1.3. Математическая модель стегосистемы
1.3. Математическая модель стегосистемы
Стегосистема может быть рассмотрена как система связи [8].
Алгоритм встраивания ЦВЗ состоит из трех основных этапов: 1) генерации ЦВЗ, 2) встраивания ЦВЗ в кодере и 3) обнаружения ЦВЗ в детекторе.
1) Пусть есть множества возможных ЦВЗ, ключей, контейнеров и скрываемых сообщений, соответственно. Тогда генерация ЦВЗ может быть представлена в виде
, , (1.2)
где - представители соответствующих множеств. Вообще говоря, функция F может быть произвольной, но на практике требования робастности ЦВЗ накладывают на нее определенные ограничения. Так, в большинстве случаев, , то есть незначительно измененный контейнер не приводит к изменению ЦВЗ. Функция F обычно является составной:
где и , (1.3)
то есть ЦВЗ зависит от свойств контейнера, как это уже обсуждалось выше в данной главе. Функция G может быть реализована при помощи криптографически безопасного генератора ПСП с K в качестве начального значения.
Для повышения робастности ЦВЗ могут применяться помехоустойчивые коды, например, коды БЧХ, сверточные коды [9]. В ряде публикаций отмечены хорошие результаты, достигаемые при встраивании ЦВЗ в области вейвлет-преобразования с использованием турбо-кодов. Отсчеты ЦВЗ принимают обычно значения из множества {-1,1}, при этом для отображения {0,1}?{-1,1} может применяться двоичная относительная фазовая модуляция (BPSK).
Оператор T модифицирует кодовые слова , в результате чего получается ЦВЗ . На эту функцию можно не накладывать ограничения необратимости, так как соответствующий выбор G уже гарантирует необратимость F. Функция T должна быть выбрана так, чтобы незаполненный контейнер , заполненный контейнер и незначительно модифицированный заполненный контейнер порождали бы один и тот же ЦВЗ:
, (1.4)
то есть она должна быть устойчивой к малым изменениям контейнера.
2) Процесс встраивания ЦВЗ в исходное изображение может быть описан как суперпозиция двух сигналов:
, , (1.5)
где
— маска встраивания ЦВЗ, учитывающая характеристики зрительной системы человека, служит для уменьшения заметности ЦВЗ;
— проектирующая функция, зависящая от ключа;
знаком обозначен оператор суперпозиции, включающий в себя, помимо сложения, усечение и квантование.
Проектирующая функция осуществляет «распределение» ЦВЗ по области изображения. Ее использование может рассматриваться, как реализация разнесения информации по параллельным каналам. Кроме того, эта функция имеет определенную пространственную структуру и корреляционные свойства, использующиеся для противодействия геометрическим атакам (см. гл.3).
Другое возможное описание процесса внедрения получим, представив стегосистему как систему связи с передачей дополнительной информации (рис. 1.4) [8]. В этой модели кодер и декодер имеют доступ, помимо ключа, к информации о канале (то есть о контейнере и о возможных атаках). В зависимости от положения переключателей А и Б выделяют четыре класса стегосистем (подразумевается, что ключ всегда известен кодеру и декодеру).
I класс: дополнительная информация отсутствует (переключатели разомкнуты) — «классические» стегосистемы. В ранних работах по стеганографии считалось, что информация о канале недоступна кодеку. Обнаружение ЦВЗ осуществлялось путем вычисления коэффициента корреляции между принятым стего и вычисленным по ключу ЦВЗ. Если коэффициент превышал некоторый порог, выносилось решение о присутствии ЦВЗ. Известно, что корреляционный приемник оптимален лишь в случае аддитивной гауссовой помехи. При других атаках (например, геометрических искажениях) эти стегосистемы показывали удручающие результаты.
Рис. 1.4. Представление стегосистемы, как системы связи с передачей дополнительной информации
II класс: информация о канале известна только кодеру (А замкнут, Б разомкнут). Эта конструкция привлекла к себе внимание благодаря статье [10]. Интересной особенностью схемы является то, что, будучи слепой, она имеет ту же теоретическую пропускную способность, что и схема с наличием исходного контейнера в декодере. К недостаткам стегосистем II класса можно отнести высокую сложность кодера (необходимость построения кодовой книги для каждого изображения), а также отсутствие адаптации схемы к возможным атакам. В последнее время предложен ряд практических подходов, преодолевающих эти недостатки. В частности, для снижения сложности кодера предлагается использовать структурированные кодовые книги, а декодер рассчитывать на случай наихудшей атаки.
III класс: дополнительная информация известна только декодеру (А разомкнут, Б замкнут). В этих схемах декодер строится с учетом возможных атак. В результате получаются робастные к геометрическим атакам системы. Одним из методов достижения этой цели является использование так называемой опорного ЦВЗ (аналог пилот-сигнала в радиосвязи). Опорный ЦВЗ — небольшое число бит, внедряемые в инвариантные к преобразованиям коэффициенты сигнала. Например, можно выполнить встраивание в амплитудные коэффициенты преобразования Фурье, которые инвариатны к аффинным преобразованиям. Тогда опорный ЦВЗ «покажет», какое преобразование выполнил со стего атакующий. Другим назначением пилотного ЦВЗ является борьба с замираниями, по аналогии с радиосвязью. Замираниями в данном случае можно считать изменение значений отсчетов сигнала при встраивании данных, атаках, добавлении негауссовского шума и т. д. В радиосвязи для борьбы с замираниями используется метод разнесенного приема (по частоте, времени, пространству, коду). В стеганографии же используется разнесение ЦВЗ по пространству контейнера. Пилотный ЦВЗ генерируется в декодере на основе ключа.
IV класс: дополнительная информация известна и в кодере и в декодере (оба ключа замкнуты). Как отмечено в [9], по всей видимости все перспективные стегосистемы должны строиться по этому принципу. Оптимальность этой схемы достигается путем оптимального согласования кодера с сигналом-контейнером, а также адаптивным управлением декодером в условиях наблюдения канала атак.
3) Также как в радиосвязи наиболее важным устройством является приемник, в стегосистеме главным является стегодетектор. В зависимости от типа он может выдавать двоичные либо М-ичные решения о наличии/отсутствии ЦВЗ (в случае детектора с мягкими решениями). Рассмотрим вначале более простой случай «жесткого» детектора стего. Обозначим операцию детектирования через D. Тогда
, . (1.6)
В качестве детектора ЦВЗ обычно используют корреляционный приемник, изображенный на рис. 1.5.
Пусть у половины пикселов изображения значение яркости увеличено на 1, а у остальных — осталось неизменным, либо уменьшено на 1. Тогда , где . Коррелятор детектора ЦВЗ вычисляет величину . Так как W может принимать значения ±1, то будет весьма мало, а будет всегда положительно. Поэтому будет очень близко к . Тогда можно воспользоваться результатами теории связи и записать вероятность неверного обнаружения стего, как дополнительную (комплементарную) функцию ошибок от корня квадратного из отношения («энергии сигнала») к дисперсии значений пикселов яркости («энергия шума»).
Для случая мягкого детектора и закрытой стегосистемы имеем две основные меры похожести:
Рис. 1.5. Корреляционный детектор ЦВЗ
— (1.7)
нормированный коэффициент взаимной корреляции и
— (1.8)
расстояние по Хэммингу.
В детекторе возможно возникновение двух типов ошибок. Существует вероятность того, что детектор не обнаружит имеющийся ЦВЗ и вероятность ложного нахождения ЦВЗ в пустом контейнере (вероятность ложной тревоги). Снижение одной вероятности приводит к увеличению другой. Надежность работы детектора характеризуют вероятностью ложного обнаружения. Система ЦВЗ должна быть построена таким образом, чтобы минимизировать вероятности возникновения обеих ошибок, так как каждая из них может привести к отказу от обслуживания.
Данный текст является ознакомительным фрагментом.