Глава 6 Аналоговые микросхемы
Интересно, о каких, собственно, микросхемах идет речь в твоем вопросе?
Форум радиолюбителей на shema.ru
Самые первые микросхемы были совсем не такими, как сейчас. Они изготавливались гибридным способом: на изолирующую подложку напылялись алюминиевые проводники, приклеивались маленькие кристаллики отдельных транзисторов и диодов, малогабаритные резисторы и конденсаторы, и затем все это соединялось в нужную схему тонюсенькими золотыми проволочками — вручную, точечной сваркой под микроскопом. Можно себе представить, какова была цена таких устройств, которые тогда еще не назывались микросхемами, чаще употребляли название микромодули или микросборки. К гибридным микросхемам относятся и некоторые современные их типы, к примеру, оптоэлектронные, но, конечно, сейчас выводы отдельных деталей уже вручную не приваривают.
Слайсы, которые стали чипами
Ведущий специалист и один из основателей компании Fairchild Semiconductor Роберт Нойс позднее признавался, что ему стало жалко работников, терявших зрение на подобных операциях, и в 1959 году он выдвинул идею микросхемы — «слайса» или «чипа» (slice — ломтик, chip — щепка, осколок), где все соединения наносятся на кристалл прямо в процессе производства. Потом оказалось, что несколько ранее аналогичную идею выдвинул сотрудник Texas Instruments Джек Килби, однако у Нойса технология была разработана более детально (это была так называемая планарная технология с алюминиевыми межсоединениями, которая часто используется и по сей день). Спор о приоритете между Килби и Нойсом продолжался в течение десяти лет, и в конце концов победила дружба: было решено считать Нойса и Килби изобретателями микросхемы совместно. В 2000 году Килби (Нойс скончался в 1990) получил за изобретение микросхемы Нобелевскую премию (одновременно с ним, но за другие достижения, ее получил и российский физик Жорес Алферов).
Рис. 6.1. Изобретатели микросхемы Роберт Нойс (Robert Noyce, 1927–1990, слева) и Джек Килби (Jack St. Clair Kilby, 1923–2005)
Что же дало внедрение интегральных микросхем, кроме очевидных преимуществ, таких как миниатюризация схем и сокращение числа операций при проектировании и изготовлении электронных устройств?
Рассмотрим прежде всего экономический аспект. Первым производителям чипов это было еще не очевидно, но экономически производство микросхем отличается от других производств. Если вы закажете архитектору проект загородного дома, то стоимость этого проекта будет сравнима со стоимостью самого дома. Даже если вы по этому проекту построите сто домов, то не так уж сильно выгадаете на стоимости каждого. Стоимость проекта поделится на сто, но выгода ваша будет измеряться процентами, потому что построить дом дешевле, чем стоят материалы и оплата труда рабочих нельзя, а они-то и составляют значительную часть затрат на строительство.
В производстве же микросхем картина меняется. Цена материалов, из которых они изготовлены, в пересчете на каждый чип настолько мала, что она составляет лишь несколько процентов от стоимости конечного изделия. Поэтому основная часть себестоимости микросхемы складывается из стоимости ее проектирования и производства, на котором она изготавливается (фабрика для производства полупроводниковых компонентов может обойтись в сумму порядка 2–4 млрд долл.). Ясно, что в этой ситуации определяющим фактором конечной стоимости микросхемы будет количество, которое вы заказываете: если вам нужно меньше миллиона экземпляров, то с вами даже разговаривать не станут, а если вы будете продолжать настаивать, то один экземпляр обойдется вам во столько же, сколько и весь миллион. Именно массовость производства приводит к тому, что сложнейшие схемы, которые в дискретном виде занимали бы целые шкафы ценой в десятки тысяч долларов, продаются дешевле томика технической документации к ним.
Вторая особенность экономики производства микросхем — то, что их цена мало зависит от сложности. Микросхема операционного усилителя содержит несколько десятков транзисторов, а микросхема микроконтроллера (рис. 6.2) — несколько десятков и сотен тысяч, однако их стоимости по меньшей мере сравнимы. Эта особенность тоже не имеет аналогов в дискретном мире, т. к. с увеличением сложности обычной схемы ее цена растет пропорционально количеству использованных деталей.
Рис. 6.2. Кристалл микропроцессора (двойное поле слева — область встроенной памяти)
Фактически единственный фактор, кроме стоимости проектирования, который ведет к увеличению себестоимости сложных микросхем по сравнению с более простыми — это процент выхода годных изделий, который снижается при увеличении размеров и числа элементов на кристалле. Если бы не это обстоятельство, то стоимость Pentium не намного бы превышала стоимость того же операционного усилителя. Однако в Pentium, извините, несколько десятков миллионов транзисторов! Все это позволило проектировщикам без увеличения стоимости и габаритов реализовать в микросхемах такие функции, которые в дискретном виде было бы осуществить просто невозможно или крайне дорого.
Заметки на полях
Кстати, выход годных — одна из причин того, что кристаллы микросхем такие маленькие. В некоторых случаях разработчики даже рады были бы увеличить размеры, но тогда резко снижается и выход. Типичный пример — многолетняя борьба производителей цифровых фотоаппаратов за увеличение размера светочувствительной матрицы. Если бы удалось наладить массовый выпуск матриц размером с пленочный кадр (24x36 мм), то это одним махом решило бы множество проблем, но на момент написания этой книги только самые лучшие (и наиболее дорогие) любительские камеры имеют такие матрицы.
Еще одна особенность микросхем — высокая надежность. Дискретный аналог устройства типа аналого-цифрового преобразователя содержал бы столько паек, что какая-нибудь в конце концов обязательно вышла бы из строя. Между тем, если вы эксплуатируете микросхему в штатном режиме, то вероятность ее выхода из строя измеряется миллионными долями процента. Это настолько редкое явление, что его можно вообще не учитывать на практике. Если у вас сломался какой-то электронный прибор, ищите причину в контактах переключателей, в пайках внешних выводов, в заделке проводов в разъемах, но про возможность выхода из строя микросхемы забудьте. Разумеется, это, повторяю, относится к случаю эксплуатации в штатном режиме, если вы подали на микрофонный вход звуковой карты напряжение 220 В, то конечно, в первую очередь пострадает именно микросхема. Но сами по себе они практически не выходят из строя никогда.
Наконец, для схемотехников микросхемы обладают еще одним бесценным свойством: все компоненты в них изготавливаются в едином технологическом процессе и находятся в строго одинаковых температурных условиях. Это совершенно недостижимо для дискретных приборов — например, пары транзисторов, для которых желательно иметь идентичные характеристики, ранее приходилось подбирать вручную (такие уже подобранные пары специально выпускались промышленно) и иногда даже ставить их на медную пластину, чтобы обеспечить одинаковый температурный режим.
Рассмотрим типичный пример — так называемое токовое зеркало (рис. 6.3). Эта схема работает следующим образом. Левый по схеме транзистор представляет собой фактически диод, т. к. у него коллектор соединен с базой.
Рис. 6.3. Токовое зеркало
Из характеристики диода (см. рис. 3.1) видно, что при изменении прямого тока на нем несколько меняется и напряжение (оно не равно точно 0,6 В). Это напряжение без изменений передается на базу второго, ведомого транзистора, в результате чего он выдает точно такой же ток — но только при условии, если характеристики транзисторов согласованы с высокой степенью точности. Мало того, это соответствие должно сохраняться во всем диапазоне рабочих температур! Естественно, столь высокая идентичность характеристик практически недостижима для дискретных приборов, а для транзисторов, входящих в состав микросхемы, она получается сама по себе, без дополнительных усилий со стороны разработчиков.
Подробности
Схемы подобных токовых зеркал получили широкое распространение в интегральных операционных усилителях в качестве нагрузки входного дифференциального каскада, что значительно лучше простых резисторов. Их применение вместо резисторов гарантирует повторяемость характеристик ОУ в широком диапазоне питающих напряжений. Отметим также, что ведомых транзисторов может быть много (на рис. 6.3 второй такой транзистор показан серым цветом), их число ограничивается только тем обстоятельством, что базовые токи вносят погрешность в работу схемы, отбирая часть входного тока на себя. Впрочем, и с этим можно успешно бороться.
Кстати, резисторы в микросхемах в некритичных случаях все равно предпочитают делать из транзисторов, поскольку сформировать обыкновенный резистор, как проводник с заданным сопротивлением, в процессе производства микросхем значительно труднее, чем соорудить, скажем, полевой транзистор с заданным начальным током стока. В микросхемах могут использоваться такие разновидности транзисторных структур, которые в обычной дискретной жизни не имеют аналогов: скажем, многоэмиттерные или многоколлекторные транзисторы. Для примера на рис. 6.4 приведена схема входного каскада микросхемы транзисторно-транзисторной логики (ТТЛ), осуществляющей логическую функцию «ИЛИ» (подробнее об этом см. главу 8).
