Опыт воссоздания американской ракеты «Сайдуиндер». Ракеты маневренного воздушного боя

We use cookies. Read the Privacy and Cookie Policy

Опыт воссоздания американской ракеты «Сайдуиндер». Ракеты маневренного воздушного боя

Американская ракета «Сайдуиндер». Это очень интересная в инженерном плане ракета, имеющая целый ряд поистине гениальных решений, найденных одним человеком. Его фамилия Макклин, он служил в Военно-морском флоте США. Взяв за основу неуправляемую ракету, он создал очень интегрированную, чрезвычайно экономную конструкцию.

Весьма остроумной была система стабилизации. На оперении были поставлены роллерончики — небольшие диски, которые вращались от набегающего воздушного потока. Они раскручивались и, тем самым создавая гироскопический момент, стабилизировали полет ракеты по крену.

Ракета эта имела большое удлинение, поэтому обладала большой статической устойчивостью, и на ней не надо было ставить классический автопилот.

Автопилот «Сайдуиндера» не имел обратной связи по рулям. Им была придана такая форма, что на них возникал значительный аэродинамический шарнирный момент, который обычно старались, наоборот, снизить. Этот момент — зависящий, естественно, от скоростного напора, непосредственно нагружал привод рулей, так что при их вращении создавалась аэродинамическая обратная связь. Когда строишь классический автопилот ракеты, ты должен найти способ перестраивать коэффициент автопилота в зависимости от скоростного напора. А в «Сайдуиндере» автоматически шла самонастройка по этому параметру за счет шарнирного момента. Это тоже очень интересное инженерное решение.

Оригинально была сделана и тепловая головка самонаведения. За счет вращения одной из ее деталей создавался гироскопический момент, который стабилизировал положение фотоэлемента. Но этот «гироскоп» не существовал в виде отдельного узла. Вращалось само зеркало фотоприемника, и поэтому не надо было делать отдельный гиростабилизатор, поскольку зеркало и давало эффект гироскопической стабилизации.

Наконец, в «Сайдуиндере» применялись «горячие» привода — на пороховых газах, в то время как у нас они работали на сжатом воздухе. Пороховая шашка сгорала, наполняя газами аккумулятор давления, который затем раскручивал турбину, питающую головку самонаведения, и одновременно горячий газ поступал на рулевые машинки, управляющие плоскостями рулей ракеты…

В общем, «Сайдуиндер» — яркий пример того, как один человек в комплексе продумал и объединил широкий ряд оригинальнейших решений.

Ракета эта была создана для самолетов ВМФ и продана Тайваню вместе с самолетами F-105, которые поступили на вооружении этой страны. Когда возник конфликт между Китаем и Тайванем в Тонкинском проливе из-за лежащих в нем островов, он перерос в военные столкновения F-105 с китайскими истребителями — нашими МиГ-17, стоявшими на вооружении Китая. И вот в этих столкновениях впервые в истории была применена ракета класса «воздух — воздух». Было сбито несколько китайских истребителей, но некоторые ракеты не взорвались и упали на территорию Китая. В это время отношения между нашими странами еще не были испорчены, только начинала нарастать напряженность — и китайцы, получив эти ракеты, передали одну из них нам.

Так «Сайдуиндер» попал в НИИ-2, в мой отдел. Мы стали изучать его и впервые столкнулись с теми оригинальнейшими решениями, о которых я рассказал выше. Быстро разобрались, как работает головка самонаведения, хотя от зеркальца остался только кусочек. Зато хорошо сохранился фотоэлемент. Хорол оперативно воспроизвел электронно-оптическую часть, но мы долго не могли понять, как вращается зеркало-«волчок». Ясно было, что мы столкнулись с каким-то электродвигателем, но его конкретное устройство оставалось непонятным. За дело взялся профессор М. И. Романов из МИФИ, специалист по электроприводам. Он быстро разгадал загадку. На зеркальце был закреплен магнит, и когда ток проходил по обмотке статора, магнитик этот затягивался возникавшим магнитным полем и зеркало начинало вращаться. В это время сам же движущийся магнитик производил переключение — ток подавался на следующую обмотку — и так, вращаясь, магнитик переключал ток на очередные обмотки. Обмотка же располагалась в корпусе ракеты, образуя статор электродвигателя. Романов посмотрел на нас и сказал:

— Ребята, это же патефонный синхронный двигатель…

Оказывается, когда-то до войны у нас на этом принципе были созданы патефоны.

А мы ничего не могли понять потому, что китайцы умудрились выковырять обмотку статора из заливавшего ее компаунда. И когда нам вдогонку прислали пук проводов, мы не понимали, как они включались. Хорошо, Романов помог.

Как действует рулевая машина, понять не могли, пока не получили крышку. Сначала китайцы нам ее просто не дали, а мы были уверены, что именно в ней должен находиться потенциометр обратной связи, поскольку больше нигде его не было. Мы уже поняли, что привод работает от пороховых газов, однако он же не может просто «хлопать» рулями, а должен отклоняться пропорционально сигналам, но для этого нужна обратная связь. Начали слать в Китай запросы: «Пришлите крышку!» В конце концов нашли, прислали, и — никакого потенциометра в ней не оказалось. Но в это время в ЦАГИ в аэродинамической трубе продули рули. А мы привыкли: когда получаем данные по продувке своих рулей, то шарнирные моменты по углу атаки ракеты и по отклонению руля всегда небольшие, потому что его стараются всегда сбалансировать так, чтобы на привод не было нагрузки от несимметрии обтекания его воздушным потоком. Тут же вдруг получаем какой-то фантастический момент по отклонению руля, который показывает, что при отклонении возникает очень сильный дисбаланс нагрузок. В ЦАГИ продувками занимались известные специалисты В. И. Шурыгин и А. Ф. Митькин. Я приехал к ним и говорю:

— Вы неправильно продули. У вас ошибка на порядки цифр.

— Этого не может быть, — засмеялись они, — слава Богу, дуем уже почти сто лет, методика отработана. Но, если хочешь, продуем вторично.

Подтвердились первоначальные данные. И вот тогда-то меня осенило, что за счет формы руля и возникает обратная связь — чисто аэродинамическая. А значит, не нужен потенциометр, одновременно получается автоматическая настройка передаточных коэффициентов по скоростному напору…

Вот за такие блестящие инженерные решения, по моему мнению, американцу Макклину надо было бы поставить памятник при жизни. Ибо они кардинально повлияли на всю ракетную технику в мире. Все французские разработки ракеты «Мажик» фирмы «Матра» скопировали линию «Сайдуиндера». Все израильские ракеты класса «воздух — воздух» малой дальности повторили эту же линию. Все противотанковые ракеты, которые строились в знаменитом Конструкторском бюро приборостроения (КБП) в Туле А. Г. Шипуновым, — переносные ЗУРы С. П. Непобедимого «Стрела», «Игла» — они тоже строились по идеологии «Сайдуиндера». Так же, как и американские «Стингеры»… Макклин создал целую эпоху в ракетной технике.

Нам была поставлена задача скопировать эту ракету — один к одному, ничего не меняя. Мы это сделали и появилась ракета К-13, которая поступила на вооружение МиГ-21. Она широко продавалась и поставлялась, в частности, в Египет, Сирию и т. д. В 1972 году, когда шли воздушные бои между израильтянами и египтянами, то первые применяли «Сайдуиндеры», а вторые — К-13. Самое интересное, что партия К-13 попала как-то к израильтянам. Они поставили их на пусковые установки «Сайдуиндеров» и стреляли К-13, как своими. Но оказалось, что К-13 мы сделали лучше: наш фотоприемник имел большую чувствительность, меньше уровень пороговых шумов и потому — более устойчивый захват цели. Мы не только скопировали «Сайдуиндер», но и по ряду параметров улучшили его. Для нас эта ракета стала хорошей школой, которая позволила понять философию и технологию американской техники.

Но «Сайдуиндер» все же остался неким отдельным «выбросом» в мире ракет, потому что, к примеру, известная американская фирма «Хьюз», которая строила первые ракеты класса «воздух — воздух», не пошла по этому пути. «Хьюз», как и мы, строили ракеты классического типа: самонаведение с полной обратной связью, автопилот и т. д. Головка — это самостоятельный прибор, рулевой отсек, автопилот — все разрабатывались, как отдельные компоненты, которые объединились инженерными решениями.

Но ракеты класса «воздух — воздух» ВМФ США продолжали строить по типу «Сайдуиндера», во множестве модификаций для палубных истребителей. Счет шел на десятки типов и даже последняя ракета AIM-9X, созданная в 90-х годах, несет в себе все признаки предшественницы ракеты 50-х годов. Просто совершенствовалась головка самонаведения…

Когда я был в США по приглашению «Хьюза», сказал американцам:

— Вы, похоже, попали в плен собственной схемы, так долго строя ракеты по образу и подобию «Сайдуиндера».

— Да, — согласились со мной. — Но нам она нравится и по сей день.

«Сайдуиндер», как я уже говорил, — длинная ракета, а потому очень «вялая», с замедленной реакцией. Когда мы столкнулись с проблемой ближнего маневренного боя, то поняли, что нужно делать сверхманевренную ракету. Говоря в терминах частотных характеристик, «полоса пропускания частот контура стабилизации должна быть в несколько герц», тогда как у «Сайдуиндера» она была ограничена полутора герцами. Нам, как ни крутись, надо было отказаться от идеи Макклина. Но американцы так и не решили проблему ракеты ближнего маневренного боя. Ее решил Советский Союз, когда мы создали на базе К-5 ракету К-55. Ее сделал наш институт и совместно с Д. М. Хоролом (ОКБ «Геофизика») она была принята на вооружение на МиГ-21 и выпущены довольно большие ее партии. Позже Бисноват сделал К-60 и К-73.

Ракеты класса «воздух — воздух» классифицируются так: ракеты малой дальности и маневренного воздушного боя, ракеты средней и ракеты большой дальности. Для перехватчиков типа Ту-128, позже — МиГ-31 используются дальние ракеты, уничтожающие цели на расстоянии до 100 км и больше. Это, фактически, зенитная ракета, поставленная на самолетную платформу. Ракеты встречного воздушного боя — средней дальности — рассчитаны на десятки километров — 30–40 км. А ближнего боя — не более 10 км.

Кстати, необходимость создания ракет ближнего маневренного боя возникла в ходе арабо-израильских столкновений, когда в процессе сближения истребители выходили на малые расстояния — до нескольких километров. Пушка еще не эффективна… А «Сайдуиндер» и был спроектирован на такой диапазон дистанций. Американцы как бы удлиняли «поражающую руку» — пушку, и последующее ее развитие было подчинено прикрытию ближней зоны, в которой находится истребитель при встрече с целью. Но, красиво решив инженерные задачи и, тем самым, значительно удешевив ракету, они оказались в плену ее плохой динамики. Но ближний маневренный бой стимулировал создание динамичных ракет, способных работать на очень больших углах атаки. Самолет, образно говоря, в момент атаки мог «смотреть» и лететь в другую сторону от цели, а ракета должна была сойти и совершить мощные маневры, чтобы выйти в нужные положения. Поэтому, в частности, ей требуется мощное эффективное управление, чтобы, едва сойдя с направляющих, она могла сразу энергично развернуться на цель. Схема «Сайдуиндера» не позволяет этого делать принципиально. Для решения задач маневренного боя годятся только «короткие» ракеты с газодинамическим управлением. Идеология такого узла управления тоже была заложена и отработана в нашем институте.

Мне удалось привлечь к работе над ним одного из аспирантов МВТУ- Владимира Михайловича Бобылева, который защищал кандидатскую диссертацию на тему регулирования критического сечения сопла порохового двигателя. Он прекрасный специалист в области внутренней баллистики, процессов горения — кстати, ученик академика Я. Б. Зельдовича. Так вот, Бобылев — и по сей день один из немногих ученых, кто занимался процессами внутренней баллистики ракетных пороховых двигателей. Его-то я и сманил в свой отдел, после чего он привел своих учеников, и было создано целое подразделение по двигателям ракет «воздух — воздух», которое сыграло очень большую роль в формировании облика их энергоустановок, аккумуляторов порохового давления, выбора пороховых зарядов и т. д. Вот они и отрабатывали принципы газодинамического управления малых ракет весом меньше ста килограммов.

Так были созданы первые ракеты маневренного воздушного боя К-60, а в последующем и К-73. К тому моменту, когда создавали К-73, Бисноват умер. Тесные связи, которые у нас возникли с его ОКБ, существуют и по сей день, а К-73 не имеет аналогов в мире. Ее сейчас закупают многие страны, в том числе Южно-Африканская Республика. В общем, ракеты класса «воздух — воздух» маневренного боя родились у нас в России. Сейчас они в какой-то мере повторены в Израиле на фирме «Рафаэль». Ее изделия по своим параметрам близки к нашим, но К-73 все-таки превосходит их. Франция пытается строить такие ракеты на фирме «Матра».

Что касается К-8, то она по сути дела закрыла работы по К-6 и К-7. К-6 делал П. Д. Грушин, а К-7 — И. И. Торопов. Обе эти ракеты работали «по лучу» и очень быстро стало ясно, что на тех расстояниях, на которых работала К-8, случайные ошибки от раскачки луча не позволяли достичь нужной точности. К тому же движения в луче ограничивалось задней полусферой цели, что резко снижало возможности перехвата, особенно на пересекающихся курсах, не говоря уж о встречных. А К-8 с головкой самонаведения эти проблемы решала просто: как только она «увидела» цель — можно стрелять. Радиолокационная головка «видит» цель со всех направлений. Первые тепловые ракеты «видели» только факел двигателя, но по мере совершенствования фотоприемника они стали работать и в передней полусфере по кинетическому нагреву и т. д. Сегодня тепловые ракеты — тоже всеракурсные. Нам же — и моему отделу, и институту — К-8 дала возможность почувствовать все необходимые технологии, связанные с разработкой этого класса оружия.

Параллельно институт вел работы по самонаведению истребителей. Были выпущены два постановления правительства по созданию систем автоматического наведения истребителя на цель в режиме перехвата: «Ураган-1» и «Ураган-5». Начиналось все с «Урагана-1», где рассматривался только этап автоматического самонаведения истребителя по данным его радиолокационной станции — так называемое бортовое наведение. При этом велась пушечная стрельба и наведение на цель по лучу первых ракет К-5 и К-5М.

А «Ураган-5» осуществлял уже полное автоматическое наведение истребителя сразу с момента взлета. На этапах набора высоты, командного наведения по директорным приборам и вплоть до выхода на захват цели бортовой РЛС управление шло с земли, а дальше начиналось уже автоматическое самонаведение. «Ураган-1» создавали для Су-9, Су-11, «Ураган-5» — для Су-15, ЯК-28.

Таким образом, в институте стала формироваться теория самонаводящихся систем и для истребителей. Ею занимался коллектив лаборатории № 2 под руководством Евгения Ивановича Чистовского, а ведущим разработчиком был Иосиф Аркадьевич Богуславский, который вел теоретическую часть этой работы.

При самонаведении истребителя фактически имеются те же, что и при наведении ракеты, кинематические связи с целью. Но поскольку еще не умели решать уравнения такой сложности, был создан специальный стенд полунатурного моделирования «Ураган-5», где впервые в истории института отрабатывались угловые движения самолета. Он представлял собой карданную подвеску со следящими системами, а внутрь ее ставилась антенна радиолокационной станции. То же оборудование использовалось и для ракет класса «воздух — воздух», только ставилась головка самонаведения. Так что стенды впервые стали создаваться для решения задач самонаведения.

Но вернемся к ракетам. Результатом работ по К-8, а в последующем и К-13 — они совпадали во времени — стало то, что они были приняты на вооружение и коллектив был удостоен государственных наград. Я получил свой первый орден «Знак Почета», или как его окрестили в народе «Веселые ребята». Такой же награды был удостоен Кирюшин, моя «правая рука», ряд сотрудников получили медали.

Но до 1956 года я оставался аспирантом МВТУ, хотя в НИИ-2 по совместительству был уже начальником отдела — с 1953-го по 1956 год. Естественно, все рабочее время, я, как положено, проводил в институте, но, поскольку числился и в очной аспирантуре, то должен был защитить кандидатскую диссертацию. Материал по К-8, собственно, и стал ее основой. Диссертация называлась «Динамическая точность самонаводящихся ракет». Это была первая работа в стране, которая, на теоретическом уровне 50-х годов, обобщала вопросы точности, поскольку они определяли и боевую эффективность, и философию построения ракеты.

Диссертацию я защитил в мае 1956 года и был окончательно распределен в НИИ-2. В моей диссертации не было полной математической строгости, но в инженерном плане она оказалась нужной в тот момент. После нее была сделана еще одна хорошая диссертация сотрудника нашего же института — В. Ф. Левитина, в которой он продвинул дальше вопросы теории самонаведения. Кроме этих двух работ, в общем-то, никаких заслуживающих внимания достижений в области теории самонаведения, у нас, на мой взгляд, больше и не появилось. Наши диссертации описывали практически все основные моменты, на которых основывается самонаведение, а реальная практика развивалась за счет моделирования. Позже, при появлении мощной вычислительной техники, пошли поиски в области инженерных решений, где дифференциальные уравнения стали решать практически без упрощения. А вот поиски аналитических методов так и ограничились двумя кандидатскими диссертациями. В моей был обобщен опыт работы по К-8, а у Левитина — последующих ракет класса «воздух — воздух» К-40, К-23, зенитной системы «Даль»… Левитин охватил значительно больший круг вопросов, в частности — именно он перешел с управляющего параметра, который рассматривал я — угловой скорости линии визирования, обладавшей неустойчивостью, — на текущий пролет, что позволило уйти от многих неприятностей. Кстати, Левитин был одним из моих студентов, которого я привлек в СНТО, а потом и на работу в НИИ-2.

В общем, награждением орденом и защитой диссертации закончился определенный этап моих работ по ракетам класса «воздух — воздух». Мне довелось и в последующем работать над ними, но уже в другом качестве — заместителя начальника, а затем и начальника института.