2. АТАКИ НА СТЕГОСИСТЕМЫ И ПРОТИВОДЕЙСТВИЯ ИМ

We use cookies. Read the Privacy and Cookie Policy

2. АТАКИ НА СТЕГОСИСТЕМЫ И ПРОТИВОДЕЙСТВИЯ ИМ

2.1. Атаки против систем скрытной передачи сообщений

Вернемся к рассмотренной в первой главе стегосистеме, предназначенной для скрытой передачи сообщений. Исследуем подробнее возможности нарушителя Вилли по противодействию Алисе и Бобу. Как отмечалось в первой главе, нарушитель может быть пассивным, активным и злоумышленным. В зависимости от этого он может создавать различные угрозы.

Пассивный нарушитель может лишь обнаружить факт наличия стегоканала и (возможно) читать сообщения. Сможет ли он прочесть сообщение после его обнаружения зависит от стойкости системы шифрования, и этот вопрос, как правило, не рассматривается в стеганографии. Если у Вилли имеется возможность выявить факт наличия скрытого канала передачи сообщений, то стегосистема обычно считается нестойкой. Хотя существуют и другие точки зрения на стойкость стегосистем, которые будут рассмотрены в главе 4. Осуществление обнаружения стегоканала является наиболее трудоемкой задачей, а защита от обнаружения считается основной задачей стеганографии, по определению. Некоторые вопросы стегоанализа нами рассмотрены в пункте 2.5.

Диапазон действий активного нарушителя значительно шире. Скрытое сообщение может быть им удалено или разрушено. В этом случае Боб и, возможно, Алиса узнают о факте вмешательства. В большинстве случаев это противоречит интересам Вилли (например, по юридическим мотивам). Другое дело — удаление или разрушение цифрового водяного знака, которые могут рассматриваться как основные угрозы в этой области. Рассмотренные в пункте 2.2.2 атаки для удаления ЦВЗ как раз и реализуют эти угрозы.

Действия злоумышленного нарушителя наиболее опасны. Он способен не только разрушать, но и создавать ложные стего. История противостояния разведки и контрразведки знает немало примеров, когда реализация этой угрозы приводило к катастрофическим последствиям. Эта угроза актуальна и по отношению к системам ЦВЗ. Обладая способностью создавать водяные знаки, нарушитель может создавать копии защищаемого контента, создавать ложные оригиналы и т. д. Подобные атаки на протокол применения ЦВЗ описаны в подпункте 2.2.5. Во многих случаях нарушитель может создавать ложные стего без знания ключа.

Для осуществления той или иной угрозы нарушитель применяет атаки.

Наиболее простая атака — субъективная. Вилли внимательно рассматривает изображение (слушает аудиозапись), пытаясь определить «на глаз», имеется ли в нем скрытое сообщение. Ясно, что подобная атака может быть проведена лишь против совершенно незащищенных стегосистем. Тем не менее, она, наверное, наиболее распространена на практике, по крайней мере, на начальном этапе вскрытия стегосистемы. Первичный анализ также может включать в себя следующие мероприятия:

1. Первичная сортировка стего по внешним признакам.

2. Выделение стего с известным алгоритмом встраивания.

3. Определение использованных стегоалгоритмов.

4. Проверка достаточности объема материала для стегоанализа.

5. Проверка возможности проведения анализа по частным случаям.

6. Аналитическая разработка стегоматериалов. Разработка методов вскрытия стегосистемы.

7. Выделение стего с известными алгоритмами встраивания, но неизвестными ключами и т. д.

Подробное освещение этих мероприятий по разным причинам выходит за рамки нашей книги…

Из криптоанализа нам известны следующие разновидности атак на шифрованные сообщения [1]:

— атака с использованием только шифртекста;

— атака с использованием открытого текста;

— атака с использованием выбранного открытого текста;

— адаптивная атака с использованием открытого текста;

— атака с использованием выбранного шифртекста.

По аналогии с криптоанализом в стегоанализе можно выделить следующие типы атак.

— Атака на основе известного заполненного контейнера. В этом случае у нарушителя есть одно или несколько стего. В последнем случае предполагается, что встраивание скрытой информации осуществлялось Алисой одним и тем же способом. Задача Вилли может состоять в обнаружении факта наличия стегоканала (основная), а также в его извлечении или определения ключа. Зная ключ, нарушитель получит возможность анализа других стегосообщений.

— Атака на основе известного встроенного сообщения. Этот тип атаки в большей степени характерен для систем защиты интеллектуальной собственности, когда в качестве водяного знака используется известный логотип фирмы. Задачей анализа является получение ключа. Если соответствующий скрытому сообщению заполненный контейнер неизвестен, то задача крайне трудно решаема.

— Атака на основе выбранного скрытого сообщения. В этом случае Вилли имеет возможность предлагать Алисе для передачи свои сообщения и анализировать получающиеся стего.

— Адаптивная атака на основе выбранного скрытого сообщения. Эта атака является частным случаем предыдущей. В данном случае Вилли имеет возможность выбирать сообщения для навязывания Алисе адаптивно, в зависимости от результатов анализа предыдущих стего.

— Атака на основе выбранного заполненного контейнера. Этот тип атаки больше характерен для систем ЦВЗ. Стегоаналитик имеет детектор стего в виде «черного ящика» и несколько стего. Анализируя детектируемые скрытые сообщения, нарушитель пытается вскрыть ключ.

У Вилли может иметься возможность применить еще три атаки, не имеющие прямых аналогий в криптоанализе.

— Атака на основе известного пустого контейнера. Если он известен Вилли, то путем сравнения его с предполагаемым стего он всегда может установить факт наличия стегоканала. Несмотря на тривиальность этого случая, в ряде работ приводится его информационно-теоретическое обоснование. Гораздо интереснее сценарий, когда контейнер известен приблизительно, с некоторой погрешностью (как это может иметь место при добавлении к нему шума). В главе 4 показано, что в этом случае имеется возможность построения стойкой стегосистемы.

— Атака на основе выбранного пустого контейнера. В этом случае Вилли способен заставить Алису пользоваться предложенным ей контейнером. Например, предложенный контейнер может иметь большие однородные области (однотонные изображения), и тогда будет трудно обеспечить секретность внедрения.

— Атака на основе известной математической модели контейнера или его части. При этом атакующий пытается определить отличие подозрительного сообщения от известной ему модели. Например допустим, что биты внутри отсчета изображения коррелированы. Тогда отсутствие такой корреляции может служить сигналом об имеющемся скрытом сообщении. Задача внедряющего сообщение заключается в том, чтобы не нарушить статистики контейнера. Внедряющий и атакующий могут располагать различными моделями сигналов, тогда в информационно-скрывающем противоборстве победит имеющий лучшую модель.

Рассмотренные выше атаки имеют одну особенность: они не изменяют стегосообщения, посылаемые Алисой, а также не направлены на противодействие работы декодера Боба. В этом заключается их положительная сторона: действия Вилли вряд ли способны насторожить Алису и Боба. В пункте 2.2 будут рассмотрены атаки, польза от применения которых при передаче скрытых сообщений невелика. Они направлены, в основном, против систем защиты прав собственности на основе цифровых водяных знаков. Такие системы должны быть устойчивы (робастны) к незначительным изменениям стего.

Сравнение робастности стегосистем производится обычно по отношению к некоторым стандартным тестам. В качестве одного из них является атака, основанная на применении алгоритма сжатия JPEG (довольно неэффективная атака). Гораздо большее представление о достоинствах того или иного стегоалгоритма можно получить, комплексно используя различные атаки. Общедоступная в Интернете программа Stirmark позволяет более полно анализировать робастность стегоалгоритмов. По утверждению создателей программы на сегодняшний день не существует общеизвестного стегоалгоритма, устойчивого к их комплексным атакам.

Поэтому разработчиками придается большое значение обеспечению помехоустойчивости внедрения ЦВЗ. Это достигается, как правило, расширением спектра скрытого сообщения или применением помехоустойчивых кодов. Системы с расширением спектра широко применяются в связи для помехоустойчивой передачи сигналов. Но являются ли они достаточно помехоустойчивыми для применения в ЦВЗ? Оказывается, далеко не всегда. Рассмотрим предлагаемые исследователями методы атак и противодействия им.

Данный текст является ознакомительным фрагментом.