§ 3.11 Частицы и античастицы, симметрия и асимметрия
§ 3.11 Частицы и античастицы, симметрия и асимметрия
Много и после того, как мир народился, и после
Дня появленья земли и морей и восшествия солнца
Тел накопилось извне, и кругом семена накопились,
В быстром полёте несясь из глубин необъятной вселенной…
Вплоть до тех пор, пока всё до предельного роста природа
Не доведёт и конца не положит вещей совершенству;
Что происходит, когда собирается в жизненных жилах
Столько же, сколько из них, вытекая наружу, исходит…
Ибо, чем больше предмет оказался в конце разрастанья
И чем обширнее он, тем и больше всегда выделяет
Тел из себя, разнося их повсюду во всех направленьях.
Тит Лукреций Кар, "О природе вещей", I в. до н. э. [77]
Проводя картографирование нижних уровней мироздания, следует учесть, что этаж элементарных частиц надо разделить на две противоположных, зеркально симметричных части: сектор частиц и сектор античастиц. Строение частиц прояснилось на основе геометрической модели их строения. Попробуем рассмотреть в геометрическом ключе и проблему античастиц. Если все частицы составлены, в конечном счёте, из электронов и позитронов (§ 3.9), то, строго говоря, античастица есть лишь у электрона: это позитрон. Именно эти две частицы будут ярко выраженными образцами материи и антиматерии. Ведь античастица — это не совсем антиматерия, а, скорее, частица, у которой всё наоборот: все заряды, образующие частицу, заменены противоположными. Электроны замещены позитронами, а позитроны — электронами. Однако, если у гаммона или октона заменить все частицы античастицами (вместо электронов поставить позитроны и наоборот), ничего не изменится (Рис. 119). Вот почему, некоторые нейтральные частицы не имеют античастиц: частица и античастица совпадают. Таковы нейтральный пион и ?-мезон. В них, как легко убедиться, инверсия знака зарядов (зеркальное отображение мира в антимир) даёт то же самое (Рис. 120). Выходит, лишь электроны и позитроны, придающие частицам заряд и магнитный момент, отличают частицы от античастиц. Так, если у мюона или протона заменить все электроны позитронами и, — наоборот, частица и античастица уже не совпадут, будучи отличны по числу электронов и позитронов, а, значит, и по знаку заряда. В протоне позитронов на один больше, чем электронов, а в антипротоне, имеющем отрицательный заряд, — на один меньше. То же и в мюонах ?+ и ?-.
Рассмотрим теперь нейтрон. В нём число электронов равно числу позитронов. Поменяв их местами, казалось бы, ничего не изменим. Но, на деле, нейтрон и антинейтрон отличаются. Похоже, что электроны и позитроны располагаются в нейтроне не симметрично. Об этом говорит уже тот факт, что нейтрон обладает магнитным моментом, который исчезал бы при симметричном размещении частиц. Наличие структуры и асимметричное расположение зарядов разного знака у нейтрона доказано и его зондированием. Оно выявило в нейтронах точечные заряды, — партоны, причём в центре нейтрона больше положительных зарядов, чуть дальше от центра преобладают отрицательные, а на поверхности — снова положительные [165]. У антинейтрона структура обратная. Зато у ?-мезона, как легко видеть (Рис. 120), распределение зарядов симметрично, потому и нет у этой частицы заряда, магнитного момента и античастицы.
О сложной пространственной структуре частиц говорит и асимметрия иных распадов: у многих частиц в магнитном поле б?льшая часть продуктов распада летит в неком избранном направлении. Эта асимметрия — следствие асимметричного строения частицы, ориентированной магнитным полем. Так, опыт показал, что ядра 60Co, ориентированные магнитным полем (направленным вверх), испускали электроны в ?-распадах преимущественно вниз (в 60 % случаев) [85, 86]. Та же асимметрия обнаружилась и в распадах элементарных частиц, таких как ?- и ?-мезоны, ?0-гиперон. Видно, процент распадов в данном направлении определяется формой, прочностью частицы в разных её участках или процентом частиц данной формы, испускающих продукты распада в данном направлении. Отметим, что В. Паули считал такую асимметрию невозможной, причём, — как раз потому, что принимал квантовую бесструктурную модель частиц и ядер. По той же причине он ошибочно отвергал идею спина, вращения частиц, имеющего прямое отношение к асимметрии их распадов (§ 3.19, § 5.7).
Итак, античастицы — это ещё не антиматерия. В них почти поровну материи (электронов) и антиматерии (позитронов). Это следует из отсутствия пар у истинно нейтральных частиц и того, что лишь у электрона контакт с античастицей ведёт к аннигиляции. Так, при контакте нейтрона с антинейтроном они не исчезают, а образуют протон и антипротон (аннигилируют лишь входящие в них электрон и позитрон). Протон и антипротон при контакте тоже не исчезают, а образуют каскад пионов. Это — естественно, если протоны, как многие другие частицы, состоят из крупных блоков в виде мюонов и пионов, — обычных продуктов распада (§ 3.8). Выходит, раз в случае антипротонов нет аннигиляции, то их не следует считать антиматерией.
