Глава 3 Основные дискретные компоненты
Полный список товаров занял бы несколько страниц, поэтому я приведу лишь некоторые: сковородки, шляпы, ведерные кофейники, рыболовные снасти, журналы и книги в мягких обложках, оружие и амуниция, всевозможные продукты питания, пончо, шпоры и седла, сигары, сигареты и табак, охотничьи и кухонные ножи, ковбойские сапоги и резиновые болотники, мужская и женская одежда, джинсы, открытки, авторучки, три полки с лекарствами…
Рекс Стаут «Смерть чужака»
О двух важнейших электронных компонентах, которые вы встретите в любой, самой что ни на есть «микроэлектронной» схеме, мы уже говорили в предыдущих главах— это резисторы и конденсаторы. Но кроме них, в современной технике используется также много других типов компонентов, которые получили общее наименование дискретные. Грубо говоря, дискретные компоненты — это все, что не микросхемы. Хотя такое деление и достаточно условно: например, какой-нибудь оптрон (устройство, совмещающее в себе пару «светодиод— фотодиод» для передачи сигнала по оптическому каналу) относят обычно к дискретным компонентам, однако по сути это микросхема, и достаточно сложная в изготовлении.
Давайте разберемся немного в важнейших разновидностях дискретных компонентов. Сейчас немодно проектировать схемы на «рассыпухе», в большинстве случаев это и не имеет смысла, поскольку на интегральных микросхемах получается быстрее, дешевле и надежнее. Однако, во-первых, без дискретных элементов все равно во многих случаях не обойтись (посмотрите, сколько их на материнской плате вашего ПК, а ведь эти платы обычно вбирают в себя все самое современное), во-вторых, микроэлектронные схемы работают по тем же законам, что и старинные, на отдельных элементах. А в-третьих, в радиолюбительской и полупрофессиональной практике часто бывает так, что гораздо удобнее применить, например, транзисторный ключ с парой резисторов, чем гоняться по торговым организациям за соответствующей микросхемой, и потом еще мучаться, раскладывая плату под какой-нибудь планарный корпус с шагом 0,127 мм (тем более, что резисторы, скорее всего, так или иначе потребуются).
Из всех полупроводниковых устройств исторически первыми были диоды.
Диоды
Диод— это простейший полупроводниковый прибор с двумя выводами, характеризующийся тем, что в одну сторону он проводит ток (т. е. представляет собой в идеале просто проводник с малым сопротивлением), в другую — нет (т. е. превращается в очень большое сопротивление) — одним словом, обладает односторонней проводимостью. Выводы диода, как повелось еще со времен ламповой техники, называют анодом (положительный) и катодом (отрицательный). Не всегда понятно, что означают слова «положительный» и «отрицательный» в приложении к некоторым включениям диодов, потому конкретизируем: если подать на анод положительное напряжение, то диод будет проводить ток. В обратном включении ток не пройдет.
Если подключить диод к регулируемому источнику напряжения, то он будет вести себя так, как показано на рис. 3.1, где представлена т. н. вольт-амперная характеристика диода. Из нее, в частности, следует, что в прямом включении (т. е. анодом к плюсу источника), после превышения некоторого напряжения (Uпр), прямой ток через диод (Iпр) растет неограниченно и будет лимитироваться только мощностью источника. На самом деле без нагрузки Диоды, за редкими исключениями, не включают, и тогда в прямом включении ток ограничивается нагрузкой.
Рис. 3.1. Вольт-амперная характеристика диода
В обратном же включении (катодом к плюсу) ток через диод (Iобр) пренебрежимо мал и составляет от нескольких микро- или даже наноампер для обычных маломощных диодов, до единиц миллиампер для мощных выпрямительных. Причем для германиевых диодов обратный ток намного выше, чем для кремниевых, отчего их сейчас практически и не употребляют. Этот ток сильно зависит от температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от-50 до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что верхняя и нижняя половины графика по оси токов построены в разных масштабах).
В отличие от обратного тока, прямое падение напряжения Uпр гораздо меньше зависит как от типа и конструкции прибора, так и от температуры. Для кремниевых диодов прямое падение напряжения Uпр всегда можно считать равным примерно 0,6–0,7 В, для германиевых или так называемых диодов Шоттки эта величина составляет 0,2–0,4 В. Для кремниевых диодов при изменении температуры на один градус Uпр изменяется примерно на 2,3 мВ.
Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Впрочем, тепловые процессы инерционны, и в справочниках указывается обычно среднее значение допустимого тока, а мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое в сотни раз! Обычное значение среднего предельно допустимого тока через маломощные диоды — десятки и сотни миллиампер. Мощные диоды (при токах 3–5 А и выше) часто приходится устанавливать на радиаторы.
Другая характеристика диодов — предельно допустимое обратное напряжение. Если оно превышено, то диоды также выходят из строя — электрически пробиваются и замыкаются накоротко. Обычная допустимая величина обратного напряжения для маломощных диодов — десятки вольт, для выпрямительных— сотни вольт, но есть диоды, которые выдерживают и десятки тысяч вольт. Далее мы увидим, что существуют приборы, для которых пробой в обратном включении является рабочим режимом, — они называются стабилитронами.
Подробности
Физически диод состоит из небольшого кристаллика полупроводникового материала, в котором в процессе производства формируются две зоны с разными проводимостями, называемыми проводимостью n- и p-типа. Ток всегда течет от p-зоны к n-зоне (это стоит запомнить), в обратном направлении диод заперт. Более подробные сведения о физике процессов, происходящих в р-n-переходе, излагаются во множестве пособий, включая школьные учебники, но для практической деятельности почти не требуются.
Транзисторы
Транзистор— это электронный полупроводниковый прибор, предназначенный для усиления сигналов. Первым таким прибором в истории была электронная лампа (а еще до нее, кстати — электромагнитные реле, которые мы кратко рассмотрим далее). Лампа сумела сделать немало — именно в «ламповую» эпоху возникли радио и телевидение, компьютеры и звукозапись. Но только транзистор и появившиеся на его основе микросхемы сумели действительно перевернуть мир так, что электронные устройства вошли в наш повседневный быт и мы теперь уже не мыслим себя без них.
Транзисторы делятся на биполярные и полевые (или униполярные). Пока мы будем говорить только о биполярных транзисторах.
Физически биполярный транзистор — это структура из трех слоев полупроводника, разделенных двумя р-n-переходами. Поэтому можно себе представить, что он состоит как бы из двух диодов, один из слоев у которых общий, и это весьма близко к действительности! Скомбинировать два диода можно, сложив их либо анодами, либо катодами, соответственно, различают n-р-n- и р-n-р-транзисторы, которые отличаются только полярностями соответствующих напряжений. Заменить n-р-n-прибор на аналогичный р-n-р можно, просто поменяв знаки напряжений во всей схеме на противоположные (и все полярные компоненты — диоды, электролитические конденсаторы — естественно, тоже надо перевернуть). Транзисторов n-р-n-типов выпускается гораздо больше, и употребляются они чаще, поэтому мы пока что будем вести речь исключительно о них, но помнить, что все сказанное справедливо и для р-n-р-структур, с учетом обратной их полярности. Правильные полярности и направления токов для n-р-n-транзистора показаны на рис. 3.2.
Рис. 3.2. Биполярный транзистор:
а — рабочие полярности напряжений и направления токов в n-р-n-транзисторе (к — коллектор, б — база, э — эмиттер); б — условное представление транзистора, как состоящего из двух диодов
Первый в истории транзистор был построен в знаменитых Лабораториях Белла (Bell Labs) Дж. Бардиным и У. Браттайном по идеям Уильяма Брэдфорда Шокли в 1947 году. В 1956 году все трое были удостоены Нобелевской премии. Кроме изобретения транзистора, У. Шокли известен также, как один из основателей знаменитой Кремниевой долины — технополиса в Калифорнии, где сегодня расположено большинство инновационных полупроводниковых и компьютерных фирм. Из фирмы Шокли, под названием Shockley Semiconductor Labs, вышли, в частности, Гордон Мур и Роберт Нойс — будущие основатели крупнейшего ныне производителя микропроцессоров фирмы Intel. Г. Мур еще известен, как автор знаменитого «закона Мура», а Р. Нойс — как изобретатель микросхемы (совместно с Д. Килби — подробнее см. главу 6).
Рис. 3.3. Первый в истории транзистор
(Фото Lucent Technologies Inc./Bell Labs)
Три вывода биполярного транзистора носят названия коллектор, эмиттер и база. Как ясно из рис. 3.2, б, база присоединена к среднему из трех полупроводниковых слоев. Так как, согласно показанной на рисунке полярности, потенциал базы более положителен, чем у эмиттера, то соответствующий диод всегда открыт для протекания тока. Парой страниц ранее мы убедились, что в этом случае на нем должно создаваться падение напряжения в 0,6 В. Именно так и есть — в рабочем режиме напряжение между эмиттером и базой всегда составляет приблизительно 0,6 В, причем на базе выше, чем на эмиттере (еще раз напомним, что для p-n-p-транзисторов напряжения обратные, хотя абсолютные величины их те же). А вот диод между коллектором и базой заперт обратным напряжением. Как же может работать такая структура?
Практически это можно себе представить, как если бы ток, втекающий в базу, управлял неким условным резистором, расположенным между коллектором и эмиттером (пусть вас не смущает помещенный там диод «коллектор-база», через него-то ток все равно не потечет). Если тока базы нет, т. е. выводы базы и эмиттера закорочены (здесь, главное, чтобы (Uбэ было бы близко к нулю), тогда промежуток «эмиттер-коллектор» представляет собой очень высокое сопротивление, и ток через коллектор пренебрежимо мал (сравним с обратным током диода). В таком состоянии транзистор находится в режиме отсечки (говорят, что прибор заперт или закрыт).
В противоположном режиме ток базы велик (Uбэ = 0,6–0,7 В, как мы говорили ранее, при этом ток, естественно, ограничен специальным сопротивлением), тогда промежуток «эмиттер-коллектор» представляет собой очень малое сопротивление. Это режим насыщения, когда транзистор полностью открыт (естественно, в коллекторной цепи, как и в базовой, должна присутствовать какая-то нагрузка, иначе транзистор в этом режиме может просто сгореть). Остаточное напряжение на коллекторе транзистора может при этом составлять порядка 0,3 В. Эти два режима представляют часто встречающийся случай, когда транзистор используется в качестве ключа (или, как говорят, «работает в ключевом режиме»), т. е. как обычный выключатель тока.
Ключевой режим работы биполярного транзистора
А в чем смысл такого режима, спросите вы? Смысл очень большой — ток базы может управлять током коллектора, который как минимум на порядок больше, т. е. налицо усиление сигнала по току (за счет, естественно, энергии источника питания). Насколько велико может быть такое усиление? В режиме «ключа» почти для всех обычных типов современных транзисторов можно смело полагать коэффициент усиления по току (т. е. отношение максимально возможного тока коллектора к минимально возможному току базы Iк/Iб) равным нескольким десяткам — не ошибетесь. Если ток базы и будет больше нужного — не страшно, он никуда не денется, открыться сильнее транзистор все равно не сможет. Коэффициент усиления по току в ключевом режиме еще называют «коэффициентом усиления по току в режиме большого сигнала» и обозначают буквой β. Есть особые «дарлингтоновские» транзисторы, для которых β может составлять до 1000 и более (обычно они составные, поэтому напряжение Uбэ у них заметно больше обычного: 1,2–1,5 В).
Рассмотрим подробнее ключевой режим работы транзистора ввиду его важности для практики. На рис. 3.4 показана простейшая схема включения транзистора в таком режиме, для наглядности — с лампочкой в качестве коллекторной нагрузки.
Рис. 3.4. Включение биполярного транзистора в ключевом режиме
Попробуем рассчитать необходимую величину резистора в базе. Как вы сейчас увидите, для транзисторных схем характерно, что напряжения в схеме никакой роли не играют, только токи: можно подключить коллекторную нагрузку хоть к напряжению 200 В, а базовый резистор питать от 5-вольтового источника, — если соотношение β > Iк/Iб соблюдается, то транзистор (при условии, конечно, что он рассчитан на такое высокое напряжение) будет послушно переключать 200-вольтовую нагрузку, управляясь от источника 5 В. Таким образом, налицо усиление сигнала по напряжению!
В нашем примере выбрана небольшая автомобильная лампочка 12 В, 100 мА (примерно, как для подсветки приборной доски в «Жигулях»), а цепь базы питается от источника 5 В. Расчет элементарно прост: при 100 мА в коллекторе, в базе должно быть минимум 10 мА (не глядя в справочник, ориентируемся на минимальное значение (β = 10). Напряжение на базовом резисторе Rб составит 5 В — 0,6 В = 4,4 В (о падении между базой и эмиттером забывать не следует), т. е. нужное сопротивление будет равно 440 Ом. Выбираем ближайшее меньшее из стандартного 5 %-ного ряда и получаем 430 Ом. Все?
Нет, не все. Схема еще не совсем доделана. Она будет работать нормально, если вы будете поступать так: подключать базовый резистор к 5 В (лампочка горит), а затем переключать его к «земле» (лампочка гаснет). Но довольно часто встречается ситуация, когда напряжение на базовый резистор подается-то нормально, а вот при отключении его резистор не присоединяется к «земле», а просто «повисает в воздухе» (именно этот случай и показан на схеме в виде контактов выключателя К). Так мы не договаривались. Чтобы транзистор был в режиме отсечки, надо установить равные потенциалы базы и эмиттера, а какой потенциал будет у базы, если она «в воздухе»? Это только формально, что ноль, а на самом деле всякие наводки— электричества-то вокруг полно — и внутренние процессы в транзисторе формируют небольшой базовый ток. И транзистор не закроется полностью, лампочка будет слабо светиться!
Это очень неприятный эффект, который даже может привести к выходу транзистора из строя. Избежать его просто: следует замкнуть базу и эмиттер еще одним резистором Rбэ. Самое интересное, что рассчитывать его практически не нужно — лишь бы падение напряжения на нем при подаче напряжения на базу не составило меньше, чем 0,7 В. Его значение можно выбрать примерно в 10 раз больше, чем резистора Rб (но если вы здесь поставите не 4,3 кОм, а, К примеру, 10 кОм, тоже не ошибетесь). Работать он будет так: если открывающее напряжение на Rб подано, то он не оказывает никакого влияния на работу схемы, т. к. напряжение между базой и эмиттером все равно 0,6 В, и он только отбирает на себя очень небольшую часть базового тока (легко подсчитать, какую, поделив 0,6 на его значение 4,3 кОм, получится примерно 0,14 мА). А если напряжения нет, то Rбэ обеспечивает надежное равенство потенциалов базы и эмиттера, независимо от того, подключен ли базовый резистор к «земле» или «висит в воздухе».
Я так подробно остановился на этом моменте потому, что о включении резистора Rбэ при работе в ключевом режиме часто забывают. А ведь еще в 1950—60-х годах транзисторы по ТУ вообще запрещалось включать в режиме с «оборванной базой», т. к. первые промышленные типы их запросто Могли выйти из строя!
Простейшая ключевая схема есть вариант т. н. схемы с общим эмиттером (ОЭ). Обратите внимание, что сигнал на коллекторе транзистора инвертирован (т. е. противоположен по фазе) по отношению ко входному сигналу. Если на базе (точнее, на базовом резисторе) напряжение имеется — на коллекторе оно равно нулю, и наоборот! Это и имеют в виду, когда говорят, что транзисторный каскад в схеме с общим эмиттером инвертирует сигнал (справедливо не только для ключевого, но и для усилительного режима работы, о котором несколько слов далее). Сигнал при этом и на входе и на выходе должен измеряться относительно «земли». На нагрузке (лампочке), которая подключена к питанию, а не к общей для входа и выхода каскада «земле», все в порядке, т. е. она горит, когда на входе сигнал есть, «визуальный» сигнал не инвертирован.
Усилительный режим работы биполярного транзистора
Рассмотрим усилительный режим транзистора. В настоящее время его в реальных схемах воспроизводить почти не приходится, т. к. все современные усилители собирают из готовых микросхем, у которых все эти транзисторы находятся внутри. И все же понимание того, как они работают, никогда не помешает, да и транзисторы «россыпью» нередко еще приходится применять, поэтому мы рассмотрим работу различных усилительных каскадов довольно подробно.
Из написанного ранее ясно, что между режимами насыщения и отсечки должно существовать какое-то промежуточное состояние, например, когда лампочка на рис. 3.4 горит вполнакала. Действительно, в некотором диапазоне базовых токов (и соответствующих им напряжений, подающихся на базовый резистор) ток коллектора (и соответствующее ему напряжение на коллекторе) будет плавно меняться. Соотношение между токами здесь будет определяться величиной коэффициента усиления по току для малого сигнала, который обозначают h21э Такое странное на первый взгляд обозначение возникло от того, что первые транзисторы вызывали у инженеров отторжение и непонимание, тогда ученые предложили им математическую модель, чем. на мой взгляд, еще больше все запутали и усложнили. Обозначение h21э возникло из рассмотрения модели транзистора в виде четырехполюсника.
В первом приближении h21э можно считать равным коэффициенту β, хотя он всегда больше последнего. Учтите, что в справочниках иногда приводится именно h21э, а иногда β, так что будьте внимательны. Разброс значений h21э для конкретных экземпляров весьма велик, поэтому в справочниках приводят граничные величины (от — до).
Схема с общим эмиттером
Поэкспериментировать с усилительным режимом транзистора и заодно научиться измерять h21э можно по схеме, приведенной на рис. 3.5.
Рис. 3.5. Схема включения биполярного транзистора по схеме с общим эмиттером в усилительном режиме
Переменный резистор должен иметь достаточно большое сопротивление, чтобы при выведенном в крайнее правое положение движке ток базы заведомо удовлетворял соотношению Iб∙h21э << Iк (ток коллектора в данном случае определяется нагрузкой). Если для транзистора (по справочнику) h21э составляет величину в среднем 50, а в коллекторе нагрузка 100 Ом, то переменный резистор разумно выбрать номиналом примерно 20–30 кОм и более. Выведя движок в крайнее правое по схеме положение, мы задаем минимально возможный ток базы. В этом положении следует включить питание и убедиться с помощью осциллографа или мультиметра, что транзистор близок к отсечке — Напряжение на коллекторе Uк будет почти равно напряжению питания (но не совсем — мы уже говорили, что для полной отсечки нужно соединить выводы базы и эмиттера между собой). Осторожно перемещая движок переменника, мы увидим, как напряжение на коллекторе будет падать (а на нагрузке, соответственно, расти). Когда напряжение на коллекторе станет почти равным нулю (т. е. транзистор перейдет в состояние насыщения), эксперимент следует прекратить, иначе можно выжечь диод «база-эмиттер» слишком большим прямым током (для предотвращения этой ситуации нужно последовательно с переменным поставить постоянный резистор небольшого номинала— на рис. 3.5 показан пунктиром).
Вернем движок переменника в состояние, когда напряжение на коллекторе примерно равно половине напряжения питания. Это так называемая рабочая точка транзистора в схеме с общим эмиттером. Если напряжение на базовом резисторе будет в определенных пределах колебаться, изменяя ток базы, то переменная составляющая напряжения на коллекторе будет повторять его форму (с точностью до наоборот, т. е. инвертируя сигнал, как мы говорили ранее), но усиленную по напряжению и току. Это и есть усилительный режим транзистора. В какой степени входной сигнал может быть усилен? Все определяется знакомым нам коэффициентом h21э. Его величину для данного экземпляра транзистора можно определить так: пусть при напряжении на коллекторе, равном половине напряжения источника питания (т. е. 5 В как на рис. 3.5), сопротивление базового резистора составляет 10 кОм. Ток коллектора (при коллекторной нагрузке 100 Ом) составит 50 мА. Ток базы составит (10 — 0,6) В/10 кОм, т. е. примерно 1 мА. Тогда их отношение и будет равно h21э в данном случае 50.
А каков коэффициент усиления такой схемы по напряжению? Это зависит от соотношения резисторов в базе и в коллекторе. Например, если величина базового резистора составляет 1 кОм, то изменение тока базы при изменении входного напряжения на 1 В составит 1 мА. А в пересчете через h21э это должно привести к изменению тока коллектора на 50 мА, что на нагрузке 100 Ом составит 5 В. Следовательно, усиление по напряжению при таком соотношении резисторов будет равно 5. Чем выше номинал резистора в базе (и ниже — нагрузки), тем меньше коэффициент усиления по напряжению. В пределе, если положить базовый резистор равным нулю, а коллекторный — бесконечности, то максимальный коэффициент усиления современных транзисторов по напряжению может составить величину порядка нескольких сотен (но не бесконечность — за счет того, что база имеет собственное входное сопротивление, а коллектор — собственное выходное). Обратите внимание на это обстоятельство: при повышении величины сопротивления в коллекторе коэффициент усиления увеличивается. В частности, это означает, что лучше вместо резистора включать источник тока, у которого выходное сопротивление очень велико. Именно так и поступают в аналоговых микросхемах, где создать источник тока в виде еще одного-двух транзисторов вместо нагрузочного резистора даже проще (см. главу 6).
В приведенном виде (см. рис. 3.5) схема по усилению исключительно плоха. В самом деле, все зависит от величины коэффициента h21э, а он, во-первых, «гуляет» от транзистора к транзистору, во-вторых, очень сильно зависит от температуры (при повышении температуры повышается). Чтобы понять, как правильно построить усилительный транзисторный каскад со стабильными параметрами, нужно ознакомиться еще с одной схемой включения транзистора — схемой с общим коллектором.
Схема с общим коллектором
Схема с общим коллектором (ОК) показана на рис. 3.6. Учитывая, что напряжение базы и эмиттера никогда не отличается более чем на 0,6 В, мы придем к выводу, что выходное напряжение такой схемы должно быть меньше входного именно на эту величину. Так и есть, схема с общим коллектором иначе называется эмиттерным повторителем, поскольку выходное напряжение повторяет входное (за вычетом все тех же 0,6 В). Каков же смысл этой схемы?
Рис. 3.6. Схема включения биполярного транзистора по схеме с общим коллектором
Схема на рис. 3.6 усиливает сигнал по току (в число раз, определяемое величиной h21э), что равносильно увеличению собственного входного сопротивления схемы ровно в h21э по отношению к тому сопротивлению, которое находится в цепи эмиттера. Поэтому в этой схеме мы можем подавать на «голый» вывод базы напряжение без опасности сжечь переход «база-эмиттер». Иногда это полезно само по себе, если не слишком мощный источник (т. е. обладающий высоким выходным сопротивлением), нужно согласовать с мощной нагрузкой (В главе 4 мы увидим, как это используется в источниках питания). Кстати, схема ОК не инвертирует сигнал, в отличие от схемы ОЭ.
Но главной особенностью схемы с общим коллектором является то, что ее характеристики исключительно стабильны и не зависят от конкретного транзистора, до тех пор, пока вы, разумеется, не выйдете за пределы возможного. Так, сопротивление нагрузки в эмиттере и входное напряжение схемы практически однозначно задают ток коллектора, — характеристики транзистора В этом деле никак не участвуют. Для объяснения данного факта заметим, что токи коллектора и эмиттера, т. е. ток через нагрузку, связаны между собой Соотношением Iн = Iк + Iб, но ток базы мал по сравнению с током коллектора, Потому мы им пренебрегаем и с достаточной степенью точности полагаем, что Iн = Iк. Но напряжение на нагрузке будет всегда равно входному напряжению минус Uбэ, которое, как мы уже выучили, всегда 0,6 В. Таким образом, ток в нагрузке есть (Uвх — Uбэ)/Rн, и тогда окончательно получаем, что
Iк = (Uвх — Uбэ)/Rн
Разумеется, мы по ходу дела приняли два допущения (что Iб << Iк и что Uбэ есть точно 0,6 В — и то, и другое не всегда именно так), но мы же давно договорились, что не будем высчитывать характеристики схем с точностью до процентов! Ограничение, которое накладывается транзистором, будет проявляться тут только, если мы попробуем делать Rн все меньше и меньше, в конце концов либо ток коллектора, либо мощность, выделяемая на коллекторе (она равна (Uпит — Uвых)∙Iк), превысят предельно допустимые значения и тогда сгорит коллекторный переход или (если Iк чем-то лимитирован) то же произойдет с переходом «база-эмиттер». Зато в допустимых пределах мы можем со схемой эмиттерного повторителя творить что угодно, и соотношение Iк = (Uвх — Uбэ)/Rн всегда будет выполняться.
Про такую схему говорят, что она охвачена стопроцентной отрицательной обратной связью по напряжению. Об обратной связи мы подробнее поговорим в главе 6, посвященной операционным усилителям, а сейчас нам важно, что такая обратная связь ведет к стабилизации параметров схемы и независимости их как от конкретного экземпляра транзистора, так и от температуры. Но ведь это именно то, чего нам так не хватало в классической схеме с общим эмиттером! Нельзя ли их как-то скомбинировать?
Стандартный усилительный каскад на транзисторе
Действительно, «правильный» усилительный каскад на транзисторе есть комбинация той и другой схемы, этот вариант показан на рис. 3.7.
Рис. 3.7. Стандартный усилительный каскад на биполярном транзисторе
Для конкретности предположим, что Uпит = 10 В, Uвх = 5 В. Как правильно рассчитать сопротивления R3 и RK? Заметим, что схема обладает двумя выходами, из которых нас больше интересует выход 1 (выход усилителя напряжения, соответствующий выходу в схеме с общим эмиттером по рис. 3.5).
При нормальной работе каскада (для обеспечения максимально возможного размаха напряжения на выходе) разумно принять, чтобы в состоянии покоя, т. е. когда Uвх = 5 В, на выходе (на коллекторе транзистора) была половина напряжения питания (в нашем случае тоже примерно 5 В). Это напряжение зависит от коллекторного тока и от сопротивления нагрузки по этому выходу, которое равно в данном случае Rк. Как правило, сопротивление нагрузки Rк нам задано, примем для определенности, что Rк = 5,1 кОм. Это означает, что в «хорошем» режиме, чтобы обеспечить Uвых1 = 5 В, ток коллектора должен составлять 1 мА — посчитайте по закону Ома!
Замечание
На самом деле средний ток коллектора в маломощном биполярном транзисторном каскаде и должен составлять величину порядка 1 мА. Если он много меньше, то в дело вступают шумы и прочие неидеальности транзистора, а когда много больше, то это неэкономно с точки зрения расходования энергии источника, и транзисторы нужно тогда выбирать более мощные, а у них намного больше шумы, утечки, они дороже, крупнее…
Но ток коллектора мы уже умеем рассчитывать, исходя из закономерностей для каскада ОК, он ведь равен (Uвх — Uбэ)/Rэ. Из этих условий получается, что резистор Rэ должен быть равен 4,3 кОм (мы всегда выбираем ближайшее значение из стандартного ряда сопротивлений, и больше не будем об этом упоминать). Мы не сильно нарушим законы природы, если просто положим в этой схеме Rэ = Rк = 5,1 кОм (с точностью до десятых вольта выходные напряжения по обоим выходам будут равны — проверьте!).
Такая (очень хорошая и стабильная) схема нам не обеспечит никакого усиления по напряжению, это легко проверить, если при рассчитанных параметрах увеличить Uвх, скажем, на 1 В. Напряжение на эмиттере увеличится также на 1 В, общий ток коллектора-эмиттера возрастет на 0,2 мА (1 В/5 кОм), что Изменит дополнительное падение напряжения на коллекторном резисторе (т. е. на нагрузке) также на 1 В в меньшую сторону (помните, что выходы инвертированы?). И никакого усиления не получится.
Зато! Мы в данном случае имеем схему, которая обладает двумя совершенно симметричными выходами: одним инвертирующим и другим, сигнал на котором точно совпадает по фазе с входным. Это дорогого стоит! Единственное, что портит картинку, — факт, что выходные сопротивления такой схемы сильно разнятся. Нагрузив нижний выход (Uвых2) какой-то еще нагрузкой (что равносильно присоединению параллельного резистора к Rэ), мы изменим общий ток коллектора, и напряжение верхнего выхода (Uвых1) также изменится. А обратного не получается, если мы уменьшим Rк, нагрузив его, то Uвых1 изменится, но это практически никоим образом не скажется на Uвых2. (А куда денется разница? Ну, разумеется, «сядет» на транзисторе!)
Как нам обеспечить полную (или близкую к таковой) симметричность схемы усилителя — чуть далее. А пока нас занимает вопрос — как же добиться усиления по напряжению? У меня есть микрофон или гитарный звукосниматель с выходом 1 мВ. Хочу получить на выходе хотя бы 100 мВ, чтобы хватило для линейного входа усилителя — ну и? Оказывается, все просто, нужно только «поступиться принципами», как говаривала незабвенная Нина Андреева еще в советские времена.
Принципы заключаются в следующем: в рассчитанной схеме мы старались все сбалансировать и обеспечить оптимальный режим работы транзистора. Но оптимального ничего не бывает, ранее мы отмечали, что коэффициент усиления по напряжению каскада с общим эмиттером зависит от соотношения сопротивлений (т. е. токов в базе и коллекторе). Нарушив его по отношению к оптимальному для транзистора, мы можем что-то улучшить для себя.
Практически это делается так: мы предполагаем, что максимально возможная амплитуда на входе каскада (относительно среднего значения) не превысит, допустим, 1 В. Тогда напряжение на базе не должно быть меньше 1,7 В, иначе при минимальном сигнале транзистор запрется, и напряжение на выходе будет ограничено снизу. Примем его равным 2 В для надежности. Номинал эмиттерного резистора Rэ (при все том же оптимальном токе коллектора 1 мА) будет тогда равен 1,3 кОм (= (2 В — 0,7)/1 мА). Нагрузка коллектора (Rк) пусть останется прежней (5,1 кОм). Обратите внимание, что на выходе Uвых1 среднее напряжение — напряжение покоя — осталось то же самое (5 В), т. к. ток не изменился.
Тогда каждый вольт изменения напряжения на входе даст уже примерно 4 вольта изменения напряжения на выходе Uвых1 т. е. коэффициент усиления по напряжению составит 4 (и будет примерно равен соотношению резисторов в коллекторе и эмиттере). Мы можем в определенных пределах увеличить этот коэффициент, уменьшая номинал Rэ вплоть до нуля (и тем самым все больше дестабилизируя схему, как показано при описании схемы с общим эмиттером), и одновременно уменьшая диапазон усиливаемых входных напряжений. Интересным свойством рассмотренной схемы является то, что абсолютное значение напряжения питания здесь не важно— рассчитанный на одно питание каскад сохранит все свои свойства, кроме максимально допустимого выходного напряжения, и при другом.
Для усилителей переменного тока хорошим — и часто используемым — приемом является шунтирование эмиттерного резистора конденсатором большой емкости. В результате режим усилителя по постоянному току (точка покоя, т. е. напряжение на коллекторе) обеспечен, а при наличии переменного входного напряжения эмиттерный резистор по номиналу уменьшается (ведь параллельно к нему подключен конденсатор, сопротивление которого тем меньше, чем выше частота, как мы узнали из главы 2), поэтому растет И коэффициент усиления напряжения всей схемы.
Дифференциальный каскад
Значительно улучшает схему комбинация двух одинаковых транзисторов в паре, соединенных эмиттерами — т. н. дифференциальный усилительный каскад. Дифференциальные каскады в силу их удобства широко применяли еще в эпоху недоступности микросхем (в том числе даже и в «ламповые» времена), но в настоящее время отдельно они практически не встречаются, а являются основой операционных усилителей. Тем не менее рассмотрим вкратце, как они работают.
Дифференциальный каскад, показанный на рис. 3.8, предполагает два раздельных одинаковых питания (плюс и минус) относительно «земли», но для самого каскада это есть не более, чем условность — питание всего каскада можно рассматривать, как однополярное (равное 10 + 10 = 20 В, согласно рис. 3.8), просто входной сигнал должен находиться где-то между этими значениями.
Рис. 3.8. Дифференциальный каскад на биполярных транзисторах
Ради удобства проектирования схем источник входного напряжения всегда привязывают к «земле», потенциал которой находится посередине (хотя и необязательно ровно посередине, но для удобства чаще поступают именно так) между Потенциалами источников питания самого каскада, т. е. общее питание рассматривают, как разделенное на два — положительное и отрицательное (такое питание еще называют двуполярным). Относительно этой же общей «земли» Мы будем также отсчитывать выходные напряжения Uвых1 и Uвых2.
Так как мы знаем, что база и эмиттер транзистора всегда «привязаны» друг к другу, то в этой схеме обе базы (в рабочем режиме) всегда будут иметь одинаковый потенциал. Поэтому если на них подавать один и тот же сигнал (базовые резисторы на рис. 3.8 не показаны), то ничего происходить не будет— току течь некуда, т. к. все потенциалы одинаковы. Вся конструкция из двух транзисторов будет смещаться относительно «земли» в соответствии с поданным сигналом, а на выходах ничего и не шелохнется (в идеале). Такой сигнал называют синфазным.
Иное дело, если сигналы на входах различаются, тогда они будут усиливаться. Такой сигнал называют дифференциальным (противофазным). Это основное свойство дифференциального усилителя, которое позволяет выделять небольшой сигнал на фоне довольно сильной помехи. Помеха одинаково — синфазно — действует на оба входа, а полезный сигнал усиливается.
Мы не будем здесь далее подробно разбирать работу этой схемы, только укажем некоторые ее особенности:
• входное сопротивление дифференциального каскада равно входному сопротивлению каскада с общим коллектором, т. е. достаточно велико;
• усиление по напряжению (для дифференциального сигнала) составляет 100 и более раз. Если вы хотите получить точно определенный коэффициент усиления, в каждый из эмиттеров нужно ввести по одинаковому резистору — тогда Кус будет определяться, как для каскада на рис. 3.7. Но обычно в таком режиме дифференциальный усилитель не используют. Основная область их применения — в системах с обратной связью, которая и задает необходимый коэффициент усиления (см. главу 6);
• выходы строго симметричны;
• резистор Rк1 если не требуется Uвых1 вообще можно исключить (или наоборот, смотря какой выход задействован).
Полевые транзисторы
Типы полевых транзисторов гораздо более разнообразны, чем биполярных (к полевым, кстати, и принадлежал самый первый прототип транзистора, изобретенный Шокли еще в 1946 году). Их существует более десятка только основных разновидностей, но всем им присущи общие черты, которые мы сейчас кратко и рассмотрим.
Простейший полевой транзистор с р-n-переходом показан на рис. 3.9 (в данном случае с n-каналом).
Рис. 3.9. Полевые транзисторы:
а — включение полевого транзистора с р-n-переходом и n-каналом; б — полевой (MOSFET) транзистор с изолированным затвором в режиме ключа
Аналогичные базе, коллектору и эмиттеру выводы называются затвором, стоком и истоком. Если потенциал затвора равен потенциалу истока (имеется в виду аналог замыкания цепи «база-эмиттер» у биполярного), то, в отличие от биполярного, такой полевой транзистор открыт. Но есть и еще одно существенное отличие: если биполярный транзистор при полном открывании имеет почти нулевое сопротивление цепи «коллектор-эмиттер», то полевой в этих условиях работает довольно стабильным источником тока, поскольку ток в цепи истока почти не зависит от напряжения на стоке. Сама величина тока определяется конкретным экземпляром транзистора и называется начальным током стока. Запереть же полевой транзистор удается подачей отрицательного (порядка 7—10 В) напряжения на затвор относительно истока. В промежуточном состоянии прибор с n-каналом находится в активном режиме, при этом ток стока зависит от напряжения на затворе.
Уникальной особенностью любого полевого транзистора является то, что в рабочем режиме он фактически не потребляет тока по входу затвора. Здесь Достаточно лишь создать соответствующий потенциал, ведь диод «затвор-исток» в рабочем режиме смещен в обратном направлении и ток через него определяется только токами утечки, которые равны нано- и микроамперам. Как говорилось ранее! В этом отношении полевой транзистор аналогичен электронной лампе.
В полевых транзисторах с изолированным затвором (т. н. МОП-транзисторах, от «металл-окисел-полупроводник» или, по-английски, MOS). последний вообще изолирован от цепи «сток-исток» (тонким слоем окисла кремния SiO2), и там в принципе нет и не может быть никакого тока через цепь затвора. Правда, когда на затвор подается переменное напряжение (или короткий Импульс), в дело вступает конденсатор, образованный затвором и истоком.
Как следует из главы 2, перезаряд этого конденсатора (его емкость может составлять десятки пикофарад) может приводить к значительному реактивному току в цепи затвора. На подобных транзисторах построены практически все современные логические микросхемы, отличающиеся практически нулевым потреблением тока в статическом режиме (см. главу 8).
Приведенные нами примеры не исчерпывают разнообразия типов полевых транзисторов. Например, т. н. MOSFET-транзисторы (см. рис. 3.9, б) управляются аналогично тому, как биполярный в схеме с общим эмиттером: при нулевом напряжении на затворе относительно истока транзистор заперт, при положительном напряжении порядка 5—10 В — полностью открыт, причем в открытом состоянии он представляет собой крайне малое сопротивление (у некоторых типов менее 0,01 Ом). Такие транзисторы имеют мощность от единиц до сотен ватт и используются, например, для управления шаговыми двигателями или в импульсных источниках питания.
Вообще «полевики» гораздо ближе к той модели транзистора, в которой промежутки «коллектор-эмиттер» или «сток-исток» представляются в виде управляемого сопротивления, т. к. у полевых транзисторов это действительно сопротивление. Условно говоря, со схемотехнической точки зрения биполярные транзисторы являются приборами для усиления тока, а полевые — для усиления напряжения.
Стабилитроны
Стабилитрон представляет собой обычный диод с вольт-амперной характеристикой, показанной на рис. 3.1, за одним исключением: при превышении некоторого обратного напряжения (индивидуального для каждого типа стабилитрона) он обратимо пробивается и начинает работать, как очень малое сопротивление. Это можно представить себе, как если бы обычное прямое падение напряжения, составляющее 0,6 В, увеличилось бы вдруг до большой величины. Стоит только снизить напряжение ниже оговоренного, стабилитрон опять запирается и больше не участвует в работе схемы. Напряжения стабилизации могут быть самыми разными (от 2 до 300 В). Учтите, что тепловая мощность, равная произведению тока через стабилитрон на его напряжение стабилизации, выделяется на нем самом, поэтому, чем выше напряжение стабилизации, тем ниже допустимый ток, который должен быть ограничен резистором нагрузки. В справочных данных также указывается обычно минимально допустимое значение тока, при котором стабилитрон еще «держит» нужное напряжение.
Удобны двусторонние стабилитроны (которые представляют собой два обычных, включенных встречно-параллельно), обеспечивающие симметрию характеристик и в положительном и в отрицательном направлении включения. Вольт-амперная характеристика такого двустороннего стабилитрона типа КС170 показана на рис. 3.10.
Рис. 3.10. Вольт-амперная характеристика двустороннего стабилитрона
Отметьте, что характеристика в области пробоя все же имеет некоторый наклон, т. е. при возрастании тока через прибор Напряжение на нем не остается строго постоянным, а растет (этот эффект обусловлен т. н. дифференциальным сопротивлением). К тому же напряжение стабилизации меняется с температурой.
Как ясно из предыдущего, простейшим стабилитроном может быть обычный Диод, включенный в прямом направлении, и его часто употребляют в таком качестве. Напряжение стабилизации составит при этом, естественно, 0,6 В (для его увеличения можно включить последовательно два и более диодов). Как видно из вольт-амперной характеристики диода (см. рис. 3.1), стабильность пресловутого напряжения 0,6 В оставляет желать лучшего (и от тока зависит, и от температуры), но во многих случаях особой прецизионности и не требуется. На рис. 3.11 приведена схема ограничителя напряжения на двух диодах (если требуется более высокое напряжение ограничения, их можно заменить на стабилитроны или на один двусторонний стабилитрон). Эта схема удобна, например, для защиты высокоомного входа микрофонного усилителя.
Рис. 3.11. Схема для защиты входа микрофонного усилителя
Нормальное напряжение с микрофона составляет несколько милливольт и диоды никак не влияют на работу схемы, поскольку таким маленьким напряжением не открываются. Но если микрофон присоединен через длинный кабель, то на входе могут создаваться помехи (от промышленного оборудования, от поднесенного к неподключенному входу пальца, или, скажем, от грозовых разрядов), которые сильно превышают указанные милливольты и могут вывести из строя нежные и чувствительные микрофонные усилители. В приведенной схеме такие помехи любой полярности замыкаются через диоды и входное напряжение не может превысить 0,6–0,7 В ни при каких условиях.
Заметки на полях
У внимательного читателя может возникнуть вопрос— ведь согласно вольт-амперной характеристике и стабилитрона и диода ток при превышении соответствующего напряжения растет очень быстро, так не сгорят ли эти входные диоды при наличии высоковольтной помехи? Отвечаем — энергия помехи обычно очень мала, поэтому ток хоть и может быть достаточно велик, но на протяжении очень короткого промежутка времени, а такое воздействие и диоды и стабилитроны выдерживают без последствий.
