3.7. Построение декодера стегосистемы
3.7. Построение декодера стегосистемы
Рассмотрим возможные методы извлечения получателем скрываемой информации из искаженной нарушителем стегограммы. Оптимальные характеристики декодирования достигаются использованием правилом МАВ декодирования вида , где В есть кодовая книга для последовательностей . Оптимальность декодера обеспечивается исчерпывающим перебором по кодовой книге. Для оптимальных информационно-скрывающей и атакующей стратегий
, (3.23)
где коэффициент определяется через математическое ожидание значений и в виде
,
где , если . Декодер просто масштабирует принятое значение с коэффициентом и находит кодовое слово, ближайшее по евклидовой метрике к значению . Практическая система водяного знака, основанная на этом принципе, описана в работе [16]. Для построения стегосистемы при выборе , описанного в главе 3.6.2, величины приблизительно одинаковы для всех последовательностей , и правило МАВ декодирования согласно (3.23) приблизительно эквивалентно правилу максимума корреляции вида
. (3.24)
Если сигналы и не являются гауссовскими, или если величины не одинаковы для всех , то правило максимума корреляции (3.24) подоптимально. В известных стегосистемах метод максимума корреляции, подобный (3.24), часто используется для оценки характеристик алгоритмов обнаружения водяных знаков. В декодере проверяется гипотеза и ее альтернатива для конкретного фиксированного значения [14]. Детектирование искомого водяного знака заключается в сравнении величины корреляции с некоторым пороговым значением, значение которого выбирается из условия, чтобы вероятность ошибочного решения декодера была бы достаточно мала. Другими часто используемыми в декодере стегосистемы статистиками являются нормализованный коэффициент корреляции между и [15,28].
Данный текст является ознакомительным фрагментом.