И, всё же, античастицы из истинной антиматерии существуют: это позитроны и образующие их ареоны (§ 3.20). Какова же природа этой самой антиматерии, — материи и массы со знаком минус? По одной из гипотез, античастицы представляют собой те же частицы, только движущиеся назад во времени. Вот почему античастицы (позитроны) движутся под действием ударов потока реонов в сторону, обратную движению частиц (электронов). Впрочем, этот вопрос выходит далеко за рамки современной физики, поэтому рассмотрим его подробней ближе к концу книги (§ 5.6).
Пока же отметим, что, возможно, эта временн?я асимметрия и порождает асимметрию свойств электронов и позитронов, от которой электроны часто встречаются в свободном состоянии и образуют оболочки атомов, тогда как позитроны в свободном состоянии отсутствуют, зато преобладают в связанном виде внутри ядер, протонов, придавая им положительный заряд. Объяснить эту асимметрию мира можно, вспомнив о возможной асимметрии параметров частиц (§ 1.17): если радиус электрона r, и он испускает в единицу времени N реонов, то у позитрона радиус чуть больше R=r+?, и испускает он ежесекундно n ареонов. Поскольку сила F=knr2 воздействия одного заряда на другой пропорциональна числу испускаемых первым частиц — на сечение (квадрат радиуса) второго (Рис. 45), то всего существует четыре разных силы:
1) сила отталкивания электрона другим электроном F1=kNr2=knr2(1+2?/r+?2/r2);
2) сила отталкивания позитрона другим позитроном F2=knR2=knr2(1+2?/r+?2/r2);
3) сила притяжения электрона позитроном F3=knr2;
4) сила притяжения позитрона электроном F4=kNR2=knr2(1+4?/r+6?2/r2).
Причём, асимметрия, разница размеров, как нашли выше, составляет ничтожную величину ?/r=10–21 (§ 1.17). И, всё же, именно эта ничтожная разница, асимметрия размеров и сил, судя по всему, и приводит к асимметрии структуры нашего мира, порождая атомы с положительно заряженными ядрами — в окружении отрицательно заряженных электронов, которых много больше, чем свободных позитронов. Действительно, при указанном соотношении сил, позитрон всегда будет притягиваться нейтральной системой зарядов с удельной (приходящейся на единицу массы нейтральной частицы) силой W=F4—F2=2knr?=2F?/r, а электрон будет отталкивается с удельной силой W=F1—F3=2knr? (Рис. 123). Вот почему в нашем мире много электронов, образующих электронные оболочки атомов, а позитронов в свободном состоянии практически нет. По той же причине, ядра атомов заряжены положительно: в мире много протонов и крайне мало антипротонов.
Рис. 123. Притяжение позитронов с удельной силой W к нейтральной системе, сложенной из сотен электронов и позитронов, ведёт к образованию протонов, а отталкивание электронов с силой W вызывает распад нейтронов.
Электронов и позитронов во Вселенной, как говорилось, поровну (§ 1.6), но нейтральные частицы притягивают позитроны, образуя тяжёлые положительно заряженные частицы (протоны, ядра), и потому позитронов нет в свободном состоянии. А электроны, напротив, отталкиваются нейтральными частицами, и потому в нашем мире полно свободных электронов, образующих оболочки атомов, и нет свободных позитронов: все они связаны в протонах ядер. Эти силы W, нарушающие симметрию, крайне малы, но за необозримое время существования Вселенной они вполне могли привести системы элементарных частиц в состояние с наименьшей энергией, наблюдаемое ныне. Похожая ситуация имеет место и в мире атомов химических элементов: часть их пребывает в свободном, а часть — в связанном состоянии, за счёт разницы стягивающих атомы химических сил. Так, на Земле много свободного кислорода в виде молекул, атомов и отрицательных ионов, тогда как атомы водорода и его положительные ионы встречаются лишь в связанном виде (в составе воды и её кристаллов).
Асимметрия свойств позитронов и электронов (Рис. 124) вызвана тем, что для них все процессы идут противоположно, причём у обоих есть стандартный критический радиус r0 (§ 1.5). Электрон, согласно Ритцу, постоянно сыплет реонами. Зато поглощать реоны, приходящие извне, он начинает лишь став меньше критического радиуса r0 (так и ядра хорошо поглощают протоны и нейтроны, лишь сократившись до критического радиуса, при котором синтез энергетически эффективен). Поэтому электрон теряет массу, покуда не съёжится до критического размера, а по его достижении, приток реонов уже компенсирует их утечку, и радиус r0 становится равновесным.
Рис. 124. Асимметрия элементарных зарядов. Электрон и позитрон стремятся к равновесному радиусу r0, имея, один дефицит радиуса, а другой — его избыток.
Так же поддерживается стандартный радиус r0 позитрона. Но, поскольку позитроны — полная противоположность электронов, то для них испускание реонов соответствует поглощению ареонов (антиреонов), а поглощение реонов — испусканию ареонов (испускание частиц эквивалентно поглощению античастиц [139]). И потому позитроны непрерывно поглощают ареоны, а, по превышении критического радиуса r0, начинают распадаться, испуская ареоны и теряя вместе с ними массу, пока вновь не съёжатся до равновесного радиуса r0 (так же и ядра имеют критический радиус, превысив который, они эффективно распадаются). В силу инерционности процесса, реальный радиус R позитрона всегда чуть больше равновесного r0, поскольку у возбуждённого состояния частиц есть конечное время жизни, запаздывания, по прошествии которого позитрон и начинает распад. Поэтому, прежде чем позитрон начнёт испускать ареоны, он успеет ещё немного поглотить их из внешнего потока. Распад позитрона всегда отстаёт от синтеза, отчего его радиус R чуть выше критического: R=r0+?/2.
Электрон, напротив, постоянно испускает реоны, а поглощает их, лишь уменьшив радиус до r0, тем самым поддерживая размер возле этого равновесного значения. Но и здесь полное равновесие недостижимо: реальный радиус r=r0—?/2 электрона чуть меньше критического, поскольку, в силу инерции, синтез отстаёт от распада. Электрон и позитрон стремятся к равновесному радиусу r0 с разных сторон, и никогда его не достигают. Отсюда ясно, почему электроны испускают больше частиц N=n(R/r)2, чем позитроны. Электроны источают частицы непрерывно, а позитроны — очередями, по превышении радиуса r0. Выше нашли для электронов Nr2=e2/??0mc, а, раз эта величина константа, то и для позитронов nR2=e2/??0mc=Nr2. Электрон и позитрон, периодически испытывающие незначительные сжатия и расширения, как бы дышат, впитывая и испуская потоки реонов, что и поддерживает их стандартный размер. Так же и человек, несмотря на постоянное вдыхание и выдыхание воздуха, в среднем не меняет объём и массу, поскольку эти процессы точно сбалансированы. Интересно заметить, что ещё в Древней Индии сформировалась подобная идея Вечного Дыхания (вечного движения), исходящего из невидимого огненного зародыша, а после вновь поглощаемого им (см. "Станцы Дзиан"). Поскольку "огнём" древние часто называли электричество, а "дыханием" — эфир (акашу, § 3.21), излучаемый неким источником, то не есть ли это символическое представление электрона, испускающего и впитывающего потоки реонов?
Не случайно идею такого динамического поддержания равновесного размера тел давно выдвигал и ученик индийских мудрецов, Демокрит (см. эпиграф § 3.11), который тоже связывал это с направленным течением времени. По сути, он изложил модель постоянно испускающего частицы электрона, попутно поглощающего сходящиеся к нему со всех уголков Вселенной потоки тех же частиц, что компенсируют утечку и поддерживают равновесный размер электрона (§ 1.5). Тем самым, электрон можно уподобить бочке Данаид, также расположенной по греческой мифологии на нижнем этаже мироздания. В эту мифологическую дырявую бочку, сколько ни наливай воды, — её не заполнишь доверху. В такой бочке, с приближением к верхнему критическому уровню, интенсивность потока уходящей воды растёт под напором давления. Позитрон же, напротив, можно сравнить с другим типом бочки, в которую постоянно льются потоки дождя, и, несмотря на беспрерывное вычёрпывание воды из неё, уровень не может упасть ниже критической отметки. Ещё лучше сравнить позитрон с плавающей лодкой (бочкой), имеющей широкую пробоину, сквозь которую постоянно втекает вода, и — тем интенсивней, чем ниже уровень воды в лодке. Поэтому, сколько ни вычёрпывай воду, та не опустится ниже некого предельного уровня.
Таким образом, несмотря на то, что антимир (сектор античастиц) — это зеркальная копия мира (сектора частиц), такое зеркальное изображение объектов мира не является их точной копией. Кроме того, что в зеркальном антимире меняются знаки зарядов, правое переворачивается на левое, а прямое движение становится попятным, несколько отличаются и размеры частиц, словно зеркало не плоское, а чуть-чуть вогнутое, отчего электрон отображается в виде увеличенного обратного изображения (позитрона), притягивающего электрон по законам электростатики [137, с. 86]. При этом, за счёт малости искажений, соблюдается точное сохранение пропорций и равенства количеств объектов и их изображений. Число электронов в точности равно числу позитронов. К вопросу о природе античастиц и антимира, о причинах асимметрии их свойств со свойствами мира частиц, ещё вернёмся в дальнейшем (§ 3.15, § 5.6).