Школа ракеты К-8

We use cookies. Read the Privacy and Cookie Policy

Школа ракеты К-8

К-8 заставила нас пройти непростую школу.

Рассматривая с позиций сегодняшнего дня весь класс ракетных вооружений, в том числе зенитные ракеты, противоракеты, морские, противотанковые, баллистические и т. д., - мне приходилось не раз оценивать их, входя в состав государственных комиссий, — скажу, что ракета класса «воздух — воздух», по моему убеждению, как это ни парадоксально, — одна из самых сложных. Хотя она — одна из самых маленьких: ее вес — от нескольких десятков до сотни килограммов, длина — от метра до двух-трех… Но эта ракета работает в особо сложном режиме.

Во-первых, она «уходит» с подвижной платформы, которой является самолет. Уже одно это создает ряд трудностей, таких, как необходимость стартовать в условиях маневренного воздушного боя либо с направляющих рельсов, либо катапультируясь из отсека вооружений при значительных перегрузках. Тут сразу же начинаются сложные аэродинамические интерференционные процессы…

Во-вторых, большинство этих ракет имеют твердотопливные двигатели, в основном пороховые, с мощным стартовым импульсом, создающим также немалые перегрузки.

В-третьих, это короткоживущая ракета, которая должна решить свою задачу — уничтожить воздушную цель — за малый отрезок времени: от нескольких секунд до минуты.

И самое сложное в ней то, что она должна работать по принципу «пустил-забыл». Ей приходится самой решать непрерывно возникающие проблемы, поскольку цель активно борется с ней — стремится уйти от атаки, маневрирует по высоте, меняет курс, ставит «ловушки», помехи — словом, создает очень сложную информационную обстановку, требующую от ракеты безошибочного решения. При этом конструктору и «развернуться»-то негде — все оборудование, механизмы, обеспечивающие выполнение поставленных задач, должны быть уложены в очень малые габариты. Поэтому от создателей ракеты класса «воздух — воздух» требуется если и не искусство, то высочайшее мастерство, чтобы в одном изделии «примирить», казалось бы, непримиримые факторы, как в области физических процессов (аэродинамика, газодинамика, механика полета), так и информационных.

Но если даже ракета подошла к цели, то возникают новые проблемы: как настроить механизм подрыва, чтобы время его срабатывания, направление разлета осколков были наиболее эффективными. Ведь летательный аппарат, который надо сбить, снабжен мощными элементами конструктивной защиты, обеспечивающей его боевую живучесть. Какие-то узлы бронируются (двигатель, кабина летчика или экипажа), свою защиту имеют топливные баки… Не зря во время Второй мировой войны очень популярной была песенка:

«Мы летим, ковыляя во мгле,

Мы идем на последнем крыле.

Бак пробит, хвост горит,

Но машина летит

На честном слове и на одном крыле…»

Кстати, отечественная авиация всегда отличалась хорошей боевой живучестью (чему немало способствовали и работы нашего института после его создания). Самым ярким подтверждением этого в годы Великой Отечественной войны стал штурмовик Ил-2, совершенно справедливо названный «летающим танком». Современный самолет, естественно, защищен намного лучше, поскольку с этой целью применяются самые последние достижения науки и техники, что намного усложняет задачу ракеты класса «воздух — воздух».

Приведу пример более близкий. Во время войны Ирака с Ираном обе стороны имели смешанный парк самолетов, включавший, на стороне Ирака, и наши Су-17, Ту-22, и французские «Миражи». Так вот, во время готовности номер один к вылету все иракские летчики сидели в «Миражах». Но как только поступала команда «На взлет!», они дружно выскакивали из «Миражей», перебегали в Су-17 и летели воевать на них. Эту тактику они объясняли просто: «В «Мираж» достаточно попасть одному 20-миллиметровому снаряду из авиационной пушки, — и отваливается крыло. Су-17 выживает даже с множеством пробоин и отбитыми кусками плоскостей. И мы возвращаемся живыми. Но зато в кабинах «Миражей» есть кондиционеры»…

А с Ту-22 на той же войне произошел вообще фантастический случай. Когда экипаж открыл створки бомбоотсеков и сбросил бомбы, в один из них влетела американская ракета «Хок», которая стояла на вооружении Ирана, и взорвалась. Но Ту-22 повезло — она не повредила силовые шпангоуты и органы управления, и изрешеченный самолет вернулся на базу. Все эти случаи создали такую славу живучести нашей авиации, что и до сих пор в арабских странах, куда Советский Союз в свое время поставлял авиационную технику, авторитет ее очень высок.

