]. Лаплас показал, что кольца не могут быть единым твердым телом, а должны состоять из огромного числа небольших камней и пыли. Загадка превратилась в естественное явление — кольца стали рассматривать как плотную группу спутников Сатурна, некоторым образом аналогичную астероидному кольцу Солнечной системы. Теперь расчищался путь для сугубо научной постановки вопроса о происхождении Солнца и планет.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК