2.2.2. Условия
Температура. Этот фактор-условие наиболее важный и сложный по «многоканальности» воздействия на организмы. Температура изменяется в связи с географической широтой, высотой над уровнем моря и долготой (расстоянием от океана, которое определяет степень континентальности климата), в сезонными и суточными циклами. Кроме того, на нее влияют микроклиматические особенности экотопа: разная степень прогревания склонов разной экспозиции, стекание горного холодного воздуха в долины, а в водных экосистемах – глубина. В глубоких слоях водоема температура более низкая и стабильная, а поверхностные воды в теплое время года прогреваются.
Климатологи исследовали вклад каждого из этих факторов в формирование температурного режима. Так выяснено, что самые высокие температуры отмечаются не на экваторе, а в средних широтах (при высокой континентальности), где с подъемом на каждые 100 м высоты над уровнем моря средняя годовая температура падает на 0,5–1°C. С увеличением глубины водоема колебания температуры в суточных и разногодичных циклах смягчаются и т.д. На температуру воды влияет и степень перемешивания разных слоев: если его нет, то различия между теплыми приповерхностными и холодными глубинными водами будут велики, при перемешивании они сглаживаются.
Экологов интересуют в первую очередь не чисто физические параметры температурного режима, а их экологическое (физиологическое) влияние на различные организмы, как эктотермные (холоднокровные), так и эндотермные (теплокровные, см. 4.4.1).
Для эктотермных организмов большое значение имеет «физиологическое время», измеряемое в «градусо-днях» – произведении средней температуры на число дней, которые характеризовались превышением «порога развития» (температуры, начиная с которой организм оживает).
Яйца кузнечиков начинают развиваться после того, как средняя дневная температура превысит 16°C. Если температура будет на уровне 20°C, то развитие потребует 17,5 суток, а если она поднимется до 30°C – сократится до 5 суток. Разумеется, если температура превысит верхний порог, при котором возможно существование того или иного организма, то он погибнет.
Для оценки скорости развития микроорганизмов возможно использование «градусо-часов», о чем знает любая хозяйка, имеющая дело с дрожжевыми грибами. При более высокой температуре они размножаются более интенсивно, и потому тесто или квас будут готовы быстрее, чем при низкой температуре. Температура влияет и на интенсивность размножения молочнокислых бактерий: молоко, подолгу сохраняющее свежесть в холодильнике, в теплом помещении скисает в течение нескольких часов.
Принцип определения «градусо-дней» лежит в основе используемого в сельском хозяйстве показателя «сумма положительных температур за период со средней дневной температурой выше 10°C» (для холодостойких крестоцветных, например рапса или редьки – 5°C). Этот показатель является важнейшей характеристикой климата, по которому определяется возможность возделывания той или иной сельскохозяйственной культуры.
В таблицах 1 и 2 показаны значения сумм положительных температур для некоторых наиболее важных в сельскохозяйственном отношении районов России и потребность в этом параметре климата основных сельскохозяйственных культур.
Таблица 1 Агроклиматические условия некоторых районов РФ
Таблица 2 Минимально необходимая сумма положительных температур (за период с температурой выше 10°С) для основных сельскохозяйственных культур в средней полосе РФ (по Кирюшину, 1996)
Примечание: указан диапазон при возделывании разных сортов (ранне-, средне– и позднеспелых).
Температурные пределы, т.е. самые высокие и самые низкие температуры, которые могут выносить разные организмы в активном состоянии, различны. Кроме того, они зависят от влажности воздуха. Так растения во влажной атмосфере легче переносят стресс высоких температур. Влияние низких температур тем более губительно, чем оно более продолжительно. В состоянии покоя организм наиболее устойчив как к низким, так и к высоким температурам: сухие пшеничные зерна сохраняют всхожесть при прогревании до температуры 90°C в течение 10 минут, но если их замочить – гибнут при температуре 60°C. Чемпион по переживанию низких температур – лиственница: переносит морозы именно за счет способности переходить в состояние покоя.
Температура – важнейший фактор, влияющий на метаболизм организмов и определяющий их распространение. Однако для различных видов важными оказываются разные составляющие температурного режима: среднегодовая температура, средняя температура летних месяцев, минимальная температура в разные сезоны года и т.д. Кроме того, нередко температура влияет на организмы косвенно, например, при повышении температуры воды в ней снижается содержание кислорода.
Относительная влажность воздуха. Этот фактор-условие обычно тесно взаимодействует с температурой, и риск обезвоживания растений, насекомых или других животных при высоких температурах тем выше, чем ниже влажность воздуха. Разные виды растений и животных имеют разные возможности противодействовать потерям воды, в частности растения, приспособленные к стрессу засухи (ксерофиты), удерживают воду даже при низкой влажности воздуха (см. 4.4.3).
Влажность воздуха может меняться в разных частях экосистемы: быть достаточно высокой внутри травостоя злаковника и низкой – над его поверхностью. При высокой влажности и очень сухих почвах этот фактор может становиться ресурсом. Выпадение росы, к примеру, играет роль в обеспечении влагой пустынных растений, в частности знаменитое растение пустыни Намиб вельвичия (Welwitchia mirabilis) использует в качестве ресурса воды только росу туманов (дожди там вообще не выпадают). Обитающие в этой пустыне жуки-чернотелки также используют воду, оседающую из росы на его холодном теле.
рН воды и почвы. Концентрация ионов водорода в воде влияет на организмы непосредственно (при рН ниже 3 происходит повреждение протоплазмы клеток корня у большинства сосудистых растений) и косвенно, определяя концентрацию ионов питательных элементов и токсичных веществ. При этом косвенное влияние рН сильнее: при кислой реакции среды почва насыщается токсичными подвижными соединениями алюминия и железа, в щелочных почвах резко падает доступность фосфатов и многих микроэлементов.
При понижении рН (например,в результате выпадения кислотных дождей) нарушаются метаболические процессы в организмах: осморегуляция, работа ферментов и газообмен через дыхательные поверхности. Кроме того, повышается концентрация токсичных элементов (в первую очередь алюминия) в результате катионного обмена с донными осадками. Кроме того, снижается количество пищевых ресурсов для животных обитателей экосистем (число видов растений и животных). При подкислении воды в озерах резко замедляется рост диатомовых водорослей.
Подзолистые и серые лесные почвы имеют слабокислую реакцию в результате выщелачивания кальция разлагающейся подстилкой. По этой причине кислотные дожди в этой зоне особенно губительны – снижают плодородие почвы и ограничивают возможности возделывания культур, для которых оптимальна нормальная реакция почвенного раствора (пшеницы, кукурузы и др.). В то же время эти дожди наносят сравнительно малый ущерб черноземам степной зоны, которые имеют слабощелочную реакцию и хорошо нейтрализуют выпадающие кислоты. Более того, содержащиеся в кислых дождях оксиды азота могут быть азотным удобрением и повышать урожай.
Соленость воды. Большая часть воды, которая имеется на земле – соленая морская. В среднем в морской воде содержится около 3,5% солей, причем, 2,7% – это хлористый натрий, а остальные 0,8% – соли магния, кальция и калия. Из катионов, кроме хлора, в составе морских солей принимают участие ионы сульфата, соды и брома.
Для большинства обитателей моря соленость – чрезвычайно важный фактор. Многие из них изотоничны: концентрация солей во внутренней среде организма примерно такая же, как и в морской воде. Поэтому у них нет проблем с удержанием воды, которая при гипотоничности (т.е. низкой концентрации солей в организме) могла бы быть «вытянута» из организмов под действием осмотических сил. Однако среди обитателей моря много и гипотоничных организмов, например морских рыб, которые затрачивают энергию на удержание в теле воды. Особую экологическую группу составляют проходные рыбы, совершающие нерестовые миграции из морей в реки (осетровые, лососевые, сельдевые) и из рек в моря (некоторые бычки, речной угорь, тропические виды сомов). Эти виды адаптированы к перепадам солености воды и перед миграциями накапливают резервные вещества (главным образом жир), которые необходимы им для перестройки метаболизма.
Такие же проблемы характерны и для растений, произрастающих на засоленных почвах. В этих условиях растут только виды, адаптированные к высоким концентрациям солей в почвенном растворе (галофиты), другие растения – погибают.
Разные ионы по-разному влияют на организмы. Так для растений наименее токсичен сульфат-ион и наиболее токсичен ион гидрокарбоната натрия – НСО3 Ионы хлора имеют среднюю токсичность. По этой причине, если засоление почвы оценивается только по общему содержанию солей, т.е. сухому остатку, который получается после выпаривания водной вытяжки из почвы, и не учитывается состав солей, которые обусловили засоление, экологическая оценка этого фактора будет неполной. Один сульфат-ион в пять раз менее токсичен, чем ион хлора, и в десять раз – чем ион НСО3 .
Засоление почв характерно для лесостепной, степной и пустынной зон и меняется с севера на юг по ряду: сульфатное – сульфатно-хлоридное – хлоридно-содовое. В любой зоне возможны все варианты уровня засоления – от слабого (содержание солей составляет доли процентов) до солончака (несколько процентов солей от общего веса почвы), хотя площадь солончаков возрастает с севера на юг.
Большинство сельскохозяйственных растений неустойчиво к засолению, что сдерживает возможность возделывания их на почвах даже со слабым засолением. Исключение составляет лишь сахарная свекла, предок которой – свекла морская (Beta maritima) – связан с засоленными почвами Средиземноморья. Поэтому свеклу можно возделывать на слабо солончаковатых почвах, что даже повышает содержание сахара в ее корнях. На знании этой особенности сахарной свеклы основан прием повышения ее урожайности и одновременного уничтожения сорняков внесением невысоких доз поваренной соли. (Однако этот прием опасен для остальных культур севооборота, в котором возделывается свекла: для них повышение содержания натрия в почвенном растворе нежелательно.)
Течение. Этот прямодействующий физический фактор играет большую роль при определении видового состава растений и животных, в первую очередь в речных экосистемах. В быстротекущих реках состав биоты представлен организмами, участвующими в обрастании камней (т.е. перифитона), прежде всего нитчатыми водорослями, а также разнообразными беспозвоночными, обитающими под камнями. В медленно текущих реках формируются богатые видами высокопродуктивные экосистемы с участием разнообразных растений-макрофитов. Экосистемы прибрежий таких рек по составу биоты напоминают озера, в которых вообще отсутствует течение.
Течение влияет на состав водных экосистем также как косвенный фактор через концентрацию в воде кислорода, являющегося важным ресурсом. Чем быстрее течение воды, тем содержание в ней кислорода выше.
Не меньшую роль, чем в пресноводных экосистемах, течение играет в жизни морских экосистем. Морские течения переносят теплые и холодные массы воды и тем самым посредством температуры влияют на условия жизни в море. Теплую воду несут Гольфстрим и Северо-Атлантическое течение, холодную – Калифорнийское течение (по этой причине на побережье Калифорнии обычны туманы). Кроме поверхностных ветровых течений, существуют и глубоководные перемещения водных масс. По этой причине в морских экосистемах, как правило, не бывает недостатка кислорода, что достаточно обычно для озерных экосистем.
В жизни водных экосистем большую роль играет также вертикальное перемещение водных масс. В пресноводных водоемах перемешивание выравнивает градиент температуры от поверхности до глубоководий и повышает содержание кислорода во всей водной толще. Особую же роль явление перемешивания вод играет в океанах, где происходит подъем больших масс холодной и обогащенной элементами питания воды к поверхности, что называется апвеллингом.
Морские течения, кроме того, являются «машинами климата», т.е. косвенным фактором, который через изменение температуры и влажности влияет на наземные экосистемы.
Загрязняющие вещества. Повышение концентрации загрязняющих веществ в воде, атмосфере и почве во многом связано с хозяйственной деятельностью человека, и потому характер загрязнения зависит от типа производства (хотя возможно загрязнение атмосферы сернистым газом и по естественным причинам, например при извержении вулканов). Основными источниками веществ, загрязняющих атмосферу, являются предприятия топливно-энергетического комплекса и транспорт, а загрязняющих воду – предприятия химической промышленности (табл. 3). Загрязняющие атмосферу оксиды серы и азота с кислотными дождями попадают в водные и наземные экосистемы. Предприятия горнодобывающей и металлургической промышленности сбрасывают в водоемы соединения меди, свинца, цинка и других тяжелых металлов. Загрязнение почв тяжелыми металлами (в первую очередь свинцом) происходит при использовании транспортом этилированного бензина.
Таблица 3 Десять основных веществ, загрязняющих биосферу
Большую опасность для водных экосистем представляет поступление в них биогенов – фосфатов, соединений азота и др., которые вызывают эвтрофикацию экосистем (см. 12.7). Если в экосистему попадают высокотоксичные элементы, такие как ртуть, то происходит подрыв ее биологической продуктивности и гибель большей части организмов.
Устойчивость организмов разных видов к действию загрязняющих веществ различна, что позволяет по составу биоты оценивать уровень загрязнения экосистемы (использовать методы биологической индикации). В популяциях многих видов могут быть устойчивые к загрязняющим веществам экотипы, которые активизируются при их появлении (см. 4.2).
Контрольные вопросы
1. Какие факторы влияют на температуру в наземных и водных экосистемах?
2. Расскажите о понятии «градусо-дни».
3. Какую роль играет показатель «сумма положительных температур» для экологически ориентированного сельского хозяйства?
4. От каких факторов зависят температурные пределы выносливости организмов?
5. Приведите примеры косвенного влияния температуры на организмы.
6. В каких условиях влажность воздуха может стать ресурсом?
7. Охарактеризуйте рН среды как прямой и косвенный фактор.
8. Почему соленость воды не опасна для морских организмов?
9. Какой из ионов, вызывающих засоление почвы, наиболее токсичен?
10. Какой вид сельскохозяйственных растений, выращиваемых в Средней полосе, устойчив к засолению почвы и почему?
11. Какую роль играет течение в жизни пресноводных экосистем?
12. Расскажите о влиянии течений на экосистемы океана.
13. Перечислите основные вещества, загрязняющие атмосферу.