Рис. 6.4. Входной каскад элемента ТТЛ
Эксплуатация микросхем
Возможно, вы слышали о том. что микросхемы боятся статического электричества. Действительно, потенциал заряда, накапливающегося во время ходьбы на нейлоновом халатике симпатичной монтажницы, одетой к тому же в синтетические юбочку, кофточку и колготки, может составлять тысячи вольт (правда, сама величина заряда невелика). Но необязательно носить синтетическую одежду — достаточно походить по полу, покрытому обычным линолеумом или недорогим паласом, чтобы накопить на себе потенциал ничуть не меньше. Такое напряжение, конечно, может вывести из строя микросхемы и не только их — особенно чувствительны к нему полевые транзисторы с изолированным затвором. Так как заряду на выводе затвора у них стекать некуда, то все накопленное на вас напряжение будет приложено к тоненькому (несколько микро- или даже нанометров) промежутку между затвором и каналом, и не исключено, что изолирующий слой оксида кремния не выдержит такого «надругательства».
Поэтому при монтаже всегда следует соблюдать несколько правил: не носить синтетическую одежду и не использовать синтетические покрытия для пола и монтажного стола (профессиональные монтажные столы вообще покрывают заземленным металлическим листом). Неплохую гарантию дает заземление корпуса паяльника, только на практике в домашних условиях это осуществить сложно. Можно также привести еще несколько рекомендаций:
• не хвататься руками за выводы микросхем без нужды, при необходимости их формования взять корпус в левую (для левшей — в правую) руку так, чтобы пальцы касались выводов питания;
• первыми всегда следует припаивать выводы питания микросхемы (для дискретных транзисторов — эмиттер или исток);
• перед началом монтажа, особенно если вы только что переодевались, желательно подержаться руками за заземленный металлический предмет (водопроводный кран);
• при стирке рабочей одежды обязательно использовать антистатик.
Хорошую защиту также дает метод, при котором вы не впаиваете микросхему в плату непосредственно, а устанавливаете ее на панельку.
Насколько эти меры необходимы в повседневности? Случаи выхода микросхем из строя от статического электричества все же довольно редки, т. к. производители эту опасность учитывают, и для критичных ситуаций принимают меры по защите выводов. Самой распространенной мерой является установка защитных диодов, по два на каждый вывод, так, что один из них присоединен катодом к плюсу питания, а другой — анодом к минусу (рис. 6.5).
Рис. 6.5. Защита выводов микросхем от перенапряжения
Подобный прием позволяет иногда защитить микросхему и от неправильного включения питания — если плюс и минус питания на схеме рис. 6.5 поменять местами, то весь ток пойдет через диоды, и напряжение питания упадет до двойного падения напряжения на диоде, правда, тут весь вопрос в том, насколько долго диоды смогут выдержать прямой ток от источника. Для большей надежности иногда ставят и еще один отдельный защитный диод — прямо от питания до питания.
Такой защитой снабжены наиболее капризные в этом отношении КМОП-микросхемы (см. главу 8). Но не все микросхемы имеют защиту, и не всегда она спасает, потому в этом отношении действует такое же правило, что и в обыденной жизни: ведь кирпичи тоже падают с крыш крайне редко. Особенно сами по себе. Но единственного такого случая во всей округе за последние 10 лет лично вам может оказаться более чем достаточно. Поэтому лучше не ходить под строящимися зданиями, не перебегать дорогу перед Движущимся транспортом, не курить в постели, не пользоваться неисправными электроприборами и не хвататься за выводы микросхем голыми руками без нужды.
Операционные усилители
Операционные усилители — самые «главные» аналоговые микросхемы. Почти ни один современный аналоговый узел, как собранный на отдельных микросхемах, так и в составе других микросхем, без участия ОУ не обходится, исключение составляют лишь некоторые (не все) радиочастотные схемы.
Классическое определение гласит: операционным усилителем (ОУ) называется дифференциальный усилитель постоянного тока (УПТ) с большим коэффициентом усиления. Расшифруем. «Постоянного тока» — это не означает, что ОУ усиливают только сигналы частотой 0 Гц, это свидетельствует о том, что они могут усиливать сигналы, начиная с частоты 0 Гц. «С большим коэффициентом усиления» — это значит, что усиление действительно велико: хороший ОУ имеет коэффициент усиления порядка нескольких сотен тысяч или даже миллионов.
Заметки на полях
Название «операционный» закрепилось за такими усилителями исторически, потому что во времена господства ламповой техники они использовались в основном для моделирования различных математических операций (интегрирования, дифференцирования, суммирования и пр.) в т. н. аналоговых вычислительных машинах. Других применений тех ОУ практически не было и быть не могло, потому что для достижения приемлемых характеристик не годилась не только ламповая, но и дискретно-транзисторная схемотехника. Настоящий переворот произошел только в середине 60-х годов после пионерских работ по конструированию интегральных ОУ уже упоминавшегося на этих страницах Роберта Видлара.
Разумеется, практически применять ОУ можно только в схемах с отрицательной обратной связью, за одним важным исключением, о котором чуть далее. В обычных схемах огромный коэффициент усиления приведет к тому, что без обратной связи такой усилитель будет находиться в состоянии, когда напряжение его выхода равно (или почти равно) одному из напряжений питания, положительному или отрицательному — такое состояние еще называют, по аналогии с транзисторами, состоянием насыщения выхода. В самом деле, чтобы получить на выходе напряжение 15 В, ОУ достаточно иметь на входе сигнал в несколько десятков микровольт, а такой сигнал всегда имеется — если это не наводка от промышленной сети или других источников, то достаточно и внутренних причин, о которых мы еще будем говорить.
А упомянутое исключение представляют так называемые компараторы: ОУ, которые предназначены для работы без отрицательной обратной связи и иногда даже наоборот, с положительной обратной связью. Они выполняю! функцию точного сравнения уровней сигналов. Это одна из самых важных областей использования ОУ, которая позволяет стыковать мир аналоговых и цифровых сигналов между собой. Например, ни одна из конструкций АЦП и ЦАП, которые мы будем рассматривать в главе 10, не обходится без компараторов.
Рассмотрим некоторые общие принципы построения аналоговых схем на ОУ.
Опасные связи
Согласно определению, отрицательная обратная связь — это связь выхода со входом, при которой часть выходного сигнала вычитается из входного. В противоположность отрицательной, в случае положительной обратной связи часть выходного сигнала суммируется с входным. Эти определения справедливы не только для усилителей и других электронных устройств, но и во всех других случаях, когда обратная связь имеет место. В общем случае их воздействие на некую систему можно описать так: наличие отрицательной обратной связи повышает ее устойчивость, наличие положительной — наоборот, ведет к неустойчивости.
Заметки на полях
Принцип действия обратных связей можно пояснить на примере классической взаимосвязи спроса и предложения в экономике. Предположим, у нас имеется некая фирма, которая состоит из производственных структур и каналов сбыта. На входе такой системы — задание на производство, на выходе — объем произведенной продукции. Сколько нужно производить товара? Естественно, столько, сколько его могут потребить. В идеальной системе происходит следующее: фирма производит один экземпляр товара и, как только его покупают, немедленно выдает на прилавок следующий экземпляр. Если фирма произведет два экземпляра, и один из них на прилавке задержится, то производство приостанавливается до тех пор, пока этот экземпляр не купят. Здесь мы наблюдаем типичное действие отрицательной обратной связи, роль которой играет спрос: лежащий на прилавке экземпляр товара как бы вычитается из задания на производство, и оно приостанавливается. Такая система очень устойчива и к тому же обладает множеством приятных свойств: не имеет перерасхода энергии и материалов, не приводит к перепроизводству или, в пределах мощности производства, наоборот, к дефициту.
Но в большинстве случаев в реальной жизни все обстоит гораздо сложнее — и прямых и обратных связей всегда существенно больше одной, реакция на спрос не может быть мгновенной, да и система не изолирована от всей остальной экономики. Что произойдет с нашей идеальной системой, если производство не может остановиться и возобновить работу мгновенно, или если сведения об изменении спроса поступают не сразу, а с некоторым запаздыванием? Предположим, фирма делает 10 экземпляров товара в день, и указанное запаздывание составляет также 1 день. Допустим, в какой-то из дней спрос упал на 2 штуки. Из-за запаздывания реакции на изменение спроса в этот день фирма произведет по-прежнему 10 штук, так что на следующее утро на прилавке их окажется 12. Если в этот день спрос, как и раньше, будет составлять 8 штук, то к следующему утру на прилавке окажутся те же 12 экземпляров (8 произведенных — фирма отреагировала на изменение, плюс 4 оставшихся от предыдущего дня). В этот день фирма отреагирует и произведет всего 4 экземпляра. Но предположим, что в этот же день спрос внезапно возрос и составил 12 экземпляров, т. е. все имеющиеся раскуплены. На следующее утро на прилавке будет всего 4 штуки (произведенных накануне) и 8 из 12 гипотетических клиентов уйдут неудовлетворенными. Им предложат зайти через сутки, и на следующий день фирма вынуждена будет произвести 8 + 12 = 20 экземпляров товара! Легко продолжить эту цепочку рассуждений дальше и сообразить, что будет происходить с производством и удовлетворением спроса. Система будет «раскачиваться» все сильнее и сильнее, пока в дело не вступят естественные ограничения: объем производства не может быть меньше нуля и больше фактической мощности производства (в случае электронных систем роль таких ограничений выполняет напряжение питания или достижимая мощность выходного каскада усиления). Работоспособность же системы будет полностью нарушена, т. к. отрицательная обратная связь превратилась в положительную.
Отрицательная обратная связь в усилителях позволяет точно установить коэффициент усиления и приводит еще ко многим приятным улучшениям схемы. Попробуем разобраться, почему это так, и каково влияние характеристик реальных ОУ на параметры схемы.
На рис. 6.6 приведена обобщенная схема некоторой системы, охваченной отрицательной обратной связью. Коэффициент усиления К основной системы обычно больше единицы. Для ОУ это и есть его собственный коэффициент усиления, который может составлять сотни тысяч, как мы говорили. Коэффициент передачи по обратной связи β обычно, наоборот, меньше единицы (хотя ничто не мешает нам сделать его и больше единицы, тогда вся система будет не усиливать, а ослаблять сигнал).
Рис. 6.6. Обобщенная схема системы с отрицательной обратной связью
Если разорвать петлю обратной связи, то сигнал на выходе Uвых был бы равен К∙Uвх (огромной величине — разумеется, в реальной системе напряжение питание его бы ограничило, но для наших рассуждений это неважно). Но при действии обратной связи это не так. На вход выходной сигнал передается с коэффициентом ослабления β, и сигнал после сумматора, т. е. на входе основной системы, будет равен Uвх — β∙Uвых (минус, т. к. обратная связь отрицательная). Этот сигнал передается на выход с коэффициентом К, т. е. Uвых = К∙(Uвх — β∙Uвых). Отсюда Uвых = К∙Uвх/(1 — К∙β), т. к. коэффициент передачи Кус всей системы по определению равен Uвых/Uвх. В результате для него получаем следующую формулу:
Отсюда следует интересный вывод: если К много больше единицы (а в случае ОУ это действительно так с огромной степенью точности), то единицу в формуле (6.1) можно не принимать во внимание, и коэффициент передачи будет выражаться простым соотношением:
Кус = 1/β. (6.2)
Формула (6.2) означает, что коэффициент передачи входного сигнала на выход будет определяться только параметрами обратной связи, и никак не зависит от характеристик ОУ. Причем чем выше собственный коэффициент усиления системы К, тем точнее соблюдается эго положение.
Введение отрицательной обратной связи приводит также еще к некоторым последствиям. Для практических целей достаточно их просто запомнить, не углубляясь в математические выкладки:
• входы ОУ не потребляют тока (входное сопротивление ОУ практически равно бесконечности, точнее — увеличивается по сравнению с ОУ без обратной связи в Кβ раз);
• ОУ с отрицательной обратной связью всегда «стремится» сделать так, чтобы потенциалы на его входах были равны между собой.
Характеристики конкретной схемы определяются соотношением собственного коэффициента усиления ОУ и коэффициента передачи системы с замкнутой обратной связью — чем выше это соотношение, тем ближе схема к идеалу. Интересно, что если на практике для обеспечения фактической независимости коэффициента усиления схемы от характеристик ОУ достаточно иметь собственный коэффициент усиления всего в несколько тысяч, то для получения, например, действительно высокого входного сопротивления (измеряемого гигаомами и выше), приходится увеличивать К до указанных величин в сотни тысяч и более.
Отметим также сразу, что введение обратной связи в указанной выше степени Уменьшает и выходное сопротивление всего усилителя, которое становится очень близким к нулю — точнее, примерно равным Rвых/(1 + Кβ), где Rвых — собственное выходное сопротивление ОУ, лежащее обычно в диапазоне сотен ом. Так что выходное сопротивление получается порядка 1 миллиома. Только не забывайте, что мощность выходного каскада ограничена, и если вы его перегрузите, то от падения напряжения на нагрузке вас уже никакая обратная связь, естественно, не спасет: ОУ просто не сможет отдать того тока, который требуется. Это ограничивает величину сопротивления нагрузки рядовых ОУ на уровне порядка килоом. Меньшие нагрузки обычно допустимы (вплоть до к. з.), но обратная связь уже работать не будет.
Заметки на полях
Из изложенных ранее рассуждений относительно экономической модели обратной связи ясно, что система с обратной связью может быть неустойчивой. Обсуждение теории устойчивости таких систем (скажем, известного метода Найквиста) увело бы нас слишком далеко, однако практические меры в основном сводятся к тому, чтобы ограничить коэффициент усиления исходной системы и/или глубину обратной связи на таких частотах, когда отрицательная обратная связь начинает превращаться в положительную. Другими словами, при амплитуде сигнала обратной связи, равной или большей значения входного сигнала, фазовый сдвиг между ними не должен достигать 180° (поглядите на графики суммирования синусоидальных сигналов в главе 2, чтобы лучше понять, в чем тут дело). Причем наибольшую опасность несет в себе режим с установленным коэффициентом усиления, равным единице (т. е. включение ОУ по схеме повторителя), т. к. на вход поступает большая часть выходного сигнала. Роберт Видлар был сторонником того, чтобы переложить заботу о коррекции на плечи пользователей, и первые его конструкции ОУ, например, μА702, выпускавшийся в нашей стране под названием 140УД1[2] или получивший широкую известность μА709, имели специальные выводы для коррекции с помощью внешних резисторов и конденсаторов. Практически же этим никто не пользовался (подобно тому, как подавляющее большинство пользователей компьютерных программ работает с установками, введенными в них разработчиками по умолчанию) и такая возможность только приводила к необходимости введения в схему лишних компонентов, так что в настоящее время выводы для внешней коррекции сохранились лишь для некоторых моделей высокочастотных ОУ, где полоса частот действительно является критичным фактором.
Кстати, а каковы в свете всего изложенного могут быть рекомендации нашим предпринимателям из производственной фирмы? Они совершенно аналогичны методам для обеспечения стабильности ОУ: нужно ограничить глубину обратной связи и коэффициент усиления на высоких частотах. Проще говоря, им следует при наличии запаздывания не пытаться реагировать на каждый проданный или непроданный экземпляр, а выпускать некое среднее количество в сутки, изменяя его только, когда изменился средний объем продаж за промежуток времени, значительно больший суток — это и равносильно ограничению усиления на высоких частотах.
Базовые схемы усилителей на ОУ
Анализ схемы неинвертирующего усилителя (рис. 6.7, а) элементарно прост: исходя из приведенных правил Uoc = Uвх, т. е. Uвх = Uвых∙R2/(R1 + R2). Тогда коэффициент усиления Кус = Uвых/Uвх = (R1 + R2)/R2 = 1 + R1/R2.
Единица, которая плюсуется к отношению резисторов обратной связи в выражении для коэффициента усиления — очень важное дополнение, потому что если убрать в схеме неинвертирующего усилителя резистор R2 (т. е. принять его равным бесконечности), то отношение резисторов станет равным нулю, а Кус — равным единице. Соответствующая схема, показанная на рис. 6.7, в, и есть тот самый повторитель, которого так «боялся» Видлар. Зачем она нужна, если ничего не усиливает? Эта схема обладает одним бесценным свойством: ее входное сопротивление равно практически бесконечности, а выходное — нулю (в пределах, конечно, мощности выходного каскада, как мы уже говорили). Поэтому повторитель очень часто используют в случаях, когда нужно согласовать источник сигнала с высоким выходным сопротивлением с низкоомным приемником.
Рис. 6.7. Базовые схемы на ОУ:
a — неинвертирующий усилитель; б — инвертирующий усилитель; в — повторитель; г — инвертирующий усилитель с высоким коэффициентом усиления
В неинвертирующем усилителе обратная связь носит название «обратной связи по напряжению». В отличие от него, в инвертирующем усилителе (рис. 6.7, б) обратная связь имеет характер «обратной связи по току», и вот почему. Так как здесь неинвертирующий вход имеет потенциал «земли», то и инвертирующий тоже всегда будет иметь такой же потенциал. Будем считать, что питание у нас нормальное, симметрично-двуполярное. Тогда если в схеме рис. 6.7, б инвертирующий вход имеет всегда потенциал «земли», то от входа через резистор R2 потечет некий ток (Iвх). Так как мы договорились, что сам вход ОУ тока не потребляет, то этот ток должен куда-то деваться, и он, в полном соответствии с первым законом Кирхгофа, потечет через резистор R1 на выход ОУ. Таким образом, входной ток (Iвх) и ток обратной связи (Iос) — это один и тот же ток. Причем потенциал выхода ОУ вынужденно станет противоположным по знаку потенциалу входа, иначе току некуда будет течь. Кстати, подавать именно нулевой потенциал на неинвертирующий вход совершенно необязательно, например, если у вас однополярный источник питания, то на неинвертирующий вход подается потенциал «искусственной средней точки».
Чему равен коэффициент усиления такой схемы? Так как Uвх/R2 = Uвых/R1, то Кус = Uвых/Uвх = R1/R2. Без всяких дополнительных единиц, как в неинвертирующей схеме, т. е. R2 в данном случае есть необходимый элемент схемы и не может быть равным ни нулю (тогда вход ОУ просто замкнет выход источника на «землю»), ни бесконечности — за исключением того случая, если источник сигнала сам по себе представляет источник тока, а не напряжения. Вот тогда R2 из схемы можно (и нужно) исключить и подать токовый сигнал прямо на вход ОУ.
Заметьте, кстати, что похожее выражение для коэффициента усиления мы получали при рассмотрении транзисторного усилительного каскада (рис. 3.7), где усиление было равно отношению коллекторной нагрузки к сопротивлению в эмиттерной цепи. Это обусловлено тем, что в транзисторном каскаде также имеет место обратная связь (см. главу 3).
Подробности
Максимальное значение входного и выходного напряжений ОУ не всегда может быть равно положительному или отрицательному напряжению питания (как правило, оно меньше его на величину порядка 0,5–1,5 В). Однако многие современные изделия это все же позволяют и допустимое выходное (входное) напряжение у них достигает значений напряжения питания. Это свойство в западной технической документации обозначается как Rail-to-Rail (т. е. «от шины до шины») и на него нужно обращать внимание при выборе ОУ.
Если входное сопротивление неинвертирующего усилителя равно практически бесконечности, то у инвертирующего оно почти в точности равно R2.
Но входы реального ОУ все же потребляют ток, хотя и очень небольшой (называемый током смещения). Ток смещения на инвертирующем входе (в любой из двух схем) создаст падение напряжения на резисторе обратной связи и оно воспринимается как часть входного сигнала: если этот ток равен, к примеру, 0,2 мкА (казалось бы — так мало!), то при сопротивлении R1 = 1 МОм напряжение на выходе при отсутствии напряжения на входе достигнет 0,2 В. Как обычно, в подобных случаях важно не само по себе смещение, а его температурная нестабильность. Борьба с этим явлением может вестись в трех направлениях: во-первых, не следует использовать в цепочке обратной связи сопротивления большого номинала, стандартный диапазон их — от килоом до десятков килоом. Если же при необходимости сохранить достаточно высокое входное сопротивление инвертирующего усилителя при большом коэффициенте усиления применение высокоомных резисторов желательно, то предпочтительнее схема, показанная на рис. 6.7, г. В данном случае вся цепочка в обратной связи работает, как один резистор с номинальным сопротивлением 5,1 МОм, и коэффициент усиления равен 100 при входном сопротивлении 50 кОм.
Во-вторых, в схему следует вводить компенсирующий резистор Rк (на рис. 6.7, a-в он показан пунктиром) — падение напряжения от тока смещения по неинвертирующему и инвертирующему входам на нем отчасти компенсируются. Тогда будет уже не столь важен сам ток смещения, сколько разница их, потребляемых по каждому из входов усилителя, которая определенно меньше каждого из токов. Кроме токов смещения, на работу реального ОУ влияет и т. н. напряжение сдвига, обусловленное неидентичностью параметров входных каскадов.
На практике, если эти явления критичны (а это далеко не всегда так), стоит подобрать более дорогой, но и более точный прецизионный ОУ. К рядовым «ширпотребовским» типам ОУ относятся старинные, но до сих пор производящиеся 140УД7 (μА741), 140УД20 (dial — сдвоенный, т. е. содержащий два ОУ в одном корпусе), LM321 (single — одинарный), LM358 (также сдвоенный), LM324 (quad — счетверенный). При этом обычные усилители (LM321, LM324, LM358) имеют широчайший диапазон напряжений питания (до ±16 В). Существует их модификация, выпускающаяся фирмой MAXIM/DALLAS, с добавлением буквы X к названию (LMX321), у которой напряжение питания снижено всего до 7 В (суммарно), однако выходное напряжение имеет полный размах (Rail-toRail) — фактически это совсем другие ОУ. Такие нюансы нередки, потому встретив знакомую микросхему, но с незнакомым индексом, обязательно следует проверить ее характеристики по документации на сайте производителя, иначе можно крупно «пролететь».
К прецизионным ОУ относятся, например, надежные и удобные МАХ478 (сдвоенный) и МАХ479 (счетверенный), также отличающиеся исключительно широким диапазоном допустимых напряжений питания: от ±2,2 до ±18 В. Они имеют высокие показатели по точности, но работают очень медленно и не допускают полного размаха напряжений по выходу. В настоящее время эти микросхемы не выпускаются (хотя их еще можно спокойно приобрести), причем адекватной замены у фирмы MAXIM нет, и лучше употреблять аналогичные изделия других фирм, например, серию AD820—AD824 фирмы Analog Devices, которая существенно быстрее и к тому же имеет полный Rail-to-Rail размах напряжения по выходу. По цоколевке они (как и большинство других ОУ) полностью взаимозаменяемы при условии идентичности корпуса. МАХ4236 — пример прецизионного усилителя, который работает при напряжениях питания до 5,5 В, зато с полным Rail-to-Rail размахом напряжения по выходу, что хорошо стыкуется с цифровыми схемами, сейчас таких ОУ выпускается очень много. Особо высокими характеристиками, в том числе по быстродействию, отличаются относительно дорогие ОУ с цифровой стабилизацией: отечественный 149УД24, а также МАХ420, МАХ430, ICL7652 и др.
Дифференциальные усилители
Кроме всего прочего, ОУ имеют замечательное свойство подавлять синфазный входной сигнал. Синфазный сигнал, в отличие от обычного, дифференциального — это напряжение, которое действует на оба входа сразу (см. также главу 3). Это свойство приводит не только к возможности выделять полезный сигнал на фоне значительных наводок, но и, что иногда еще важнее, к подавлению нестабильности источника питания, поскольку изменение напряжения питания равносильно действию синфазного входного сигнала.
На рис. 6.8, а показана схема простейшего дифференциального усилителя. Делитель R3, R4 по неинвертирующему входу служит сразу двум целям: во-первых, он выравнивает входные сопротивления по входам (нетрудно показать, что т. к. потенциалы самих входов ОУ равны, то будут равны и входные сопротивления, естественно, при указанном на схеме равенстве соответствующих резисторов), во-вторых, что еще важнее, он делит входной сигнал в таком соотношении, чтобы коэффициенты усиления по инвертирующему и неинвертирущему входам сравнялись между собой. Именно при этом условии коэффициент ослабления синфазного сигнала (КОСС) будет максимальным. Для того чтобы получить действительно высокий КОСС (ослабление синфазного сигнала ~10 000 раз, т. е. на 80 дБ, о децибелах см. далее), согласование сопротивлений должно быть как можно более точным, и в такой схеме следует применять прецизионные резисторы из ряда с погрешностью, не превышающей, по крайней мере, 0,1 %, причем лучше всего их еще и дополнительно подобрать по строгому равенству номиналов. Тогда вы действительно сможете без проблем выделить полезный сигнал в 1 мВ на фоне наводки в 1 В.
Рис. 6.8. Схемы дифференциальных усилителей:
а — простой дифференциальный усилитель; б — классический инструментальный усилитель; в — упрощенный инструментальный усилитель
Понятно, что заниматься подобными подборками при массовом производстве не с руки, да и входным сопротивлением наш простейший дифференциальный усилитель отличается не в лучшую сторону, потому на практике эту схему применяют редко. Ко всему прочему, в ней еще и почти невозможно изменять коэффициент усиления в процессе работы, если вдруг это понадобится, т. к. для этого потребуется менять одновременно два резистора, а куда Денется в таком случае наше согласование?
Для того чтобы увеличить входное сопротивление, целесообразно добавить еще пару ОУ по каждому входу, включенных повторителями, как показано на рис. 6.8, б. Причем к увеличению габаритов и стоимости схемы эго практически не приводит, т. к. специально для таких целей выпускают упоминавшиеся ранее сдвоенные и счетверенные ОУ в одном корпусе, почти не отличающиеся по цене от одинарных.
Так мы добьемся увеличения входного сопротивления по обеим входам почти до бесконечности, а что с КОСС? Если просто добавить повторители, то с ним ничего не произойдет и точное согласование резисторов по-прежнему будет необходимо. Выход из этой ситуации очень простой: достаточно установить еще один резистор (на схеме рис. 6.8, б он обозначен как R1). В результате получаем классическую схему т. н. инструментального усилителя. Здесь также целесообразны прецизионные резисторы (в целях обеспечения температурной стабильности), но подбора уже не требуется. Коэффициент усиления такого усилителя определяется по следующей формуле (при указанных на схеме соотношениях резисторов):
Изменять его, не нарушая ничего в работе усилителя, можно одним резистором R1. Кстати, резисторы компенсации тока смещения здесь не нужны, т. к. эти токи по общим для системы инвертирующему и неинвертирующему входам взаимно компенсируют влияние друг друга, тем более, если ОУ расположены на одном кристалле.
Если мы люди не гордые, и большой КОСС нам не требуется (когда помеха мала по сравнению с полезным сигналом), то можно упростить схему инструментального усилителя. За исключением КОСС, схема на рис. 6.8, в обладает всеми достоинствами классической, но содержит на один ОУ меньше (значит, можно использовать сдвоенный, а не счетверенный чип), да и резисторов там поменьше. При указанных на схеме соотношениях резисторов выходное напряжение такого усилителя будет равно
Заметки на полях
В подобных усилителях решительно не рекомендуется подгонять ноль выходного напряжения, нарушая баланс резисторов, например R4/R5 и R6/R7 в схеме рис. 6.8, б. В то же время иногда установка нуля необходима, т. к. начальное смещение выхода может быть, например, отрицательным (и не только из-за сдвига рабочей точки самих ОУ, но и по причине начального смещения у источника сигнала), и в случае, если весь диапазон изменения выходного напряжения должен располагаться в положительной области (скажем, при подаче его куда-нибудь на вход аналого-цифрового преобразователя, не «понимающего» отрицательных напряжений), вы можете потерять заметный «кусок» диапазона. Иногда для установки нуля рекомендуют воспользоваться корректирующими выводами одного из входных ОУ, но для стабильности схемы это еще хуже, чем корректировка внешними резисторами, тем более что в сдвоенных и счетверенных вариантах эти выводы обычно отсутствуют, просто вследствие элементарной нехватки контактов корпуса. В действительности установку нуля лучше осуществлять со стороны входов, подмешивая к одному из входных напряжений через развязывающий резистор небольшое напряжение коррекции, как это делается в схемах сумматоров, к которым мы сейчас перейдем.
Другие распространенные схемы на ОУ
Как уже упоминалось, операционные усилители получили свое название от того, что они применялись для моделирования математических операций, которое выполнялось т. н. аналоговыми вычислительными машинами. Одной из основных схем в них был аналоговый сумматор, который представляет собой просто усилитель (инвертирующий или нет), на вход которого подается несколько напряжений через отдельные резисторы. При этом напряжения будут суммироваться с весами, пропорциональными значениям этих резисторов.
Другой необходимой составляющей таких машин был интегратор на ОУ, схема которого приведена на рис. 6.9, а. Этот интегратор, в отличие от интегрирующей RC-цепочки из главы 2, действительно осуществляет операцию интегрирования в корректной форме. Например, если подать на его вход постоянное напряжение (отрицательное), то напряжение на выходе будет линейно возрастать (интеграл от константы есть прямая линия), с наклоном, равным Uвх/RC (вольт в секунду). Входной сигнал можно подать и на неинвертирующий вход — получим неинвертирующий интегратор. Можно также объединить интегратор с сумматором, тогда интегрирование будет осуществляться по сумме входных напряжений с соответствующими весовыми коэффициентами. Интеграторы, как и сумматоры, используются и по сей день в различных схемах (см. главу 10).
Рис. 6.9. Распространенные схемы на ОУ:
а — интегратор; б — источник тока
Еще одна очень полезная схема (рис. 6.9, б) представляет собой почти идеальный источник тока с выходным сопротивлением, равным бесконечности. Здесь возможно однополярное питание, как и показано на схеме. Ток можно задавать как соотношением резисторов делителя R1, R2, так и резистором R. Обратите внимание, что отрицательная обратная связь подается на неинвертирующий выход ОУ, т. к. здесь использован полевой транзистор с /z-каналом и стабилизируется его стоковое напряжение, которое есть инверсия напряжения на затворе. Если взять транзистор с р-каналом, то его в этой схеме нужно подключить наоборот: стоком в направлении нагрузки, а обратную связь, снимаемую с истока, подавать на инвертирующий вход. Для высокой стабильности тока в этой схеме требуется столь же высокая стабильность напряжения питания, поэтому если важна абсолютная величина тока, то схему (и делитель R1/R2, и резистор R, а не только делитель!) приходится питать от отдельного прецизионного стабилизатора. К счастью, стабильность в абсолютном понимании требуется не всегда, часто необходима стабильность некоей величины лишь относительно других параметров схемы. Кстати, от характеристик транзистора стабильность тока никак не зависит, единственное требование — чтобы начальный ток стока превышал установленный выходной ток схемы. Если применить не полевой, а биполярный транзистор, то будет иметь место некоторая зависимость выходного тока из-за изменений базового тока транзистора (т. к. коллекторный ток отличается от эмиттерного на величину тока базы), потому в таких источниках предпочтительнее именно полевые транзисторы.
Немало интересных практических применений ОУ вы можете найти в многочисленной литературе, например, в классических трудах [5] и [6], а также в Интернете. А сейчас мы рассмотрим две полезные схемы, которые хорошо иллюстрируют особенности использования ОУ на практике.
Регулятор оборотов вентилятора[3]
Крупный недостаток современных компьютеров заключается в том, что они шумят — приходится только удивляться периодически возникающим спорам по поводу нюансов звучания той или иной акустической системы, если уровень шума системного блока не опускается ниже 30–40 дБ. Определяющий вклад в этот шум вносят вентиляторы блока питания и процессора. Частично решить проблему можно, если заменить дешевые вентиляторы на более дорогие, с лучшей конфигурацией лопастей и более надежными подшипниками. Но чтобы снизить шум до предельно возможного уровня, следует применять устройства регулирования скорости вращения — зачем вентилятору «завывать» на полных оборотах, если температура находится в пределах допустимого? Многие современные чипсеты способны сами регулировать обороты, вместе с тем в эксплуатации полно дешевых машин, в которых такой регулировки нет.
Заметки на полях
Простейший прием для снижения шума — просто включить последовательно с вентилятором резистор. Производители «кулеров», естественно, «закладываются» на наихудшие температурные режимы, и типовой вентилятор для процессорного радиатора имеет порядка 2300–2700 об/мин. На практике, если у вас достаточно просторный корпус, их можно безболезненно снизить до примерно 1700 об/мин, для чего у обычного вентилятора 60–90 мм следует в разрыв питания (красный провод) включить резистор сопротивлением от 51 до 100 Ом и мощностью не менее 0,5 Вт. Величина сопротивления подбирается экспериментально, обороты и температура процессора контролируются с помощью соответствующей программы, обычно прилагаемой к каждой материнской плате. При экспериментах не торопитесь — дайте процессору выйти на стабильный температурный режим, еще лучше — нагрузите его какой-нибудь громоздкой задачей, вроде архивации крупного файла или текстового поиска среди большого количества документов.
На рис. 6.10 приведена схема пропорционального регулятора оборотов вентилятора с защитой от перегрева. Защита нужна потому, что 99 % времени процессор занят менее чем наполовину, но в экстремальных задачах, и к тому же при повышенной температуре наружного воздуха, он может греться сильнее, тогда целесообразно запустить вентилятор на «полную катушку».
Рис. 6.10. Схема пропорционального регулятора оборотов вентилятора
Датчиком температуры Rt служит термистор — полупроводниковый терморезистор, обладающий большим отрицательным температурным коэффициентом сопротивления (порядка 3–4 % на каждый градус). Из-за нелинейности термисторы трудно использовать в качестве датчиков для измерения температуры, но для не слишком точных регуляторов они подходят очень хорошо. Термистор (с отрицательным коэффициентом — не перепутайте с позисторими, которые имеют положительный коэффициент, но часто так же продаются под названием «термисторы») годится абсолютно любого типа, но предпочтительнее те, что оформлены в корпусах, удобных для обеспечения хорошего теплового контакта с радиатором, например, М703 фирмы EPSOS, имеющие отверстие для крепежного винта, или отечественные фольговые термисторы ТРП, которые легко приклеивать.
Работает схема очень просто. Термистор здесь, как видите, включен в цепь отрицательной обратной связи ОУ, выходной каскад которого для повышения мощности дополнен эмиттерным повторителем на транзисторе VT1. При повышении температуры сопротивление термистора снижается и напряжение на выходе эмиттерного повторителя растет, соответственно увеличивается и число оборотов вентилятора. Если температура продолжает повышаться, срабатывает блок аварийного включения, собранный на резисторах R5, R6, транзисторе VT2 и реле К1. При превышении установленного порога транзистор открывается, и контакты реле подключают вентилятор напрямую к питанию 12 В. Схема при этом «защелкивается» — вывести ее из этого состояния можно только выключением питания.
Конденсатор С1 обеспечивает начальный запуск: когда радиатор холодный, напряжения на выходе схемы может не хватить для того, чтобы стронуть вентилятор с места, а некоторые процессорные платы могут вообще не запуститься, если вентилятор не крутится. При включении питания С1 разряжен, и, заряжаясь, закорачивает резистор R1, в результате чего на вентилятор первоначально подается повышенное напряжение, достаточное для запуска, а раскрученный вентилятор потом уже будет работать нормально и при пониженном напряжении. При этом конденсатор С3 предотвращает срабатывание схемы защиты (если она все же будет срабатывать при запуске, то его номинал следует увеличить).
Во избежание всяческих неприятностей в компьютер следует устанавливать уже отрегулированную схему. Она настраивается таким образом, чтобы при температуре радиатора около 60 °C напряжение на питании вентилятора достигало 10,5 В (хотя ОУ AD820 выдает полный размах вплоть до напряжения питания, выше примерно 10,8 В его увеличить не позволит цепь «база-эмиттер VT1 — диод VD1»). Соответственно, при таком напряжении уже должна срабатывать защита. Перед настройкой временно отключите сопротивление R5 делителя аварийного отключения и конденсатор С1 схемы начального запуска, подключите схему к источнику питания 12 В, поместите термистор Rt в среду с комнатной температурой и с помощью потенциометра R2 установите на эмиттере VT1 напряжение около 4–5 В (при установленном напряжении раскрученный вентилятор не должен останавливаться).
Затем поместите термистор в воду (завернув его в резиновый напальчник или поместив в узкий металлический стаканчик, что надежнее) с температурой 60–65 °C и подбором резистора обратной связи R4 установите на эмиттере VT1 напряжение около 10,5 В. Эту процедуру придется повторить несколько раз до получения нужных значений при обеих температурах. Затем подключите резистор R5 и, погружая термистор в среду с температурой выше 60 °C, подберите значение сопротивления R6 между базой и эмиттером VT2 так, чтобы аварийная схема срабатывала при достижении напряжения на вентиляторе ~ 10,5 В.
Если вы не найдете подходящий термистор Rt с сопротивлением 10 кОм, как на схеме (например, фольговые не встречаются с номиналом более 1 кОм), то его можно заменить на любой другой в пределах от 1 до 50 кОм, при этом R4 также надо соответственно изменить. ОУ типа AD820 можно заменить и на рядовые модели (140УД7), но при этом предельно достижимый уровень напряжения на выходе значительно снизится (примерно до 9,5 В). Транзистор VT1 — КТ815Г или КТ815Б, лучше подобрать экземпляр с коэффициентом передачи по току не менее 100. Вместо реле РЭС49 можно поставить любое малогабаритное на напряжение 12 В.
Схема собирается на небольшой макетной плате размерами примерно 30x100 мм и устанавливается в любом месте корпуса компьютера подальше от тепловыделяющих деталей. Прикрутив или приклеив вынесенный на скрученных проводах термистор к радиатору, далее необходимо разорвать цепь питания вентилятора (красный провод — не перепутайте с желтым, по которому идет сигнал числа оборотов), подключить его к выходу схемы, а также подключить схему к питанию 12 В (можно к любому желтому проводу из блока питания ПК, а можно и к красному проводу бывшего питания вентилятора со стороны материнской платы). В блок питания компьютера подобное устройство встраивается аналогично.
Терморегулятор для воды[4]
Обычное устройство для нагревания воды при отсутствии центрального горячего водоснабжения (например, в дачном домике) состоит из бака на 5—20 л со встроенным электронагревателем (ТЭНом) мощностью 1–2 кВт. Использовать его без терморегулятора неудобно — приходится внимательно следить за тем, чтобы вода не закипела, да и получается она либо слишком горячая, либо наоборот — недогретая.
На рис. 6.11 изображена схема термостата для нагревания воды. Она только на вид кажется сложной, на самом деле отличается от предыдущей схемы только тем, что работает не в пропорциональном (число оборотов плавно меняется с температурой), а в ключевом режиме (включено-выключено). Так как вода имеет большую тепловую инерционность, то пропорциональное регулирование тут ни к чему. Здесь мы познакомимся с компараторами (как мы знаем, это ОУ без обратной связи), а также с практическим применением оптоэлектронных (электронных) реле.
Рис. 6.11. Схема термостата для нагревания воды
Множество разных деталей обусловлено тем, что схема имеет несколько режимов работы:
• автоматический термостатирующий;
• автоматический однократный с отключением по достижении нужной температуры («режим электрочайника»);
• ручной с подключением ТЭНа напрямую к сети.
Сначала отвлечемся от режимов и посмотрим, как работает основная схема регулирования. Здесь имеется точно такой же, как в регуляторе оборотов, термисторный датчик с отрицательным коэффициентом. После включения питания, если температура еще ниже заданной, на выходе компаратора DA1 устанавливается уровень напряжения, близкий к нулю, причем усилительный транзистор здесь не нужен, поскольку компаратор 554САЗ специально приспособлен для подобных надобностей, и имеет на выходе довольно мощный (до 50 мА) транзистор с открытым коллекторным выводом.
В результате в первый момент срабатывает не только основное мощное реле К1, но и реле К2 (токограничивающпх резисторов в реле этого типа нет, и с этой целью установлены резисторы R6 и R7). Контакты его замкнуты, и резистор R4 не участвует в работе схемы. По мере увеличения температуры напряжение на датчике падает и в какой-то момент времени выходной транзистор компаратора разрывает цепь питания «обмотки» К1 — нагреватель обесточивается (на самом деле в электронных реле это не обмотка, а управляющий светодиод, как вы знаете из главы 3). В тог же момент времени отключается реле К2 и резистор R4 включается в цепь делителя R2, R3, R4, R5, еще больше увеличивая разницу напряжений между выводами компаратора. По мере остывания воды напряжение на датчике повышается и в какой-то момент компаратор снова срабатывает, подключая нагрузку через реле К1. Контакты К2 при этом опять шунтируют резистор R4 и это тоже увеличиваем разницу напряжений, но в теперь в другую сторону.
Подробности
Это обеспечивает т. н. гистерезис — небольшую разницу между напряжениями срабатывания и отпускания, которая необходима для того, чтобы схема не «дребезжала» в состоянии, близком к заданному порогу температуры. Наличие всей этой системы несколько увеличивает нестабильность поддержания температуры: при приведенных на схеме номиналах разница между температурой включения и выключения составит от 1 до 1,5° (например, при установленной температуре в 35° нагреватель включится, когда температура упадет до 34, а выключится — когда она достигнет 35,5°), однако нам более высокая стабильность в данном случае совершенно не требуется. В ключевых (пороговых) регуляторах гистерезис есть практически всегда, если нужно более точное регулирование, то целесообразнее пропорциональные регуляторы.
Теперь разберемся с режимами. Сначала рассмотрим «режим электрочайника» (автоматический однократный), для обеспечения которого в схему введено еще одно маломощное реле КЗ. включенное, как видите, довольно хитрым образом. Если тумблер S2 находится в положении «Автомат» (т. е. контакты его замкнуты), то реле КЗ никак не участвует в работе схемы. Если же S2 переключить в режим «Однократный» (разомкнуть его контакты), то в момент достижения нужной температуры, вместе с отключением реле К1 (и, соответственно, нагрузки), реле КЗ, ранее включенное через диод VD1 и резистор R7 в ту же коллекторную цепь выходного транзистора микросхемы, также отключается, контакты его размыкаются и вывод 4 компаратора оказывается подключенным через датчик температуры к потенциалу земли.
Такое состояние схемы устойчиво и для возобновления работы в режиме стабилизации температуры необходимо либо на некоторое время отключить напряжение питания, либо тумблером S2 переключить схему в режим «Термостат». А конденсатор С2 вместе с диодом VD1 служат для «правильного» запуска схемы при включении питания: если тумблер К4 разомкнут, то контакты реле КЗ должны замкнуться сразу после подачи напряжения питания, иначе компаратор не сработает. При подаче напряжения питания, как мы знаем, конденсатор представляет собой короткозамкнутый участок цепи, поэтому реле КЗ на небольшое время, пока конденсатор заряжается (примерно 100 мс), замкнет контакты. Диод VD1 на это время запирается и предохраняет от срабатывания реле К1 и К2. В случае, если температура воды в момент включения превышает установленную, такое срабатывание реле будет кратковременным (только на время зарядки конденсатора С2). Если же температура ниже требуемой, то компаратор успеет сработать, диод VD1 откроется, и реле К3 останется в замкнутом состоянии до момента отключения нагрузки. Кстати, опыт эксплуатации подобного устройства показал, что наиболее популярен именно режим «электрочайника», т. к. он позволяет экономить электроэнергию и не беспокоиться о том, что вы оставили включенный электроприбор без присмотра.
Ручной режим (резервный, на случай выхода автоматики из строя, чтобы при этом не остаться вовсе без горячей воды) обеспечивается просто: тумблер S1 в положении «Постоянно» подает сетевое питание напрямую на нагреватель (контакты К1 при этом шунтируются, схема обесточивается, а вся система работает так, будто никакой автоматики и не существует). В положении «Автомат» сетевое напряжение переключается на блок питания автоматики, а нагреватель теперь может включаться только контактами реле. Тумблер S1, естественно, должен выдерживать рабочий ток ТЭНа. Здесь подойдет импортный переключатель В1011, рассчитанный на ток до 16 А при напряжении 250 В или другой аналогичный. В крайнем случае можно использовать автомобильные переключатели, но это не очень корректно, т. к. на напряжения до 300 В они не рассчитаны.
Когда сетевое напряжение поступает на нагрузку (неважно, через тумблер или контакты реле), горит включенная параллельно ей неоновая лампочка Н1, по которой можно контролировать работу схемы. Лампочка может быть любого типа, только при этом резистор R8 должен иметь мощность не менее 0,5 Вт, т. к. он работает при сетевом напряжении (обычные резисторы 0,125—0,25 Вт имеют предельно допустимое напряжение порядка 200 В). Отметим, что ставить светодиод здесь неудобно: нужно либо выбирать двухцветный встречно-паралельный, либо ставить выпрямительный мост, и мощность резистора придется еще больше увеличить — потребуется как минимум 1 Вт при сопротивлении 68 кОм, и он будет заметно греться.
Симисторное реле PF240D25 (разводка его выводов на схеме не показана, все нарисовано прямо на корпусе) в принципе допускает ток до 25 А, однако Достаточно сильно греется уже при 10 А. Поэтому допустимую мощность ТЭНа лучше ограничить величиной 2 кВт, а в корпусе устройства сверху и снизу обязательно нужно предусмотреть вентиляционные отверстия. При этом реле К1 в рабочем положении корпуса должно быть расположено выше остальных деталей.
Если вы хотите добиться большей мощности, то лучше выбрать аналогичное реле типа D2425, которое имеет отверстия для установки на дополнительный радиатор. Электромагнитное реле ставить здесь не рекомендуется: придется включать мощное реле-пускатель через промежуточное реле, и они совместно отнюдь не будут услаждать ваш слух своим грохотом и жужжанием. А вот реле К2 и КЗ вполне можно заменить на маломощные электромеханические — например типа РЭС-60 или РЭС-49. Естественно, резисторы R6 и R7 в этом случае не нужны, а вот у конденсатора С2, возможно, придется раза в два увеличить емкость для более надежного включения устройства.
В положении тумблера S1 «Автомат» сетевое напряжение поступает на простейший нестабилизированный блок питания (квадрат с надписью БГ1 на схеме рис. 6.11), схема которого не расшифрована, потому что полностью соответствует показанной на рис. 4.2. Как обычно, такую конструкцию можно извлечь из покупного блока со встроенной вилкой, мощности от него никакой не требуется (вся схема потребляет ток порядка 30 мА), поэтому можно выбирать любой на напряжение (под номинальной нагрузкой) от 10 до 15 В. Напряжение с него поступает на стабилизатор типа LM78L09 (в корпусе ТО-92, можно заменить на отечественный 142ЕН8Б или на аналогичный иного производителя), откуда стабилизированное напряжение +9 В подается на схему. Светодиод VD2 сигнализирует о включении схемы автоматики, его лучше выбрать зеленого свечения, чтобы обеспечить контраст с неоновой лампочкой.
Заметки на полях
Самое сложное в процессе изготовления устройства — обеспечить надежную и долговечную изоляцию термистора от воды, но с сохранением хорошего теплового контакта. Хороший вариант — залить термистор в металлической трубочке эпоксидной смолой, прямо вместе с пайками к удлинительным проводам (последние дополнительно изолируются термоусадочной трубкой). Только при этом не следует забывать, что сама по себе эпоксидная смола не водостойка, а металл может корродировать. Такую конструкцию необходимо дополнительно покрыть каким-нибудь надежным и не выделяющим вредных веществ водостойким составом, вроде полиуретановых лаков или автомобильных эмалей горячей сушки. Другой вариант — «запечатать» датчик в зубную пластмассу (для чего может понадобиться помощь знакомого дантиста).
При указанных на схеме номиналах термостат обеспечивает установку заданной температуры в диапазоне примерно 35–85°. При термисторе с другим сопротивлением придется только пропорционально изменить номинал R1, больше ничего менять в схеме не надо. Настройка и калибровка схемы ничем не отличается от таковых для регулятора оборотов, кроме выбора диапазона температур. При настройке основную нагрузку можно не подсоединять, т. к. момент срабатывания и отключения вполне можно контролировать по неоновой лампочке, следует только учесть, что вовсе без нагрузки «неонка» может гореть даже при выключенном реле — из-за токов утечки через «контакты» (на самом деле там стоит тиристор, у которого ток утечки может достигать 10 мА) и вам даже может показаться, что система не работает. Если гак, то придется все же подключить какую-то нагрузку, например лампочку накаливания. В процессе калибровки надо обязательно обеспечить хорошее перемешивание воды!
Заметки на полях
Я настоятельно рекомендую теплоизолировать бак для воды, даже в отсутствие регулятора: просто обернув его старым ватным одеялом, вы можете экономить до 70–90 % электроэнергии. Это касается не только данной конструкции, но и вообще всех водонагревателей. Можно сделать и «фирменную» теплоизоляцию из упаковочного пенопласта.
В заключение отметим, что схемы для построения термостатов невысокого класса, подобных двум описанным, существуют, разумеется, и в интегральном исполнении, обычно они при этом совмещены с полупроводниковым датчиком температуры, который часто имеет и отдельный выход, что обеспечивает возможность измерения температуры.
На этом мы с рассмотрением ОУ закончим и займемся звуком — это еще одна область, где аналоговые микросхемы доминируют над цифровыми (хотя и не всегда, как вы увидите в дальнейшем).
Звуковые усилители
В основе большинства усилителей звукового диапазона, предназначенных для работы на динамические громкоговорители-колонки (такие усилители часто именуют УМЗЧ — «усилитель мощности звуковой частоты», а кроме них, есть еще микрофонные, предварительные и тому подобные усилители, которые мы не будем здесь рассматривать), независимо от того, выполнены ли они на дискретных элементах, или в виде интегрального модуля, всегда лежит одна и та же базовая схема. В одном из упрощенных вариантов ее можно представить так, как показано на рис. 6.12. Разбирать мы ее подробно не будем, остановимся лишь на ключевых моментах, которые имеют значение для понимания работы интегральных усилителей.
Рис. 6.12. Классическая базовая схема усилителя звуковой частоты
Вход почти любого УМЗЧ, как и вход ОУ, представляет собой дифференциальный каскад. Так как звуковой сигнал в идеале является симметричной синусоидой, с которой удобно работать при симметричном двуполярном питании, то входной сигнал должен находиться где-то посередине между напряжениями питания. Чтобы обеспечить развязку по постоянному току, сигнал на вход обычно подают через фильтр высокой частоты (С1 и R1, в некоторых случаях обходятся и одним конденсатором).
На второй вход дифференциального каскада при этом подают сигнал обратной связи, стабилизирующий характеристики усилителя (в данном случае — через сопротивление R5). Если усилитель интегральный, то обратную связь большей частью выносят вовне микросхемы, т. к. она обычно требует регулируемой коррекции (на схеме конденсатор С2) — ограничения усиления на высоких частотах, иначе готовый усилитель может «загудеть». При указанных на схеме соотношениях R5/R4 коэффициент усиления по напряжению устанавливается примерно равным 30, что позволяет усилить обычный выходной сигнал линейного выхода магнитолы или тюнера (0,7 В) до амплитуды, необходимой для «раскачки» мощной нагрузки.
Оконечный каскад усиления мощности всех таких усилителей представляет собой т. н. «пушпульный» (от push-pull — «тяни-толкай», по-русски) каска/, на паре комплементарных (т. е. «дополняющих друг друга») транзисторов имеющих близкие характеристики, но разную полярность (n-р-n и р-n-р) На схеме вы видите довольно мощные приборы фирмы MotoroU BDW93C/BDW94C (до 80 Вт), но существует много подобных пар отечест венного производства: совсем «древних» КТ315/КТ361, маломощны? КТ3102/КТ3107, средней мощности КТ815/КТ814, КТ817/КТ816, КТ972/КТ97: (с «супербетой»), наконец, более мощных КТ819/КТ818. Изредка использую и специальные пары мощных полевых транзисторов.
Чаще такой каскад встроен в микросхему, но иногда целесообразно «умощнить» выход интегрального усилителя дискретными транзисторами (или в характеристиках микросхемы это прямо рекомендуется). По сути «пушпульный» каскад есть просто два эмиттерных повторителя разной полярности, работающих на одну нагрузку. При этом надо не забывать про падения напряжения «база-эмиттер», из-за чего каскад должен всегда иметь начальный сдвиг, приоткрывающий оба транзистора и обеспечивающий небольшой сквозной ток через них. На данной схеме для этого служит цепочка диодов.
Замечание
Иногда встречаются и более сложные способы, причем для лучшей температурной стабильности каскада следует эти диоды располагать в контакте с радиатором мощных транзисторов. Если этого не делать, то возможен самопроизвольный выход транзисторов из строя — температурный коэффициент напряжения «база-эмиттер» отрицателен, и по мере нагревания транзисторы будут все больше «распахиваться», в свою очередь нагревая себя еще сильнее — вплоть до выгорания. В более сложных схемах такое удается предотвратить и иными способами.
Если смещения не делать, то выходное напряжение будет иметь искажения типа «ступенька» — из входной синусоиды за счет зоны нечувствительности в пределах ±0,6 В для обычных транзисторов (±1,2 В для транзисторов с «су-пербетой», т. н. «дарлингтоновских», состоящих из двух транзисторов, включенных последовательно) как бы вырезается «кусок» вблизи нулевого уровня.
За остальными подробностями я отправлю вас к классическим трудам [6] и [7], а мы займемся практическими конструкциями. Но сначала для общего образования рассмотрим одну единицу измерения, которая часто встречается при описании подобных схем.
О децибелах
В разговоре о таких вещах, как звуковые усилители, децибелы обойти нельзя. Децибел (одна десятая белла, названного так по имени изобретателя телефона А. Белла) есть единица измерения отношений величин. Перевести отношение в децибелы и обратно можно по формуле: К (дБ) = 20∙lg(A1/A0), где A1/A0 есть отношение значений некоторых величин (напряжений, токов, звукового Давления и т. п.).
Децибелы удобны для характеристики изменения величин, меняющихся по степенному закону, их широко используют при расчетах фильтров, анализе частотных и амплитудных характеристик ОУ, или, скажем, в таких случаях, как измерение уровня звукового давления. График степенной функции, которая быстро возрастает или падает в обычных координатах, в широком диапазоне значений практически невозможно изобразить, а в логарифмическом масштабе (в децибелах) он будет выглядеть прямой линией (это часто ветречающиеся графики, где по осям отложены величины, возрастающие не линейно, а в геометрической прогрессии: 1, 10, 100, 1000…). Звуковое давление практически всегда измеряют в децибелах (относительно порога слышимости) — это связано с тем, что наше ухо реагирует именно на отношение громкостей, а не их абсолютный прирост.
Если отношение величин больше единицы, то величина в децибелах будет положительной, если меньше — отрицательной. Для перевода децибел в обычные относительные единицы и обратно необязательно выполнять расчет по указанной ранее формуле, достаточно запомнить несколько простых соотношений:
• 3 дБ соответствует увеличению/уменьшению на треть;
• 6 дБ соответствует отношению в 2 раза;
• 10 дБ соответствует отношению в 3 раза;
• 20 дБ соответствует отношению в 10 раз.
Руководствуясь этими соотношениями, легко перевести любую величину: например, 73 дБ есть 20 + 20 + 20 + 10 + 3 дБ, т. е. 10∙10∙10∙3∙1,33 = 4000. Собственный коэффициент микросхемы звукового усилителя TDA2030 (см. далее) равен 30000, т. е. 3-104, или 10 + 4-20 = 90 дБ, а простейшей схемы но рис. 6.12 — около 66 дБ (2000). Коэффициент ослабления синфазного сигнала (КОСС), о котором шла речь ранее, также чаще всего измеряют в децибелах: так, его величина, равная -60 (3-20) дБ, означает, что синфазный сигнал ослабляется в 1000 раз. Крутизна характеристик простейших RC-фильтров низкой и высокой частоты из главы 2 равна, соответственно, — 6 и +6 дБ на октаву, что означает уменьшение/увеличение сигнала в 2 раза при двукратном изменении частоты.
Мощный УМЗЧ
Вооружившись такой терминологией, мы стали совсем умными, и можем приступить к делу. Первой разберем стандартную схему УМЗЧ на популярной микросхеме TDA2030 производства фирмы ST Microelectronics (рис. 6.13). В ней производитель гарантирует при выходной мощности 14 Вт на нагрузке 4 Ом искажения сигнала не более 0,5 %. Если снизить требования к величине искажений, то при ±15 В питания из микросхемы можно «выжать» до 20 Вт. Предельно допустимое значение напряжения питания для TDA2030 достигает ±18 В (или 36 В однополярного), но, разумеется, при таком питании ее эксплуатировать не рекомендуется. Увеличение искажений при повышении выходной мощности, вероятно, связано с тем, что в чип встроена защита от перегрева выходных транзисторов, которая ограничивает выходной ток, когда температура корпуса повышается.
Рис. 6.13. Рекомендуемая схема усилителя звуковой частоты на микросхеме TDA2030
Производитель гарантирует такие характеристики, как диапазон частот, которые передаются с заданным коэффициентом усиления и при заданных искажениях сигнала (40 Гц — 15 кГц), и коэффициент подавления влияния нестабильности источника питания на качество выходного сигнала (в 100–300 раз), что допускает питание от простейшего нестабилизированного источника (см. рис. 4.4). При указанных номиналах резисторов и конденсаторов устойчивость усилителя гарантируется и даже приводятся рекомендации по размерам охлаждающего радиатора.
Собственно усилитель включает саму микросхему DA1, конденсаторы С1, С2 и резисторы R1 — R4. Если внимательно присмотреться к этой схеме, то мы увидим, что структурно она ничем не отличается от нашей базовой схемы (см. рис. 6.12). Мало того, здесь даже установлен с помощью обратной связи тот же самый коэффициент усиления, примерно равный 30. Как будто взяли нашу схему и упаковали ее в отдельный корпус, обеспечив вывод наружу входов дифференциального усилителя, выхода двухтактного (push-pull) каскада усиления мощности и, естественно, выводов питания. На самом деле характеристики «фирменного» усилителя заметно выше: в микросхеме TDA2030 коэффициент усиления по напряжению при разомкнутой цепи обратной связи, согласно документации производителя, равен примерно 30 000, а в предыдущей схеме он не более 2000–2500. Это, конечно, для «фирменной» схемы значительно увеличивает линейность усиления и уменьшает уровень искажений, аналогично работе обратной связи в ОУ.
Остальные элементы схемы — вспомогательные. Конденсаторы С4—С7 — развязывающие по питанию, их надо устанавливать прямо у выводов микросхемы. Причем разработчики учли, что емкость электролитических конденсаторов снижается с ростом частоты, поэтому в целях лучшей защиты от помех и повышения устойчивости схемы здесь рекомендуется устанавливать неполярные (например, керамические) конденсаторы (С4 и С6) параллельно с электролитическими (С5 и С7). Цепочка R5, С3 устанавливается для повышения линейности усилителя при работе на индуктивную нагрузку. Диоды VD1, VD2 служат для предотвращения возможного выхода из строя выходных каскадов микросхемы при индуктивных выбросах напряжения (например, при включении питания) — ох, до чего же нежные эти западные транзисторы!). Все электролитические конденсаторы — на напряжение не менее 16 В.
Если усилитель все же «загудит» (хотя и прямо об этом в тексте фирменной инструкции не сказано), здесь рекомендуется параллельно резистору обратной связи R4 установить цепочку из последовательно включенных резистора и конденсатора, которые ограничат полосу частот. При номиналах всех остальных компонентов, таких как указаны на схеме, резистор должен быть равен 2,2 кОм, а конденсатор — не менее 0,5 нФ. Увеличение емкости конденсатора сверх этой величины ведет к ограничению полосы частот, но и к повышению устойчивости схемы.
Сама микросхема TDA2030 выпускается в корпусе Т0220, знакомом по мощным транзисторам, только имеет он не три вывода, а пять (см. Приложение 3). Разводка выводов приведена на схеме, а для того, чтобы определить их расположение, нужно положить микросхему маркировкой вверх, тогда вывод номер 1 будет находиться первым слева (в однорядных корпусах микросхем ключ для определения начала отсчета выводов часто отсутствует, но первый вывод всегда расположен именно так, как указано).
Заметки на полях
Рекомендованная в инструкции площадь охлаждающего радиатора для выходной мощности 14 Вт должна составлять 350–400 см2, однако, на мой взгляд, эта величина завышена как минимум вдвое. Впрочем, подобное заключение я могу подтвердить, кроме весьма приблизительных расчетов из главы 5, только личным опытом и оно не должно быть воспринято, как руководство к действию — это совет из той самой серии «на ваш страх и риск». Скорее всего, разработчики из фирмы ST Microelectronics взяли запас специально, чтобы уменьшить уровень искажений при больших мощностях из-за встроенного механизма тепловой защиты.
На рис. 6.14 показано, как можно построить усилитель с удвоенной выходной мощностью при тех же напряжениях питания и используемых деталях. Это так называемая мостовая схема, которая представляет собой два идентичных усилителя, работающих на одну нагрузку в противофазе: когда на выходе одного усилителя положительный максимум напряжения, то на другом отрицательный.
Рис. 6.14. Схема мостового усилителя звуковой частоты
Таким образом, амплитуда и действующее значение напряжения на нагрузке возрастает ровно в два раза, соответственно растет и мощность, которая здесь составит при условии неискаженного сигнала почти 30 Вт. Для того чтобы усилители работали именно так, как указано, обычный (неинвертирующий) вход второго усилителя заземляется, а входной сигнал для него поступает на другой (инвертирующий) вход, туда же, куда и заведена его обратная связь. Сам этот входной сигнал берется с того места, куда поступает сигнал от первого усилителя (с левого по схеме вывода динамика) и ослабляется в той же степени, в которой оно было усилено первым усилителем, поскольку номиналы резисторов цепочки обратной связи R4, R3, задающей коэффициент усиления первого усилителя, и делителя Rд, R3' равны. Это означает, что на вход 2 второго усилителя поступает фактически то же самое входное напряжение, но, т. к. вход противоположной полярности, то на выходе второго усилителя повторится сигнал на выходе первого, только в противофазе, чего мы и добивались. Мощность источника питания, естественно, должна быть повышена.
Микроусилитель мощности
Не так уж редко возникает задача вывести звуковой сигнал на маломощный динамик или на головные наушники. Кроме очевидных применений вроде воспроизведения музыки, такой усилитель пригодился бы, скажем, в многочисленных конструкциях металлоискателей (их полно в Сети и в радиолюбительской литературе), в сигнальных устройствах. Одно из применений вы увидите в главе 19, когда мы заставим «разговаривать» микроконтроллер Существует поистине необъятное множество типов микросхем от разных производителей, которые осуществляют усиление звукового сигнала с возможностью выхода на низкоомную нагрузку. Здесь мы остановимся на одной из самых популярных — МС34119 (выпускается не только фирмой Motorola, как можно было бы заключить из названия, но и другими производителями, возможно, с другими буквенными префиксами). Микросхема выпускается в обычном корпусе всего с восемью выводами (DIP-8) и никаких радиаторов не требует.
Усилитель (рис. 6.15) обладает весьма неплохими характеристиками:
• напряжение питания 2—16 В (однополярное);
• сопротивление нагрузки 8 Ом (минимальное);
• частота единичного усиления: 1,5 МГц;
• выходная мощность 250 мВт (при напряжении питания 6 В и нагрузке 32 Ом);
• коэффициент гармоник 0,5–1 %;
• время готовности после включения питания не более 0,36 с.
Рис. 6.15. Вариант типовой схемы включения микросхемы МС34119
Самое главное — не надо думать, все уже придумано за вас. Коэффициент усиления задается двумя резисторами R1 и R2, и равен их отношению R2/R1 (в данном случае 25). Максимальная мощность в нагрузке 0,5 Вт обеспечивается при нагрузке 32 Ом (головные наушники) при питании 12 В. В других сочетаниях нагрузки и питания такая мощность не достигается, в том числе потому, что недопустимо увеличиваются искажения. Обратите внимание, что динамик не имеет соединения с «землей» (что естественно для схемы с однополярным питанием). Имеется также интересная возможность выключения усилителя с помощью сигнала от логических микросхем (например, от микроконтроллера) — если подать на вывод 1 напряжение питания, микросхема выключится и будет потреблять ток не более нескольких десятков микроампер.
Отметьте, что по сути и микросхема TDA2030, и МС34119, и базовая схема по рис. 6.11, и даже разобранные нами в главе 4 интегральные стабилизаторы, представляют собой не что иное, как узкоспециализированные ОУ — общие закономерности работы у них совершенно одинаковы. Что, если вдуматься, вполне логично, не так ли?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК