§ 4.8 Опыт Франка-Герца
§ 4.8 Опыт Франка-Герца
Когда разность потенциалов достигнет 4,9 В, электроны при неупругом столкновении с атомами ртути вблизи сетки отдадут им всю свою энергию… Аналогичные опыты в дальнейшем были проведены с другими атомами. Для всех них были получены характерные разности потенциалов, называемые резонансными потенциалами.
А.Н. Матвеев, "Атомная физика" [82]
Итак, энергия не излучается и не поглощается атомом в виде фотонов, квантов света. Нет "квантовых явлений", которые нельзя бы было истолковать в рамках классической физики. Но и внутри атомов энергия электрона не квантуется, не меняется дискретно, вопреки квантовой механике. Дискретное изменение энергии в атоме обычно доказывают дискретным спектром атомов (излучаемый атомом спектр частот создаётся, якобы, переходами между постоянными уровнями энергии) и опытом Франка-Герца. Как помним, дискретный спектр излучения связан, в действительности, не с уровнями энергии, а с наличием у электронов собственных частот колебаний в магнитном поле атома (§ 3.1). Поэтому, и опыт Франка-Герца, видимо, связан с этими резонансными частотами атома. В этом опыте выяснилось, что атомы поглощают энергию порциями [82, 134]. Это следовало из того, что электроны, разгоняемые электрическим полем, при столкновении с атомами, — отдавали им свою энергию E, едва она достигала значения E1, равного первому резонансному потенциалу атома (минимальной энергии электрона необходимой для возбуждения атома). Уже само упоминание резонанса говорит о том, что потеря электроном энергии вызвана совпадением частот. В самом деле, электрон с энергией E, столкнувшись с атомом, либо отскочит, либо на время с ним соединится, угодив в магнитную ловушку атома и начав обращаться с частотой f=E/h. Повращавшись в обществе атома, он может его покинуть, сохранив свой запас энергии.
Но всё будет иначе, если частота обращения f этого внешнего электрона совпадёт, войдёт в резонанс с частотой собственных колебаний одного из внутренних электронов, сидящих в узлах атома (Рис. 159). Тогда, внешний электрон, кружась, станет своим периодичным воздействием, при регулярном сближении, сильно раскачивать узловой, и, передав ему свою энергию, покинет атом — с заметно меньшим её запасом. А колеблющийся, внутренний электрон начнёт постепенно терять энергию в виде излучения с частотой f своего кружения в узле, пока не замрёт там. Вот почему, едва электроны наберут в ускоряющем поле критическую энергию E1, они сразу её теряют, вызывая свечение газа на частоте f=E1/h первой резонансной линии [134].
Рис. 159. Опыт Франка-Герца: уход энергии электрона в излучение при резонансе.
Отметим, что в случае, если энергия захваченного электрона больше резонансного потенциала, он уже не сможет возбудить колебания внутреннего электрона, поскольку будет вращаться с большей частотой. Усовершенствованный опыт Франка-Герца, действительно, показал, что если электрон влетает в газ уже с энергией, большей резонансного потенциала, он эту энергию не теряет, и ток электронов не снижается [134]. Это ещё раз доказывает резонансный характер явления: атом не может забрать энергию у электронов не только с энергией, меньшей критической, равной резонансному потенциалу, но и с большей. В противоположность этому, ионизацию атома, отрыв от него электрона, как показали опыты, способны производить и электроны с энергией, большей потенциала ионизации Eи. Это соответствует классической теории, поскольку в отличие от возбуждения излучения, ионизация атома вызывается чисто механическим ударом электрона по атому. Но это явление ударной ионизации — в корне противоречит квантовой теории атома Бора, по которой атом, с его дискретной системой уровней, способен поглощать только строго определённые порции энергии, как при возбуждении, так и при ионизации.
Впрочем, кванторелятивисты выдумали следующую уловку. Если электрон имеет энергию E, большую потенциала ионизации Eи, то его энергия может быть поглощена атомом, независимо от значения E, поскольку выше Eи спектр энергий атома становится из дискретного — сплошным, так как энергия электрона вне атома может быть произвольной [134]. Это якобы подтверждает и то, что линейчатый спектр излучения атома становится сплошным — после достижения границы серии f? (так, у водорода это частота f?=Rc(1/n2–1/m2)=Rc/n2, для которой m=? [74]). Но это, именно, — уловка, ибо она противоречит постулату Бора о порционном захвате энергии атомом. Ведь электроны вне атома уже не имеют отношения к его энергетическому спектру, и надо отдельно рассматривать дискретные скачки энергии электрона внутри атома и непрерывные её вариации уже после ионизации и поглощения энергии Eи. То есть, квантовая трактовка не проходит, зато классическая легко объясняет как ионизацию, так и сплошной спектр, примыкающий к границе серии. Сплошной спектр генерируют электроны, захваченные магнитным полем атома, когда крутятся в нём с частотой f=E/h и излучают на этой частоте (§ 3.1). От излучения их энергия E убывает, и плавно снижается частота f излучения электрона, по мере расширения витков его орбиты. Так атом генерирует сплошной спектр. Но, едва частота вращения f снизится до значения f? (до предельной частоты излучения в спектральной серии), как внешний электрон, за счёт резонанса, станет быстро отдавать свою энергию внутренним, узловым электронам (с собственными частотами ~f?), как в опыте Франка-Герца. Поэтому, внешний электрон, отдав им энергию и потеряв скорость, уже не удерживается силой Лоренца. Он отрывается от атома, перестав вращаться и излучать, а генерируемый им сплошной спектр обрывается на границе серии f?.
Тем самым, ещё один фундаментальный опыт, доказывающий будто бы, что энергия излучения и электрона в атоме квантуется, принимая лишь дискретный ряд значений, как оказалось, можно легко истолковать с классических позиций, если принять магнитную модель атома Ритца. Энергия электрона в атоме меняется непрерывно, а мнимая дискретность вызвана связью частоты колебаний электрона и его энергии, а, также, — дискретным рядом частот, которые может излучать атом из-за дискретного распределения в нём узловых электронов. Возможно, поэтому многие учебники избегают упоминаний о резонансных потенциалах, наводящих на мысль о резонансе частот, и говорят о них как о критических потенциалах или потенциалах возбуждения.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава I Боевой опыт дирижаблей в империалистическую войну 1914–1918 гг.
Глава I Боевой опыт дирижаблей в империалистическую войну 1914–1918 гг. Еще в. войне 1912 г. итальянцы успешно применили для разведки и бомбометания малые управляемые аэростаты. В империалистическую войну 1914–1918 гг. дирижабли получили широкое и всестороннее боевое
10. Опыт красвоенлетов
10. Опыт красвоенлетов Чем обогатили школу воздушного боя первые красные истребители?Они доказали, что, обладая мужеством и беззаветной верой в правое дело, можно выйти из боя победителем. Летая на крайне изношенной технике, в боях при численном перевесе технически лучше
6. Опыт тридцатых годов
6. Опыт тридцатых годов Около двух лет разделяют последний бой в небе Китая и первый воздушный бой Великой Отечественной войны. Защитникам Родины 1941 года наши летчики-добровольцы тридцатых годов оставили ценнейший боевой опыт, который заключался в следующем.Перед
8.1. Опыт изобретателей и его использование
8.1. Опыт изобретателей и его использование Опыт, накопленный поколениями новаторов, овеществлен в технике и технологиях. Но он не только окружает нас, скрытый во всех достижениях цивилизации. Он действительно собирается в патентах, хранящихся в патентных библиотеках. В
8.5. Отраслевой и межотраслевой опыт. Понятие передовой области техники
8.5. Отраслевой и межотраслевой опыт. Понятие передовой области техники В организациях, занимающихся техникой, постоянно происходит накопление информации о разработках и новшествах. Этим, как правило, занимаются специально выделенные службы — например, бюро научно —
Опыт учит артиллеристов
Опыт учит артиллеристов Целые столетия артиллеристы и инженеры бились над тем, чтобы сделать артиллерийское орудие технически совершенным. Сколько усилий потребовалось на это! Сколько потребовалось горьких опытов! Но они не пропали даром. Современная артиллерия может
Опыт воссоздания американской ракеты «Сайдуиндер». Ракеты маневренного воздушного боя
Опыт воссоздания американской ракеты «Сайдуиндер». Ракеты маневренного воздушного боя Американская ракета «Сайдуиндер». Это очень интересная в инженерном плане ракета, имеющая целый ряд поистине гениальных решений, найденных одним человеком. Его фамилия Макклин, он
ПУТЬ В ОКЕАН (ОПЫТ ПЕРВЫХ ПОХОДОВ)
ПУТЬ В ОКЕАН (ОПЫТ ПЕРВЫХ ПОХОДОВ) Говоря об искусстве управления кораблем, я позволю себе сделать маленькое отступление. Когда мне впервые довелось выйти в море на одной из новейших атомных подводных лодок, первое, что поразило меня, это ее управляемость под водой на
Опыт лунной программы
Опыт лунной программы Мы привыкли к полетам на орбитальные станции. Но ведь в принципе возможны и полеты на другие планеты. Но почему только в принципе? Еще лет двадцать назад в различных книгах, статьях можно было прочитать о том, что развитие пилотируемой космонавтики
6.5.1. Зарубежный опыт сертификации программно-математического обеспечения
6.5.1. Зарубежный опыт сертификации программно-математического обеспечения В авиационной промышленности накоплен многолетний опыт конструирования, производства, монтажа и применения аналогового оборудования и систем, в том числе выполняющих в полете критические
Немецкие управляемые бомбы. Опыт и результаты боевого применения
Немецкие управляемые бомбы. Опыт и результаты боевого применения За редким исключением, первое боевое применение даже новых модификаций летательных аппаратов редко обходится без неприятных «сюрпризов». О принципиально новых видах оружия и средствах поражения речи
Глава 9 ОПЫТ РАБОТЫ РОССИЙСКИХ РЕГИОНАЛЬНЫХ ОКУ
Глава 9 ОПЫТ РАБОТЫ РОССИЙСКИХ РЕГИОНАЛЬНЫХ ОКУ Исторически сложилось так, что до реструктуризации АО-энерго почти все функции ОКУ в регионах выполняли их энергосбытовые подразделения. Некоторые функции, связанные со сбором и обработкой информации автоматизированных
Глава 12 ЗАРУБЕЖНЫЙ ОПЫТ ОРГАНИЗАЦИИ ОКУ
Глава 12 ЗАРУБЕЖНЫЙ ОПЫТ ОРГАНИЗАЦИИ ОКУ Бизнес в сфере измерений, соответствующий ожиданиям российских бизнесменов и специалистов, существует пока очень в немногих странах. Среди них прежде всего следует отметить Великобританию и США. ОКУ как отдельного бизнеса нет