Стабилитроны в чистом виде хороши в качестве ограничителей и маломощных источников напряжения, а для формирования действительно стабильного напряжения (например, опорного для АЦП и ЦАП) применяются интегральные стабилизаторы, которые при наличии трех выводов (вход, выход и общий) дают на выходе стабильное напряжение. Они сродни обычным стабилизаторам напряжения, которые мы будем разбирать в главе 4, но значительно более стабильны и мало зависят от температуры. Например, интегральный стабилизатор типа МАХ873, который в диапазоне 4—30 В на входе дает на выходе ровно 2,5 В, обладает еще и весьма высокой стабильностью. Даже если положить на него паяльник (тем самым нагрев его градусов до 200), то напряжение на выходе этого стабилизатора и не шелохнется. В современной интегральной технике источники опорного напряжения обычно встраивают прямо в нужные микросхемы, но часто предусматривают вход и для внешнего такого источника, потому что вы всегда можете захотеть изобрести что-нибудь получше.
Оптоэлектроника и светодиоды
Очень многие физические процессы обратимы. Типичный пример— если пластинка кварца изгибается под действием электрического поля, то принудительное изгибание пластинки должно привести к возникновению зарядов на ее концах— как и происходит в действительности, и этот эффект лежит в основе устройства кварцевых резонаторов для реализации высокоточных генераторов частоты (см. главу 9). Не давало покоя физикам и одно из первых обнаруженных свойств полупроводникового p-n-перехода — зависимость его Проводимости от освещения. Этот эффект немедленно стал широко использоваться в различных датчиках освещенности (фотосопротивлениях, фотодиодах, фототранзисторах), которые пришли на замену хоть и весьма чувствительным, но крайне неудобным для широкого применения вакуумным фотоэлементам. Затем появился целый класс устройств — оптоэлектронные Приборы.
Заметки на полях
Кстати, любой полупроводниковый диод в стеклянном корпусе является неплохим датчиком освещенности, его обратный ток сильно зависит от наличия света. Особенно этим отличаются старые германиевые диоды (типа Д2, Д9). Можете попробовать поэкспериментировать, только не забывайте два обстоятельства: во-первых, сам этот ток очень мал (обратное сопротивление диода весьма велико), что потребует хороших высокоомных усилителей, во-вторых, то, что от температуры этот обратный ток зависит еще больше, чем от света.
Оптоэлектроника
В оптоэлектронных приборах (оптронах) через светодиод (обычно инфракрасный, о них мы поговорим далее) пропускается зажигающий его ток, в результате чего в воспринимающем р-/г-переходе фотодиода (или фототранзистора) ток резко возрастает. Между входным светодиодом и выходом при этом имеется изолирующая прокладка, которая позволяет гальванически развязать выводы входа и выхода.
Самый простой вариант такого прибора— диодная оптопара (рис. 3.12), которая обычно служит для электрически изолированной передачи линейных сигналов (например, звуковых колебаний или уровней постоянного тока в регулирующих устройствах). В ней обратный ток (Iвых) приемного диода линейно зависит от управляющего тока через светодиод (Iвх). Обратите внимание, что рабочая полярность для фотодиода обратная, чем для обычного, отчего у таких компонентов, если они выпускаются в отдельном корпусе, плюсом помечен катод, а не анод.
Рис. 3.12. Диодная оптопара
Встречаются и варианты оптоэлектронного реле: так, бесконтактное реле типа D24125 фирмы Crydom позволяет коммутировать переменное сетевое напряжение до 280 В при токе 125 А, путем подачи напряжения 3–5 В при токе 3 мА через управляющий светодиод (т. е. прямо от логической микросхемы). 10 мВт напрямую управляют мощностью примерно в 35 кВт (при полной гальванической развязке) — ей-богу, совершенно беспрецедентный случай, обычным электромагнитным реле недоступный! Тем не менее обычные электромагнитные реле также довольно широко применяются, и мы далее остановимся на них подробнее.
Набиравшая обороты космическая отрасль быстро сосредоточила усилия вокруг реализации другого эффекта: возможности генерации тока в полупроводниковом переходе под действием света, а также картинка искусственного спутника Земли с широко раскинутыми темно-синими панелями солнечных батарей теперь стала уже традиционной. Но вероятно можно таким образом и генерировать свет, если подавать на р-n-переход напряжение? Оказалось, что можно, но это было реализовано далеко не сразу.
Светодиоды
Первым «поддался» инфракрасный (невидимый глазом) и красно-зеленый участок спектра. К началу 80-х годов полупроводниковые светодиоды (LED— Light Emission Diode), излучающие в ИК-диапазоне, уже стали широко использоваться в дистанционных пультах управления, а красненькие и зелененькие сигнальные светодиоды, хоть и были тогда еще куда тусклее традиционных лампочек накаливания, зато намного более долговечными И потребляли существенно меньше энергии.
В настоящее время все основные проблемы решены и освоен фактически весь видимый спектр, включая синий и даже ультрафиолетовый диапазон. Характерная особенность любых светодиодов— они излучают свет одной (точнее, близкой к этой одной) длины волны, из-за чего насыщенность излучаемого света превосходит все чаяния художников. Существует не менее двух десятков разновидностей светодиодов для разных длин волн, охватывающих все цвета видимого спектра (частично они перечислены в табл. 3.1, соответствующей продукции фирмы Kingbright).
Светодиоды бывают обычной и повышенной яркости. Их выбор определяется практическими соображениями. Так, в большинстве случаев повышенная яркость не нужна и только будет слепить глаза, если светодиод установлен в качестве, скажем, индикатора наличия напряжения, причем регулировать такую яркость к тому же непросто. Очень тщательно следует подходить и к выбору корпуса: матовый (диффузный) рассеиватель обеспечивает меньшую яркость, зато светящуюся полусферу видно под углом почти 180° во все стороны.
Со схемотехнической точки зрения все светодиоды, независимо от цвета свечения, представляют собой обычные диоды, за одним исключением — прямое падение напряжения на них превышает обычные для кремниевых р-n-переходов 0,6 В и составляет: для красных и инфракрасных 1,5–1,8 В, для желтых, зеленых и синих — 2–3 В. В остальном их включение не отличается от включения обычных диодов в прямом направлении. Светодиод есть прибор, управляемый током (а не напряжением, как лампа накаливания), поэтому должен иметь токоограничивающий резистор. Значение тока, при котором практически любой светодиод нормально светится, составляет 3–8 мА (хотя предельно допустимое может быть и 40 мА), на эту величину и следует рассчитывать схему управления светодиодами. При этом нужно учитывать, что яркость, воспринимаемая глазом, не зависит линейно от тока, поэтому вы можете и не заметить разницу в свечении при токе 5 или 10 мА, а разница между 30 и 40 мА будет еще менее заметной.
Иногда токоограничивающий резистор встраивают прямо в светодиод (в этом случае яркость свечения уже управляется напряжением, как у обычной лампочки, а не током) — это обычная практика для «мигающих» светодиодов со встроенным генератором частоты. Обычное предельное напряжение для таких светодиодов составляет 12–15 В.
Светодиоды делают разной формы: обычно они круглые, но встречаются также плоские, квадратные и даже треугольные. Широкое распространение сейчас имеют двухцветные светодиоды. Они бывают двух- и трехвыводные. С последними все понятно — это просто два разноцветных светодиода (зеленый и красный) в одном корпусе, управляющиеся раздельно. Подал ток на один — зажегся красный, на другой — зеленый, на оба — желтый (третий вывод общий), а манипулируя величиной токов, можно получить все промежуточные переходы. Но еще интереснее двухвыводный прибор, который представляет собой два разноцветных светодиода, включенные встречнопараллельно. Поэтому в них цвет свечения зависит от полярности тока: в одну сторону красный, в другую — зеленый. Самое интересное получается, если подать на такой светодиод переменное напряжение, тогда он светится желтым! Можно встретить в продаже и светодиоды белого свечения, которые все чаще служат в качестве экономичных и долговечных источников света.
Светодиодные индикаторы
Так как собственное падение напряжения на светодиодах невелико, то их можно включать последовательно, чем пользуются производители цифровых сегментных индикаторов. Но тут дело осложняется тем, что отдельный светодиод представляет собой фактически точечный источник света, и нарисовать с его помощью длинную светящуюся полоску непросто даже при наличии рассеивающей свет пластмассы (причем, как ни парадоксально, чем меньше габариты, тем хуже выглядят плоские светодиоды). Мелкие цифровые индикаторы (с длиной одного сегмента до 5–6 мм) содержат по одному светодиоду в сегменте, а более крупные — по два и более. Это нужно учитывать при проектировании, так как семисегментный цифровой индикатор с высотой цифры 12,7 мм и более имеет падение напряжения на каждом сегменте, превышающее 4 В, и управлять им от пятивольтового контроллера напрямую затруднительно — номинальный запас в несколько десятых вольта легко «сожрется» собственным сопротивлением выхода контроллера и «проседанием» источника питания, отчего ваш индикатор вообще может и не загореться. Для таких случаев приходится идти на заведомые потери и питать индикаторы от повышенного напряжения через транзисторные ключи или специальные схемы управления индикаторами. Красота требует жертв! Набор семисегментных цифровых светодиодных индикаторов в четыре цифры В каком-нибудь мультиметре может потреблять до 100–200 мА тока, зато насколько он выглядит красивее по сравнению с почти не потребляющими, но совершенно «слепыми» черно-белыми жидкокристаллическими панелями!
Семисегментные индикаторы (рис. 3.13, а) бывают сдвоенными и строенными; кроме них, встречаются шестнадцатисегментные индикаторы, которые позволяют формировать буквы и специальные знаки. Такие индикаторы для удобства управления ими выполняют с общим анодом (тогда на индикатор подается общее питание, а зажигание сегментов производится коммутацией Их к «земле») и с общим катодом (сегменты имеют общую «землю», а зажигание производится подачей тока на каждый сегмент). Почти всегда выпускаются идентичные внешне типы и той и другой конфигурации. Для формирования длинных строк используют матричные индикаторы (рис. 3.13, б), которые нередко встречаются в виде довольно больших дисплеев, содержащих несколько сотен точек.
Рис. 3.13. Светодиодные индикаторы:
а — семисегментный; б — дисплей на основе матричного индикатора
ЖК-дисплеи
Жидкокристаллические (ЖК) индикаторы встречаются обычно в виде готовых ЖК-дисплеев для распространенных применений — например, для часов, магнитол, музыкальных центров, или в виде многоразрядного набора цифр. Есть и матричные ЖК-дисплеи для формирования бегущей строки, многострочные — для текстовых сообщений и т. п., вплоть до полнофункциональных ЖК-матриц, в том числе цветных, тех, что используются в большинстве современных массовых устройств, от мобильных телефонов до широкоэкранных телевизионных панелей.
Все ЖК-дисплеи отличаются практически нулевым потреблением энергии в статическом режиме, энергия уходит только на переключение ЖК-ячейки. Правда, большинство матричных ЖК-дисплеев, предназначенных для демонстрации произвольных изображений (в том числе все цветные), не могут обойтись без подсветки, которая довольно энергоемка (так, в ноутбуках — более половины общего потребления). Но нас здесь интересуют лишь обычные ЖК-дисплеи, применяемые в качестве цифровых или цифробуквенных табло. Устройство ячейки такой простейшей (пассивной) матрицы или индикатора с зеркалом вместо подсветки показано на рис. 3.14.
Рис. 3.14. Устройство пассивной ЖК-ячейки
Здесь слой жидких кристаллов толщиной несколько микрон находится между двумя стеклянными электродами, причем за счет специальной структуры поверхности стекла молекулы кристалла ориентированы параллельно плоскости этих электродов. Сверху и снизу такого «сэндвича» расположены пластины-поляризаторы, ориентированные перпендикулярно друг другу. Толщина слоя жидких кристаллов рассчитана так, что в исходном состоянии он поворачивает плоскость поляризации световой волны ровно на 90°. В результате в обесточенной ячейке (на рис. 3.14, слева) свет беспрепятственно проходит через весь «пирог», отражается от зеркала (оно сделано матовым, чтобы не отражало окружающих предметов) и возвращается обратно. Подобная матрица в обесточенном состоянии выглядит, как обычная стеклянная пластинка.
Когда вы подаете на электроды напряжение (на рис. 3.14, справа), то электрическое поле ориентирует молекулы жидкого кристалла вдоль его силовых линий, т. е. перпендикулярно плоскости электродов. Жидкий кристалл теряет свои свойства и перестает поворачивать плоскость поляризации света. За счет перпендикулярной ориентации поляризационных пластин весь «пирог» перестает пропускать свет. Образуется черная точка (или сегмент цифрового индикатора — в зависимости от конфигурации электродов).
Подобные монохромные ЖК-дисплеи всем хорошо знакомы, и используются в наручных и настольных часах, в портативных измерительных приборах, в дисплеях калькуляторов, плееров, магнитол, фотокамер. Величина напряжения сверх некоего, очень небольшого, предела (порядка 1–3 В), на «яркость» (точнее, на контрастность) такой ячейки практически не влияет. Поэтому таким способом получаются очень контрастные, выразительные монохромные цифробуквенные индикаторы и небольшие табло, для приличной разборчивости символов на которых достаточно лишь слабой внешней засветки.
Управлять сегментами такого индикатора, кстати, приходится с помощью разнополярного напряжения (это существенное, но не принципиальное Неудобство), потому что однажды «засвеченный» сегмент может оставаться в таком состоянии часами даже после снятия напряжения с электродов, И возвращать в исходное состояние его приходится принудительно, подачей напряжения противоположной полярности.
Пассивные ЖК-матрицы как уже говорилось, отличаются практически нулевым потреблением энергии, но имеют малое быстродействие — система параллельных электродов по сути представляет собой отличней конденсатор, Да еще и заполненный электролитом (жидкими кристаллами) как будто специально для увеличения его емкости. Вместе с неизбежно высоким сопротивлением тончайших прозрачных электродов ячейка образует отличный фильтр низкой частоты. Поэтому время реакции при подаче импульса напряжения — сотня-другая миллисекунд. Для цифровых индикаторов это не имеет никакого значения, но для компьютерных и телевизионных дисплеев с сотнями тысяч и миллионами ячеек это никуда не годится, потому там необходимы активные матрицы, содержащие усилительные тонкопленочные транзисторы (TFT).
Управляют ЖК-дисплеями обычно от специальных микросхем-драйверов, с одной из таких микросхем мы познакомимся в главе 10. Следует отметить, что применение ЖК-индикаторов, на взгляд автора, оправданно лишь в автономных устройствах, где важно низкое потребление. В приборах, питающихся от сети, целесообразнее светодиодные индикаторы — они значительно красивее и эргономичнее. Однако сформировать на светодиодах произвольное изображение (например, даже просто отобразить названия месяцев и дней недели в часах-календаре) гораздо сложнее, чем на ЖК-дисплее, конфигураций которых выпускается значительно больше.
Электромагнитные реле
Конечно, выдающийся американский физик Джозеф Генри, помогая художнику Самюэлю Морзе в постройке телеграфа, и не думал ни о какой электронике, которая потом завоюет мир. Электромагнитное реле он изобрел даже не в рамках науки, которая, как известно, есть способ познания мира и чурается практики, а просто, чтобы «помочь товарищу», который, впрочем, наверняка платил неплохие деньги.
Так это было или иначе — важно, что электромагнитное реле стало одним из самых главных технологических изобретений XIX века. По популярности ему не затмить, конечно, электрического освещения, электрогенератора и электродвигателя, телеграфа, телефона и прочих достижений «века электричества», но факт, что именно этот не очень известный широкой публике приборчик еще недавно был одним из важнейших компонентов любой электрической системы. На нем даже строили компьютеры.
Реле стало первым в истории — задолго до ламп и транзисторов — усилителем электрических сигналов. С помощью реле напрямую не усилить предвыборную речь кандидата в президенты, но если текст закодировать нулями-единицами, как мы это будем делать далее, то реле справится с такой задачей ничуть не хуже любого другого устройства, — именно на этом свойстве было основано его применение в телеграфе Морзе.
