«Слон на веревочке» и «лифт в космос»
«Слон на веревочке» и «лифт в космос»
Едва ли не первое практическое применение воздушных шаров носило военный характер. В войнах конца XVIII века французские войска применили привязные воздушные шары для разведки расположения противника. Для подобных же целей они применялись и позднее, вплоть до минувшей мировой войны. В газетах военного времени часто сообщалось о подвигах героев-разведчиков и корректировщиков артиллерийского огня с привязных аэростатов наблюдения.
В памяти людей старшего поколения не изгладится картина ночного московского неба с сотнями смутно виднеющихся аэростатов заграждения — «колбас», как их тогда называли за форму. А днем эти гигантские «колбасы» по пустынным улицам Москвы водили, как слонов на веревочке, девушки — воины противовоздушной обороны. Эти «слоны-колбасы» днем мирно паслись за веревочной загородкой на многих площадях Москвы, даже в самом центре, на площади Свердлова, а вечером их поднимали на высоту четырех-пяти километров на стальных тросах.
Но не для войны рождены аэростаты, в том числе и привязные. У них немало дел на мирной земле.
Так уж складывается иногда судьба людей, что суждено им свершить, казалось, самое несбыточное. Когда совсем еще молоденький капитан Виктор Пикалкин предложил генералу разведывать и сообщать по рации с привязного аэростата, где расположены артиллерийские батареи и танковые колонны гитлеровцев, то к его предложению отнеслись недоверчиво. Но за три дня он обнаружил восемнадцать важных целей и только с помощью истребителей врагу, ошеломленному дерзостью советского разведчика, удалось сбить аэростат. Капитан благополучно приземлился на парашюте.
Не раз аэростаты играли роль корректировщиков: артиллерийский огонь по рейхстагу тоже корректировался с аэростата.
— Именно в те грозные дни, — говорит декан факультета Московского лесотехнического института доцент Виктор Михайлович Пикалкин, — зародилась у меня идея создания установки, которая теперь признана изобретением.
Установка предназначена для мирного дела — трелевки леса, то есть транспортировки срубленных на лесозаготовках деревьев к дорогам. Испытания установки проходили в 1970 году не случайно на Кавказе — почти треть лесов нашей страны находится в горных районах, где вести лесозаготовки трудно. После того как могучие деревья срублены, их тащат сотни метров с помощью тяжелых тракторов-трелевщиков по горному бездорожью. При испытаниях роль трактора легко выполнил… аэростат. Он завис над лесом, лесорубы зацепили срубленные деревья тросами, спущенными с аэростата, и он, как мощный кран, подтащил их к лесовозу на дороге. Вместо нескольких тяжелых часов — считанные минуты. Без повреждения леса и почвенного покрова. Гораздо дешевле. И главное, в недоступном районе.
Но почему только лес? У крана-аэростата широкое поле применения. У нас в стране аэростат с блеском решил сложную задачу установки крыши на высоченной заводской трубе.
Один советский школьник предложил электрический трактор с питанием через аэростат, а московский инженер — аэростатическую дождевальную машину, буксируемую трактором. Примеров много.
Интересно использовали привязной аэростат горняки Криворожья — они укрепили под ним мощные электрические лампы и подняли аэростат на высоту двести метров. В карьере, где добывается руда, ночью стало светло, можно было даже читать газету.
Помогают привязные аэростаты и науке. Известный французский океанограф Жак Кусто для изучения жизни китов стрелял в них маленькими гарпунами, прикрепленными длинным, в полтора километра, тросом к плавучему бую на поверхности океана. Чтобы не потерять буй из виду, к нему привязывали небольшой воздушный шар, за которым удобно следить с помощью радиолокатора. Так удалось изучить подводные перемещения китов и способы их выхода на поверхность. Когда советские ученые приняли участие в проведении международного «тропического эксперимента» в Атлантике, то наряду с искусственными спутниками «Метеор» были использованы и научно-исследовательские корабли, с которых, помимо прочего, запускали привязные аэростаты для изучения приводного слоя атмосферы.
Еще два примера службы аэростатов науке относятся к очень тонким и важным научным экспериментам, они приводятся для читателей — любителей физики. Может быть, в будущем они посвятят себя этим проблемам.
Первый пример связан с изучением взрыва — грозного явления, полезно служащего человеку, но иной раз выходящего из-под контроля. Изучать взрыв сложно: он протекает в ничтожные мгновения, с огромной скоростью, воспроизвести мощный взрыв в лаборатории нельзя.
Помог воздушный шар.
Итак, шар, диаметром десять метров, наполнили взрывчатой газообразной смесью и подвесили этого взрывоопасного «слона на веревочке» длиной около восьми метров. Затем воспламенили газ и с помощью высокоскоростной киносъемки установили, как протекает взрыв.
Во втором случае физики попытались использовать воздушный шар и вовсе для необычной цели — создания пространства, в котором не было бы магнитного поля. Магнитное поле Земли заполняет все вокруг, а ученым для решения ряда фундаментальных научных проблем необходимо для эксперимента хоть и небольшое, но полностью лишенное магнитного поля пространство. Оказывается, создать подобное «пустое» пространство фантастически сложно. Может быть, первые проблески успеха появились, когда решили использовать шары-каннибалы, разместить шар в шаре. Оба надувных шара были покрыты тончайшим слоем металла ниобия. Сначала шары были плотно упакованы, чтобы между их оболочками пространство было минимальным, а затем наружная оболочка охлаждена почти до абсолютного нуля, для чего ее поместили в жидкий гелий. При столь низкой температуре ниобий приобретает необычные, поистине сказочные свойства так называемой сверхпроводимости и, в частности, становится непроницаемым для магнитного поля, не пропускает его. После того как наружный шар был надут, образовавшееся между обеими оболочками пространство оказалось почти лишенным магнитного поля. Чтобы полностью от него избавиться, тот же процесс повторили с внутренней оболочкой. Уж внутрь нее магнитному полю проникнуть почти невозможно, тем более что процесс можно повторять еще и еще. Так были достигнуты рекордные результаты в «изничтожении» магнитного поля.
Привязные аэростаты могут помочь и в строительстве. В Ленинграде аэростаты помогают обычным строительным кранам — с их помощью удается поднять необычно большие грузы, на недостижимую другими способами высоту. В США с помощью двух привязных аэростатов удалось установить куполообразную кровлю строящегося здания за невиданно короткий срок. На ярмарке-выставке в Нью-Йорке в 1964 году изготовленную из стекловолокна крышу большого павильона площадью шестьсот квадратных метров удерживала гирлянда воздушных шаров! Секрет этого оригинального зрелища был понятен не всем — крыша опиралась, собственно, на невидимую стальную мачту, а шары натягивали балдахин крыши.
По одному из проектов перекрытия футбольного поля Центрального стадиона имени В. И. Ленина в Лужниках в Москве крыша должна поддерживать себя… сама! Для этого ее предполагают сделать состоящей из множества прозрачных полиэтиленовых подушек, наполненных гелием. Эти пневматические «кирпичи» нужно удерживать, иначе они улетят. Чтобы ветер не унес крышу-аэростат, ее прикрепят к опоясывающему верхнюю часть трибун железобетонному козырьку.
Интересную идею создания высотной заводской трубы высказал советский изобретатель, она запатентована в ряде стран. Мы уже рассказывали о надувных трубах, но тут речь идет о трубе летающей. Ее оболочку предложено наполнить гелием, и тогда труба в сотни метров высотой, выводящая дым и газы за облака, будет сама себя держать в воздухе.
И еще один, тоже весьма смелый проект разработан советскими учеными. Он касается проблемы использования даровой энергии струйных течений воздушных рек, обнаруженных в верхней атмосфере шарами-зондами, для производства столь нужной людям электроэнергии. Но как поднять на высоту десять — двенадцать километров ветряной двигатель? Для этого и предложено использовать «слона на веревочке» — привязной аэростат. Ни один стальной трос не удержит его в воздухе, и не будь химии, создавшей сверхпрочные синтетические волокна, проект не мог бы появиться. Но нужные тросы есть, и они вполне могут удержать рвущиеся под ураганным напором стратостаты — ветроэлектрические станции. Вес каждой станции мощностью до двух тысяч киловатт с ветровым колесом (тоже надувным) диаметром в несколько десятков метров и всем оборудованием достигнет тридцати тонн! Пока для испытаний создана серебристая модель станции-аэростата в одну десятую натуральной величины, но и она имеет длину десять метров и диаметр два с половиной метра.