Американцы тоже уделяли и уделяют этой проблеме большое внимание, подтверждением чему является очень хороший штурмовик А-10.

Но вернемся к ракетам. Зенитная ракета решает ту же задачу, что и ракета класса «воздух — воздух»: сбить воздушную цель. Но у нее нет жестких ограничений по габаритно-весовым параметрам, стартует она в более благоприятных условиях со стационарной площадки… Если рассматривать баллистические ракеты, то они имеют более простую систему управления — стабилизация и программный вывод на боевой курс. Правда, у нее намного сложнее двигатель, топливная система.

В общем, в каждом классе ракет есть свои особенности, но класс «воздух — воздух», мне кажется, стоит выше всех по сложности в части управления.

Когда мы начали создавать К-8, работы по ракетам этого класса начались и за рубежом. Во Франции их вела фирма «Матра», в Англии — «Бритиш аэроспейс», в Америке — «Хьюз». Французы и американцы пошли по линии освоения самонаводящихся ракет, а англичане первые разработки вели в области управления по лучу — телерадиоуправления, так же, как и мы на К-6 и К-7. Однако все эти разработки объединило то, что они исповедовали принцип «удлинения поражающей руки». Авиационная пушка успешно сбивала цель на расстоянии одной-двух сотен метров. На большем удалении — как бы мы ни совершенствовали прицельное оборудование, ни снижали техническое рассеивание снарядов, — эффективность воздушной стрельбы падала весьма резко. А с появлением реактивной авиации, увеличением скорости самолетов сближение истребителя с целью на расстояние эффективной пушечной стрельбы вообще маловероятно. Естественным решением этой проблемы и стало «удлинение поражающей руки», для чего неплохо подходили первые ракеты класса «воздух — воздух». Они строились для поражения цели на расстоянии в один-два километра или чуть больше.

К-8 тоже задумывалась для решения задачи «удлинения». Но это уже была довольно крупная ракета, вес ее достигал 250 кг. Если К-6 и К-7 создавались под микояновские МиГ-19, МиГ-21 и суховские Су-9, Су-11, то К-8 была первой самонаводящейся ракетой для более тяжелого истребителя-перехватчика ПВО Як-28П.

На ней предполагалась установка двух головок самонаведения — тепловой и радиолокационной. Последняя — полуактивная, то есть цель «подсвечивалась» локатором с самолета-перехватчика, а головка ракеты захватывала отраженный сигнал и по нему наводилась.

Вначале более продвинутой была технология создания тепловых головок. Над ними работали несколько конструкторских коллективов, а наиболее удачные решения были найдены на «Геофизике», которую возглавлял главный конструктор Давид Моисеевич Хорол.

Радиолокационные головки разрабатывали коллективы Николая Александровича Викторова и Александра Викторовича Смирнова из Ленинграда. Между ними развернулось негласное соревнование, ни в каких документах не обозначенное; шли они разными техническими путями. Викторову удалось найти весьма оригинальные решения и в технологическом, и в конструкторском плане, которые выгодно отличали его изделие от того, что создал Смирнов, и в конце концов Николаю Александровичу поручили доводку его головки до промышленного внедрения. Конструктором же К-8 был Бисноват, а так как у него практически не было коллектива в тот момент, о чем я писал выше, то практически все динамическое проектирование, отработка, испытание узлов К-8 легли на плечи нашего молодого коллектива, которым я и руководил.

Теперь немного теории.

Поскольку мы имели подготовку в основном в области линейных систем — прежде всего я имею в виду частотные методы школы Солодовникова — то, естественно, к К-8 мы решили подойти как к линейной системе, хотя самонаведение — сложная задача, поскольку строится не только на динамике самой ракеты, но и на взаимодействии двух точек в пространстве: «ракета» — «цель». При их сближении положение ракеты относительно цели меняется, что вызывает вращение линии визирования — воображаемой линии, соединяющей их. И вот параметры вращения этой линии визирования используются как управляющий сигнал в режиме самонаведения.

Первые самонаводящиеся системы в качестве управляющего сигнала отслеживали угол пеленга — угол между осью ракеты и линией визирования — и сводили его к нулю, то есть направляли ось ракеты всегда точно на цель. Но такой метод — его еще назвали методом «собачьей кривой» — динамически очень неустойчив: он как бы загоняет ракету в хвост цели. Сразу же возрастают требования к способности ракеты переносить высокие перегрузки, к ее маневренности и т. д.

Более эффективен метод параллельного сближения. При этом за управляющий сигнал берется угловая скорость вращения линии визирования. «Обнуляя» ее, ракета разворачивается уже не прямо на цель, а в точку будущей встречи. Конечно, в зависимости от маневров цели эта точка ползет в пространстве, но ракета все время идет к ней, а не на саму цель. В таком режиме ракета при всех маневрах испытывает меньшие перегрузки, поскольку всегда упреждает дальнейшие движения цели. Но для этого нужно, ни много ни мало, измерить эту самую угловую скорость линии визирования. А чтобы это сделать, надо головку самонаведения поставить на гироскопическую платформу, то есть как бы изолировать ее от углового движения ракеты. На заре создания самонаводящихся ракет не делали гироскопической стабилизации головки, а ставили следящие привода. Но они не могли с достаточной быстротой отслеживать угловое движение самой ракеты, которая все время, образно говоря, «болтается» по углу атаки. Поэтому требовалось обязательно поставить антенну на гироплатформу.

К решению задачи были привлечены лучшие гироскописты страны, в частности, Е. Ф. Антипов и его коллектив (теперешний «Авиаприбор»). Он и конструировал первые гиростабилизаторы головок самонаведения, как тепловых, так и радиолокационных.

И вот, чтобы описать динамику движения и сам процесс управления ракетой, мы попытались линеаризировать процесс, о котором я уже писал выше (эффект раскачивания ведра, вытаскиваемого из колодца). В теории управления динамика любого устройства — ракеты, гиростабилизатора, антенны и т. д. — описывается дифференциальными уравнениями. Кинематическая связь между целью и ракетой тоже описывается этими уравнениями, но они — нелинейные. И, по сути дела, они нелинеаризуемы, потому что по мере сближения ракеты и цели устойчивость теряется. Это дифференциальные уравнения, описывающие неустойчивый процесс, если управляющий сигналом служит угловая скорость вращения линии визирования. Сам этот сигнал просто снимался с гиростабилизатора, потому что когда он держит антенну, то сигнал, который корректировал положение гироплатформы, как раз и был пропорционален угловой скорости линии визирования. Этот электрический сигнал подавался на автопилот ракеты и им она управлялась. Его-то мы и «линеаризировали». С точки зрения законов математики это, конечно, очень грубое приближение, я бы даже сказал, недопустимое, но поскольку инженерно-аналитический аппарат, которым мы владели в середине 50-х годов, работал лишь в области линейных систем, то мы просто вынуждены были идти на такие «грубости».

Но кое в чем нам повезло. В это время в стране стали развиваться методы аналогового моделирования и создаваться первые интеграторы — своеобразные операционные усилители, которые выполняли функции интегрирования. Несколько таких устройств позволяли смоделировать уравнение любого порядка. Первыми интеграторами были ИПТ-4 и ИПТ-5. НИИ «Счетмаш» выпускал их небольшими партиями, а бурное развитие авиационной и ракетной техники заставляло КБ, научно-исследовательские институты, предприятия буквально охотиться за этими интеграторами. Госплан выделял наряды на них поштучно. Нашему институту удалось «выбить» несколько таких устройств, чему мы были безмерно рады, хотя трудностей в освоении этих первых образцов вычислительной техники испытали немало.

А поскольку начальство торопило нас, то наряду с аналитическими попытками оценить динамику самонаводящей ракеты К-8 мы начали создавать аналоговую модель на интеграторах — строили блоки, которые моделировали неустойчивость кинематического сближения ракеты и цели.

Блоки проектировались нашими, институтскими инженерами и у нас же делались. Большую работу в этой области провели Герольд Анатольевич Кирюшин, Михаил Гаврилович Кульчак. Они, кстати, были выходцами из того самого студенческого научного кружка, которым я руководил в МВТУ. Вместе с ними работали С. И. Леонтьев, Л. Я. Малдов, выпускники МЭИ, инженеры из МАИ… Они были первыми, кто создавал аналоговые модели К-8 с помощью интеграторов.

Отдел наш был небольшой. Но мы очень хорошо «чувствовали» частотные методы и с их помощью пытались понять поведение самонаводящихся ракет. Ситуация осложнялась тем, что хотя все эти работы велись и в других странах, но были очень жестко засекречены. Поэтому мы не могли сравнить свою работу с тем, что делалось за рубежом и оценить — правильным ли мы идем путем или он ведет в тупик. Изредка в каких-нибудь журналах появлялись лишь фотографии ракет и названия фирм, которые их делают, но о методах расчета, проектирования и речи не было.

Мы же шли от классических методов теории управления и старались их приспособить к конкретным дифференциальным уравнениям, которые описывают динамику движения ракет.

На этом пути мы столкнулись с большими проблемами. Первая, как я писал выше, возникла при линеаризации нелинеаризуемого уравнения кинематического сближения ракеты и цели. Получив так называемое неустойчивое кинематическое звено, мы попытались методами линейной теории управления скомпенсировать его, создав звено «антикинематин».

И только впоследствии мы поняли, что это была ошибка: Бог с ней, с угловой скоростью линии визирования, пусть раскачивается! Ведь главная цель расчетов — увидеть, как ведет себя текущий «пролет» или промах ракеты по отношению к цели. А когда мы перешли к его изучению, то этот параметр, к нашему удивлению, оказался устойчивым. И потому можно было, оказывается, не обращать внимания на ту неустойчивость, которую нам так хотелось устранить. Мы поняли, что нельзя быть рабами теории и бороться с тем, с чем бороться не надо. А помогли нам в этом именно методы аналогового моделирования, где решение кинематического уравнения получалось довольно строгое. Мы быстро сообразили: «пролет» ведет себя устойчиво, что нам, собственно, и нужно.

Следующая проблема, с которой мы столкнулись, была связана с радиолокационной головкой самонаведения. Дело в том, что отраженный от цели радиосигнал проходит не только по воздуху, но и через материал обтекателя, где возникает эффект преломления (так, например, в стакане воды «преломляется» чайная ложка). Но угол преломления в обтекателе зависит от его материала и от угла, под которым падает на него радиосигнал, то есть, в конечном счете, — . от угла отклонения головки или оси ракеты по отношению к цели. И поскольку при движении ракеты ее ось колеблется, луч от цели преломляется все время по-разному, а головка самонаведения воспринимает это как колебания самой цели и пытается их отслеживать. Это приводит к раскачиванию ракеты, и в итоге порождает так называемую синхронную ошибку.

Вначале мы даже не очень понимали физику этого явления. Столкнулись с ним впервые, когда создали полунатурную модель К-8: головку самонаведения поставили на стенд и стали вращать его согласно угловому движению ракеты. Целью же служил рупорный излучатель. Когда стенд начал имитировать движение ракеты в полете (которое задавалось с помощью интегратора ИПТ-5), мы вдруг получили раскачку «ракеты» не за счет изменения угловой скорости линии визирования, а раскачивался сам «пролет», чего допускать было нельзя. Вначале для нас эта раскачка явилась полнейшей загадкой, но потом сообразили, что ее вызывает изменение коэффициента преломления в обтекателе при угловом движении ракеты.

Поехали к очень известным радиофизикам, корифеям в области высокочастотных процессов и электродинамики Л. Д. Бахраху и Н. Д. Папалекси. Они были также крупными специалистами по расчету антенн. Попросили их помочь спроектировать обтекатель так, чтобы устранить раскачивание «пролета». Сами мы пытались добиться этого за счет подбора подходящей формы и материала обтекателя. Вначале это было стекловолокно, потом стали пробовать керамику… Проведя большую работу, мы поняли, что оба эти пути не безнадежны, но сколько ни бились, меняя форму и материалы, до конца эффект не устранялся. Вначале мы пробовали даже создавать «управляемое», прогнозируемое преломление, наклеивая на обтекатель станиолевые ленты. Оказалось, что это позволяет в какой-то мере контролировать процесс появления синхронной ошибки. Кажется, эта идея впервые пришла в голову А. И. Брызгалову и В. А. Черке.

И действительно, изменяя с помощью этих лент пеленгационную ошибку, мы научились как бы управлять коэффициентом преломления луча в обтекателе.

Когда мы приехали к Бахраху и рассказали о своих проблемах, он очень удивился и увидел в наших действиях чуть ли не великое открытие в электродинамике. После этого я понял, что даже крупные специалисты в данной области недалеко ушли в своей науке от нас, практиков, даже в общем-то дилетантов.

Поскольку я по образованию немножко радист, то мне еще и до этого стало ясно, что справиться с данной проблемой можно было бы только путем решения сложнейших уравнений математической физики, а этого, увы, не позволяют сделать методы вычислительной математики. И не было тогда инструментов, которые позже стали известны нам как компьютеры. Пришлось искать решения эмпирически. Собственно, так мы наткнулись и на станиолевые ленты. Но оказалось, что и они улучшали точность полета ракет, если луч попадал на какое-то определенное сечение обтекателя, где они были наклеены. Если же он падал на другое сечение, то ситуация ухудшалась. Мы поняли, что этот путь тоже ложный, и от него отказались.

В конце концов мы пришли к выводу, что самым верным решением проблемы будет просто изготовление обтекателя наиболее совершенной формы из материала с наименьшим преломлением, а также уменьшая нагрузку на крыло, увеличивая площадь крыла. Но для этого нам понадобился — ни много ни мало — год упорнейшей работы.

Надо сказать, что при самонаведении на цель истребителя наблюдались те же раскачивания, с которыми столкнулись и мы, но протекали они менее динамично, поскольку масса самолета намного больше маленькой ракеты, и с ними легко справлялись. Нам же пришлось поломать голову…

По-своему решили аналогичную проблему «зенитчики». В это же время в КБ-1 создавалась первая самонаводящаяся зенитная ракета системы С-200 (та самая, которой был сбит наш самолет Ту-154М украинскими ПВО в 2001 году). Характерной особенностью работы «оборонки» середины 50-х годов, да и позже, было то, что «зенитчики», которые тоже боролись с синхронной ошибкой, работали всего в паре километров от НИИ-2, но из-за режима секретности никакого обмена информацией между нами не было. И они пошли по другому пути — создавали матрицу ошибок на каждый конкретный обтекатель, а в полете специальный вычислительный блок в автопилоте компенсировал эту ошибку. Решение, конечно, «лобовое», громоздкое, но поскольку габариты зенитной ракеты вполне позволяли разместить вычислитель, то, видимо, в КБ-1 и не стали искать более простых путей. Мы же такими роскошными габаритами не располагали. Но примечательно, что позже и «зенитчики» использовали найденные нами решения, поскольку они наиболее рациональны в инженерном и технологическом плане.

В общем, с этими синхронными ошибками повозиться пришлось. Кстати, они возникали не только от обтекателя, но и от ошибок гиростабилизатора. В нашем институте этой проблемой занимался Авенир Константинович Неусыпин, мой однокашник по МВТУ, — только гироскопист по специальности, — который вскрыл эти ошибки и нашел способ избавления от них.

Еще одна проблема, которая очень остро встала перед нами при создании К-8, - это борьба с флюктуационной ошибкой. Когда цель облучается радиолокатором, то различные ее участки по-разному отражают эти сигналы. Так возникает флюктуация. Она зависит, от множества факторов: способа «подсветки» самолета, его поведения в полете, особенностей прохождения радиосигнала в воздушной среде и т. д. В итоге помимо регулярного отраженного сигнала, который используется для наведения ракеты на цель, возникает случайная составляющая. Она попадает на вход автопилота вместе с полезным сигналом и вызывает случайную ошибку наведения. Ее приходится учитывать при выборе боевой части, других компонентов ракеты. Методы борьбы с этими ошибками известны — фильтрация сигнала. Но всякая фильтрация неизбежно ведет к ухудшению динамики ракеты, то есть снижает скорость ее реакции на перемещение цели. Мощные фильтры могут «задушить» случайную составляющую, но ракета становится «вялой», инертной, и, естественно, возрастает вероятность динамических ошибок. Поэтому нам надо было найти компромисс между величиной фильтрации и конечным пролетом. Это и по сей день единственный способ уберечь ракету класса «воздух — воздух» от случайной ошибки, но тогда мы делали к нему лишь первые шаги, пытаясь отфильтровать сигнал.

Однако, чтобы двигаться в этом направлении, нам надо было изучить параметры флюктуации. Для этого пришлось ставить очень сложный летный эксперимент, когда в воздух одновременно поднимались три самолета: самолет-цель Ту-16, самолет-носитель Як-28 с радиолокационной станцией «Орел» главного конструктора Г. М. Кунявского и самолет-«ракета» Як-25, на котором размещалась головка самонаведения. Эти три машины надо было свести в пространстве и, управляя расстоянием между ними, фиксировать отраженный от цели флютуирующий сигнал.

Тогда я впервые столкнулся с летными испытаниями и понял, какое это дорогостоящее мероприятие, как сложно увязать между собой работу в небе трех самолетов через полетные задания, инструкции летчикам, команды с диспетчерского пункта и т. д. И все же нам удалось провести довольно большое количество экспериментов. Для записи их результатов использовались шлейфовые осциллографы. Километры фотопленки фиксировали случайный сигнал, ее требовалось проявить и определить статистические параметры флюктуации. Согласно теории случайных процессов следовало по каждой записи построить так называемую коррелляционную функцию и по ней вычислить спектральную плотность процесса, которая и служила основой для последующих расчетов: то есть, если знать эту спектральную плотность в разных условиях, то всегда можно достаточно реально смоделировать и учесть случайную составляющую отраженного от цели сигнала. Этот эксперимент мы вели весь летный период. Далее требовалось обработать экспериментальные записи и построить корреляционные функции. Мы же тогда не имели никаких приборов для обработки случайных процессов.

Но как раз в это время в НИИ-5, который работал на судостроительную промышленность, тоже изучали случайные составляющие сигналов корабельных радиолокационных станций. Там был создан механический коррелятор, на котором два оператора прокручивали километры такой же фотопленки. С помощью рукояток, чем-то похожих на прибор управления зенитным огнем, один из них отслеживал положение записанной на пленке кривой, а движения рукояток передавались на электромеханический интегратор, который и вычислял корреляционную функцию. Этот коррелятор построил заведующий кафедрой МВТУ Л. Н. Преснухин. В настоящее время он член-корреспондент РАН. Он готовил к защите докторскую диссертацию и изучал человека как звено в системе слежения за целью. А оператор, который наблюдает за импульсом, отраженным от цели на экране локатора, как раз и фиксирует случайную флюктуационную ошибку. И вот, чтобы изучить проявление этой случайности, был спроектирован механический коррелятор, который изготовили в НИИ-5 в двух экземплярах. Один из них они оставили себе, а второй продали нам, поскольку я был хорошо знаком с автором прибора. Это позволило нам ускорить процесс обработки пленок и нахождения корреляционных функций.

Получив первые результаты, мы поняли, что имеем дело с явно нестационарным процессом (то есть у которого даже статистические, усредненные параметры меняются во времени). И никакой закономерности в формировании сигнала поймать не смогли, потому что случайны не только условия отражения — им сопутствует множество других факторов: как ракета будет подходить к цели, с какого ракурса, каким будет ее движение и т. д. В общем, изучаемый нами процесс оказался очень сложным и выявить его какие-то устойчивые характеристики и четкие зависимости невозможно. Поэтому от подобных попыток отказались, и, насколько мне известно, по сей день вся российская радиолокация так и не знает реальных закономерностей отражения радиосигнала от воздушной цели.

Забегая вперед, скажу, что в конце девяностых годов мы были в гостях в США, куда нас пригласила фирма «Хьюз». Состоялся очень откровенный разговор между нашими и их специалистами, создававшими ракеты класса «воздух — воздух». Я задал им вопрос:

— А как вы изучаете случайные ошибки и отраженные сигналы?

И к своей большой радости узнал, что и американцы не смогли справиться с этими задачами, хотя они тоже изучали прохождение сигнала через обтекатель и флюктуационные ошибки и ставили сложные и дорогие эксперименты. Но пришли к тому же, что и мы: игра не стоит свеч. Частично они флюктуационную ошибку «давили» фильтрами, а частично компенсировали ее увеличением веса боевой части, то есть сделали то же, что и мы. Конечно, если бы удалось установить закономерности отражения, можно было бы придумать и какой-то нестационарный фильтр, снизить вес боевой части, но до нуля эту ошибку все равно не доведешь.

В общем, в процессе летных испытаний К-8 задавала нам загадки неожиданные, сложные, и пришлось немало поработать, чтобы отгадать их и найти способы нейтрализации. К-8 была и первой ракетой класса «воздух — воздух», которая прошла летные испытания в летном центре ГНИКИ ВВС, так называемой Владимировке. Вместе с ней рождались первые телеметрические системы (передачи данных), системы слежения — кинотеодолиты, методы первичной и вторичной обработки телеметрической информации, то есть возникла целая наука летных испытаний, в которых наш институт, и в частности мой отдел, принимал очень активное участие. Ведущим инженером по летным испытаниям был Г. А. Кирюшин, который по несколько месяцев безвылазно сидел в степи, потому что Владимировка тогда была совершенно не похожа на нынешний Ахтубинск — город со всей присущей ему инфраструктурой. Вдоль дороги стояли простые вагончики, которые не защищали ни от жары, ни от холода, ни от пыли. В них почему-то развелось много клопов, заползала и другая степная живность… Условия были чисто фронтовые, но суровый быт уходил как-то на второй план, поскольку все мы были поглощены этими летными экспериментами и делали Историю — создавали первые ракетные системы.

В конце концов К-8 была принята на вооружение, да к тому же она породила целое семейство ракет Бисновата, которые в последующем создавались для других самолетов. К-8 — это наименование опытного изделия, когда же она пошла в серию, ее переименовали в Р-8. Потом на ее базе построили Р-80, которая от своего прообраза отличалась только большими размерами и была неким геометрическим подобием Р-8. Р-80 сделали для самолета Ту-128.

Дело в том, что в области перехвата для истребителей среди военных специалистов существовало две тенденции. Первая заключалась в создании барражирующего дальнего перехватчика, своего рода летающей зенитной батареи. Вторая основывалась на удлинении «поражающей руки» перехватчика, уходящего на «охоту» с участием наземной системы наведения. Истребитель становился как бы элементом мощной системы ПВО.

Ту-128 и был такой летающей зенитной батареей, которая должна была работать в условиях плохой информации с земли, когда ей сообщают только то, что в таком-то направлении, на такой-то высоте обнаружена цель — и все. Никаких четких координат ее нет, и самолет должен сам выйти в зону перехвата, обнаружить цель и уничтожить ее. Поэтому он должен уметь долго держаться в воздухе. Иметь соответствующий запас топлива, а главное, иметь оружие, обладающее большой дальностью. В общем, это большой самолет, и А. Н. Туполев сделал его на базе морского бомбардировщика — такой своеобразный морской истребитель Ту-128 для северных зон, где у нас не было широкой сети аэродромов, а дальние рубежи прикрывать надо. Позже эти идеи были воплощены в тяжелом дальнем перехватчике МиГ-31. Рождение таких машин обусловлено спецификой России с ее обширной территорией, на которой трудно создать везде плотную наземную инфраструктуру противовоздушной обороны. Поэтому волей-неволей самолету приходится брать на себя решение многих сложных задач, так что действительно получается не истребитель, а некая летающая платформа зенитных ракет. Для них и создавалась ракета Р-80 коллективом Бисновата с участием нашего института. Позже родилась Р-40. Стал создаваться целый спектр ракет «воздух — воздух» для перехватчиков на базе тех фундаментальных результатов, которые были получены при создании Р-8.