Конечно, быстродействие реле, как ключевого элемента, оставляет желать лучшего — даже о килогерцах здесь речь не идет, обычная скорость срабатывания составляет для самых малогабаритных и быстродействующих реле составляет десятки миллисекунд, что соответствует частотам в десятки герц. Но в режиме быстрого переключения реле использовать и не надо, для этого существуют другие электронные компоненты. Реле хороши там, где нужно надежно коммутировать нагрузку с минимальными потерями в контакте. Огромным преимуществом реле является не только полная гальваническая развязка между входом и выходом, но и низкое сопротивление контактов. По этой причине их применяли до самого последнего времени, например, для коммутации в измерительных схемах, где очень важно, чтобы сопротивление измерительных цепей было минимальным и стабильным. Учтите, что указываемые в справочниках параметры контактов (типа «переходное сопротивление не более 1 Ом») обычно сильно завышены, они рассчитаны на наихудший случай.
На рис. 3.15, а изображена схема простейшего электромагнитного реле, а на рис. 3.15, б — его подключение.
Рис. 3.15. Схематичное устройство (а) и рекомендуемая схема включения (б) электромагнитного реле
Любое реле— независимо от конструкции— обязательно содержит три главных компонента: обмотку, якорь и контакты, последних может быть от одной пары до дюжины. Контакты бывают нормальнозамкнутые (тогда при срабатывании реле они размыкаются, см. рис. 3.15), нормальноразомкнутые (при срабатывании замыкаются) и перекидные.
Обмотка реле представляет собой катушку индуктивности (соленоид), около Которой (или в которой) при подаче тока перемещается якорь, выполненный Из ферромагнитного материала. Разумеется, вокруг этой базовой конструкции за много лет были накручены различные «прибамбасы»: так, существуют реле, которые при каждой подаче импульса тока перебрасываются в противоположное положение, реле, контакт в которых может иметь три стабильных положения, т. е. трехпозиционные (замкнуто — нейтраль — замкнуто) и т. п., но мы их не будем рассматривать, потому что большинство функций таких специализированных реле давно выполняют логические микросхемы, и куда успешней.
Подробности
Несколько отличаются по конструкции т. н. герконовые реле, у которых якорем служат сами контакты. Слово «геркон» расшифровывается, как «герметизированный контакт». Герконы выпускаются и отдельно, они представляют собой стеклянную трубочку с двумя или тремя выводами от запаянного в нее контакта (простого или перекидного), защищенного таким образом от влияния внешней среды. Контакт под воздействием внешнего магнитного поля (например, при поднесении постоянного магнита) может замыкаться и размыкаться. Герконы часто служат в качестве датчиков положения. Герконовые реле обычно представляют собой такой геркон, на который намотана обмотка с теми или иными параметрами.
Главным и основным свойством, побуждающим инженера-электротехника и электроника прибегать к обычным реле в век господства транзисторов и микросхем, является полная (более полной и представить себе трудно) гальваническая развязка не только обмотки от коммутируемого напряжения, но, если пар контактов больше одной, то и различных коммутируемых напряжений друг от друга. Коммутация происходит чисто механическим способом, потому коэффициент усиления по мощности у реле ого-го-го какой! Например, обмотка реле РЭС9 потребляет 30 мА при 27 вольтах, что составляет меньше ватта, но может двумя парами контактов коммутировать нагрузки до 1 А при 220 вольтах переменного тока на каждый контакт в отдельности, т. е. в сумме почти полкиловатта! В этом отношении их могут «переплюнуть» только оптоэлектронные реле, о которых речь шла ранее.
Главный недостаток электромагнитных реле в сравнении с полупроводниковыми устройствами — энергетический порог, с которого начинается управление обмотками, весьма велик. Все же токи в 30–50 мА при напряжениях 15–27 вольт, т. е. мощности порядка ватта (это для малогабаритных реле — для реле покрупнее нужна еще большая мощность) — запредельны для современной электроники, и это слишком большая роскошь, если требуется всего только включить нагрузку в виде лампочки. В справочниках приводится либо величина тока через обмотку, либо величина рабочего напряжения, что равнозначно, потому что величина сопротивления обмотки тоже всегда указывается. Обычно одинаковые типы реле имеют разновидности с разными сопротивлениями обмоток (это определяется т. н. «паспортом реле»).
Заметки на полях
Другим недостатком обмоток реле, как нагрузки для полупроводниковых приборов, является то, что они представляют собой индуктивность. Для постоянного тока зто просто сопротивление, но в момент переключения она может доставить немало неприятностей. В момент разрыва или замыкания управляющей цепи на обмотке реле возникает импульс напряжения (по полярности он препятствует направлению изменения тока в обмотке), и если индуктивность обмотки велика, а ее собственное (активное) сопротивление мало, то импульс этот может вывести из строя коммутирующий прибор (например, транзистор). В любом случае это создает сильные помехи остальным элементам схемы по шине питания. Поэтому при стандартном включении реле всегда рекомендуется устанавливать параллельно его обмотке диод (даже если коммутация происходит не от полупроводниковых источников, а от таких же реле) в таком направлении, чтобы в статическом режиме, когда все успокоилось и никто ничего не коммутирует, диод этот тока не пропускал (см. рис. 3.15, б). Тогда выброс напряжения ограничивается на уровне напряжения на открытом диоде, т. е. 0,6 В. Для управления подобными элементами (кроме реле, это, например, обмотки двигателей) в мощные коммутирующие транзисторы, подобные показанным на рис. 3.9, б, часто устанавливают защитные диоды еще в процессе их изготовления. Маломощные реле, управляемые от логических схем, также не требуют установки специальных диодов, роль которых играют защитные диоды микросхем (см. главу 8).
Следует учитывать еще вот какую особенность электромагнитных реле: ток (напряжение) срабатывания у них много превышает ток (напряжение) отпускания. Так, если в характеристиках указано, что номинальное напряжение реле составляет 27 В, то это напряжение, при котором замыкание нормально разомкнутых до этого контактов гарантируется. Но совершенно не обязательно (а иногда и не нужно) выдерживать это напряжение длительное время. Так, 27-вольтовые реле спокойно могут удерживать контакты в замкнутом состоянии вплоть до того момента, пока напряжение на их обмотке не снизится до 5–8 В. Это очень удобное свойство электромагнитных реле — называемое гистерезисом, — которое позволяет избежать дребезга при срабатывании-отключении и даже сэкономить на энергии при работе с ними. Так, на рис. 3.16, а приведена схема управления реле, которое в начальный момент времени подает на него нужное номинальное напряжение для срабатывания, а затем неограниченное время удерживает реле в сработавшем состоянии при пониженной величине тока через обмотку.
На рис. 3.16 также приведены еще две классические схемы. Первая (рис. 3.16, б) называется «схемой самоблокировки» и очень часто применяется в управлении различными мощными устройствами, например, электродвигателями станков. Мощные реле-пускатели для таких двигателей имеют даже специальную отдельную пару маломощных контактов, предназначенную для осуществления самоблокировки. В этих случаях ток через стандартные кнопки «Пуск» и «Стоп» не превышает тока через обмотку пускателя (который составляет несколько десятков или сотен миллиампер), в то время, как мощность разрываемой цепи может составлять многие киловатты, притом цепи трехфазной со всякими дополнительными неприятностями типа огромных индуктивностей обмоток мощных двигателей.
Рис. 3.16. Некоторые схемы включения реле:
а — со снижением напряжения удержания; б — схема самоблокировки с кнопками «Пуск» и «Стоп»; в — схема классического электромеханического звонка
Другая схема (рис. 3.16, в) скорее забавна, и есть дань прошлому, когда никакой электроники не существовало. Это схема простейшего электрического звонка, которая может быть реализована на любом реле. Оно и само по себе при подключении по этой схеме задребезжит (правда, звук может быть самым разным, в зависимости от быстродействия и размеров реле, потому лучше употребить слово «зазуммерит»), но в обычном звонке якорь еще связывают со специальной тягой, которая в процессе работы стучит по металлической чашке, формируя звуковой сигнал. Есть и более простая конструкция электромеханического звонка, когда на обмотку реле просто подают переменное напряжение, от чего якорь вибрирует с его частотой (так устроены, например, звонки старинных телефонов с крутящимся диском), но нас тут интересует именно классическая схема, потому что в ней в чистом виде реализован другой основополагающий принцип электроники, так или иначе присутствующий в любых генераторах колебаний — принцип положительной обратной связи. Якорь в первый момент притягивается, в результате питание размыкается, якорь отпускает— питание замыкается, якорь притягивается и т. д. Частота генерируемых колебаний зависит исключительно от механической инерции деталей реле.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК