Физический образ Вселенной

В физическом понимании Вселенной существует немало интересных проблем, решение которых в ближайшем будущем представляется не слишком вероятным. Любопытно все-таки, что удается кое-что сказать о проблемах, отделенных от нас вроде бы огромным техническим (если не общепознавательным!) барьером.

Одна из них — возможно, важнейшая — неудовлетворительность современной концепции пространства-времени. Все, что мы пока умеем делать, — это локализовать трудности в экспериментально недоступных областях.

Попробуем взглянуть на ситуацию с пространственно-временными измерениями с точки зрения самых общих ограничений, которым должны подчиняться системы отсчета. Важнейшее положение специальной теории относительности заключается в том, что всякая система отсчета должна быть снабжена средством синхронизации часов с другими системами. До получения конкретного сигнала мы не можем знать показаний часов в интересующей нас точке пространства. В качестве сигнального средства может использоваться любой носитель энергии, например, самый быстрый — световой луч. Но в таком случае скорость передачи любой информации не может превышать скорости этого носителя, то есть v? с. Собственно эйнштейновские мысленные эксперименты (подтвержденные впоследствии всей совокупностью экспериментов реальных) можно рассматривать как первый шаг в программе построения реальных систем отсчета, снабженных средствами информационного обмена. В ньютоновской механике этот шаг сделан не был — не конкретизировался синхронизирующий сигнал, из-за чего отсутствовали ограничения на скорость, а фактическая область применения ограничивались условия v с.

Следующий шаг связан с учетом тяготения в окрестности системы отсчета. Имея источник и приемник излучения и, конечно, блоки их снабжения и обслуживания, реальная система отсчета должна обладать массой, но все-таки выпускать излучение — хотя бы синхронизирующие сигналы. Поэтому необходимо, чтобы скорость отрыва от нее была несколько меньше скорости света, а отсюда легко вывести, что физический радиус системы должен быть больше гравитационного R > Rg = 2GM/c2. Следовательно, вся внутренняя область черной дыры не может служить моделью системы отсчета — в этом заключено самое общее выражение ее информационной несвязанности с внешним миром.

Испускание сигнала влияет на систему. Направленный сигнал — это импульс, например, света. Выбрасывая его, система должна приобрести ускорение а ~?P/M? меньше c/? — последнее условие из-за того, что за характерное время? она не разгонится до сверхсветовой скорости. Поскольку импульс не может передаваться всему телу системы за время, меньшее времени распространения светового сигнала в ее объеме, получим простое условие? > R/c > 2GM/c3. Следовательно, реактивное ускорение системы всегда ограничено: a меньше c4/2GM, и соответственно фундаментально ограничена сила, действующая на нее: F меньше c4/2G. Ни один информационный сигнал не может приводить к силовой реакции на источник, превосходящий планковский масштаб силы FP = c4/2G = 6.1043 Н!

Аналогичное заключение получаем и в случае изотропного сигнала. Так или иначе, излучая энергию, система теряет полную массу. Ее физический радиус убывает, и его скорость убывания не может превосходить скорость света. В свою очередь, гравитационный радиус не может убывать быстрее физического. Отсюда получаем ограничение на темп изменения массы (?tM меньше c3/2G) и на светимость (L меньше c5/2G).

Таким образом, мощность излучения сигнала ограничена планковской мощностью LP.

Световые потоки нужны нам в частности для определения координат объектов (тех же систем отсчета) и хода часов. Точность регистрации координаты ограничена длиной волны излучения?x (? но, с другой стороны, световой квант всегда передает объекту импульс ?р ~ ћ/? откуда и возникают квантовомеханические соотношения неопределенностей ?р.?x (ћ, т. е. невозможность одновременной точной регистрации импульса и координаты тела. Точность измерения координаты за промежуток времени ?t тоже ограничена: ?x.?t? ћ/?р/?t? ћ / FP = 2G ћ / c4 = lP2/c. Это означает, что понятие координаты в данный момент времени теряет смысл. Аналогично, используя соотношение неопределенностей для энергии и времени? E.?t (ћ, придем к ограничению точности измерения времени ?t? tP = v2G ћ /c5. Таким образом, основные пространственно-временные понятия — координата и момент времени оказываются неприменимыми в планковской области. Нет способа реализации соответствующей физической системы отсчета, то есть невозможно передать информацию (и получить ее) из области масштаба lP.

Если все три фундаментальные константы ћ, G и с сохранят свою неизменность, мы придем к ситуации, где геометрические построения окажутся беспомощными и современное пространство-время должно быть замещено какой-то более общей структурой. Поэтому, например, современное рассмотрение первых мгновений рождения Вселенной и завершающей стадии коллапса при t (tp заведомо некорректно. Некорректно также экстраполировать массы элементарных частиц за планковский предел mР = v ћ c /2G, а массы звезд — ниже этого предела. Не видно, как объект с размерами меньшими lP мог бы дать сигнал о своем существовании, отсутствуют также и сигналы, которые способны нести информацию об изменениях состояния любой системы за время меньшее tP. В современном понимании Вселенной tP играет роль эволюционного кванта предела, за который не удается экстраполировать какие-либо эволюционные представления.

Пока мы не знаем, какая структура придет на смену обычному пространству. Было бы любопытно провести программу построения теории гравитации, последовательно исходя из ограниченности мощностей и сил, и выяснить, насколько она была бы эквивалентна эйнштейновской теории, и насколько удобно было бы сочетать ее впоследствии с квантовыми моделями.

Между тем уровень реальности систем отсчета можно повышать и дальше. Мы пока задали только минимальный набор приборных средств для общения системы отсчета с внешним миром. Надо учитывать также поступление информации наблюдательно (канал взаимодействия прибор-наблюдатель), уровень сложности самого наблюдателя — его теоретическую программу, то есть средства интерпретации результатов наблюдений. Тут наверняка возникнут существенные ограничения, следующие из общей теории связи.

Надо учитывать также, что информация попадает на конкретный тип биологической структуры и перерабатывается там. Вся картина процессов в предельно больших и предельно малых масштабах проецируется не в пустое пространство, а на информационную структуру наблюдателя вида Homo sapiens (или какого-то иного вида), и законы этой проекции должны быть крайне нетривиальны. В конечном итоге, в законе проекции должны как-то отражаться все основные условия существования наблюдателя и даже его эволюционный путь, то есть в развертке каждого эксперимента присутствовал бы весь мир, включая космологическое начало.

Пока мы очень слабо представляем, как далеко можно продвинуться по этому труднейшему пути. Эскиз программы нужен был для того, чтобы перебросить мост (штриховой контур моста!) через идейную пропасть, отделяющую традиционные исследовательские приемы в духе обобщения геометрии от приемов типа антропогенного принципа. Мне кажется, что принципы такого рода пытаются уловить сразу конечный результат, который, так или иначе, требует самосогласованности всей картины мира для каждого наблюдателя. Но по пути к этому результату наверняка разбросано множество интереснейших ограничений, расшифровывающих возможности реальных наблюдателей.

Нетривиальность ситуации можно уловить, рассматривая, например, передачу информации об эксперименте, поставленном на нашей планете, иной цивилизации, владеющей принципиально иным языком и образной системой, в чьей практике объект эксперимента по каким-то причинам не присутствует. Здесь неопределенность их понимания объекта в любом случае заметно выше общей неопределенности в понимании нашей цивилизацией. Не исключено, что для достаточно далеких эволюционных ветвей область общего видения Вселенной крайне мала, и ничего вроде единой научной космологии (строгой в нашем современном понимании) в масштабах Вселенной не существует. Общезначимой может оказаться только деятельность по стыковке различных систем практики, в той степени, в какой эта стыковка необходима и допустима. При высокой космогонической активности цивилизаций, принадлежащих весьма далеким эволюционным линиям, это могло бы привести к крайне различной организации смежных участков Вселенной. И попытка проникнуть в соседний участок требовала бы очень глубокого понимания далеких систем мировосприятия и в какой-то степени подчинения тем законам игры, которые из них следуют.

Впрочем, за правилом, согласно которому объект (звезда, планета, частица) таков, какова изучающая его цивилизация, мы имели возможность проследить во время исторических путешествий. Оно, в общем, неплохо работает и свидетельствует о том, что простенькая система отсчета, состоящая из фонарика, часов и духообразного наблюдателя, обретая плоть, превращается сначала в физическое тело, способное генерировать и поглощать энергию, обретает информационную биологическую подсистему (разумного наблюдателя) и, в конце концов, становится полным социокультурным комплексом.

Такое усложнение одного из основных и, казалось бы, по определению, простейших физических понятий не покажется чрезмерным в свете той программы перестройки астрофизики и космогонии, которая обсуждалась в предыдущей главе. Проблема ограничений информационного характера и вообще всего того, что вытекает из конкретной модели наблюдателя, выглядит малозначительной, лишь пока мы не попытались всерьез посмотреть на Вселенную с учетом разумной деятельности ее обитателей. С физической точки зрения, такая Вселенная обретает не просто аномалии в звездных спектрах и движениях некоторых тел, но и как бы новые спектры социокультурного типа. В далеком будущем развитого Контакта мы во многом будем воспринимать ее сквозь социокультурные спектрограммы скорее как мыслящее существо, чем величественный конгломерат атомов. Важна будет не только наша оценка какого-то явления галактического масштаба, но и то, как его воспринимают и фиксируют в своей системе различные «мыслящие участки Вселенной» — иные цивилизации. Объективность такого уровня непременно потребует взаимного перевода образов и понятий, а, следовательно, и задания правил перехода между различными социокультурными системами отсчета. Потребуется и какой-то общедоступный язык типа нашей математики, однако он может включить в себя приемы в духе целостного моделирования сложных объектов и сверхплотных информационных потоков и во многом отличаться от современных логико-формальных схем.

Где-то на пути от современно недоукомплектованной системы отсчета к системе отсчета социокультурной физика, возможно, утратит многие черты предельно точной естественной науки, но ее приобретения наверняка окупят потери. Ибо приведение уровня претензий в соответствие с действительностью всегда приносит пользу методам познания и носителями этих методов.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК