§ 3.19 Спин и квантование магнитного момента атома
§ 3.19 Спин и квантование магнитного момента атома
Но мы всё ещё не у предела; после электронов или атомов электричества пришёл магнетон или атом магнетизма, который входит сейчас двумя различными путями: через изучение магнитных тел и через изучение спектров элементов… Ритц представляет себе колеблющийся атом образованным из вращающегося электрона и из множества магнетонов, расположенных один за другим. В таком случае уже не взаимное электростатическое притяжение электронов управляет длинами волн, а магнитное поле, создаваемое этими магнетонами.
Анри Пуанкаре, "Последние мысли", 1913 г. [101]
Перейдём на время от субэлектронного к более привычному этажу микромира, — этажу электронов и тяжёлых элементарных частиц. Как было показано выше, и, как многие предполагали ранее [79], именно электроны и позитроны являются теми кирпичиками, из которых сложены все прочие частицы. Тогда нейтрон, весящий в 1838 раз больше электрона, должен состоять примерно из тысячи (919) электронов и из того же числа позитронов, дабы полный заряд нейтрона равнялся нулю. То же строение имеет и протон, но электронов в нём на один меньше, с чем и связан его положительный заряд. Тогда, в целом, атом и, вообще, — мир окажутся построены из равного числа электронов и позитронов.
Однако такое представление ведёт, на первый взгляд, к противоречиям. Во-первых, магнитный момент протона и нейтрона — заметно меньше, чем у электрона, что, как считают, доказывает его отсутствие в нейтроне. Но, если нейтрон или протон составлены из многих зарядов, то их магнитные моменты вполне могут сориентироваться так, что почти полностью погасят друг друга. То, что малый магнитный момент нейтронов и протонов обусловлен лишь взаимной компенсацией моментов образующих их частиц, подтвердили эксперименты В.В. Коробкина, Р.В. Серова и Г.А. Аскаряна. Этой группе в 1980-х годах удалось разбить тела нуклонов мощным лазерным импульсом, при этом регистрировались мощные магнитные поля, в миллионы Гаусс. Это легко объяснить тем, что при делении нуклона на части, их магнитные моменты перестают компенсировать друг друга и отчётливо проявляются, доказывая, что локальные магнитные поля внутри атомов и ядер — много больше, чем их внешние, скомпенсированные поля. Так что, наличие внутри нейтрона или протона сотен электронов и позитронов — не исключено. Более того, думается, лишь электроны и позитроны обладают собственным электрическим зарядом и магнитным моментом, а уже их присутствие придаёт эти характеристики другим частицам (§ 3.9).
Интересно, что именно Ритц первым предсказал существование стандартного магнитного момента (магнетона) у элементарных частиц, — кирпичиков, из которых сложен атом, атомный остов. К этим частицам, как выяснили, следует отнести электроны и позитроны. Однако никто теперь не связывает открытие магнитного момента электрона с именем Ритца. Все говорят или о магнетоне Вейсса, или о магнетоне Бора. Один лишь А. Пуанкаре упоминал о магнетоне и атоме Ритца. Будучи очень глубоким и смелым мыслителем, он хорошо видел перспективы и пути развития науки. Пуанкаре был не только замечательным математиком и философом науки (лично навестившим Ритца — для вручения ему награды и обсуждения математических проблем), но и первопроходцем во многих областях физики и астрономии. Думается, именно он мог бы осуществить развитие и обоснование теории Ритца. Ведь именно Пуанкаре был первым, кто принял ключевой для БТР принцип относительности явлений в оптике и электродинамике. Однако, указанные мысли Пуанкаре и впрямь оказались для него последними, поскольку в 1912 г. он умер, подобно Ритцу, не успев довести до конца свою работу. Лишь после смерти были изданы его мысли о магнитной модели атома и магнетонах Ритца.
Магнетоны Вейсса и Бора, в отличие от магнетона Ритца, связаны не с собственными магнитными моментами элементарных частиц, а, больше, — со свойствами атомов и вещества, как целого. Магнетон Вейсса — это, по сути, элементарный магнитный момент атома, ответственный за взаимодействие атомов в ферромагнетиках. А магнетон Бора — это единица магнитного момента микромира, связанная с его квантовыми свойствами и рассчитанная впервые не Бором, а Ланжевеном. Магнитный момент атома квантуется, дискретно меняясь на величину, кратную магнетону Бора. Однако, с позиций классической науки такой характер изменения не имеет никакого отношения к квантовым свойствам поля, а обусловлен наличием стандартного момента у электрона. Поскольку электроны в атоме располагаются упорядоченно, их элементарные моменты складываются, давая в сумме магнитный момент атома, кратный моменту электрона. Изменение общего момента на дискретную величину связано с тем, что моменты электронов ориентируются всегда либо сонаправленно, либо противонаправленно, гася друг друга.
Кроме того, у атома есть и магнитный момент, связанный с орбитальным движением электрона вокруг остова. Как легко рассчитать, этот момент не зависит от радиуса орбиты электрона и всегда равен одному и тому же значению, — как раз тому самому, пресловутому магнетону Бора. В самом деле, электрон заряда e и массы M, крутящийся по орбите радиуса R с частотой f, подобен витку с током I=ef, обладающему тем же радиусом и магнитным моментом m=I?r2=ef?R2. Из законов Планка и фотоэффекта, дающих связь энергии электрона E=M(2?Rf)2/2=hf с частотой f его обращения в атоме, следует, что f=h/2?2R2M (§ 4.3). Подставляя значение f в m, получаем, что орбитальный магнитный момент не зависит от радиуса и частоты обращения: m=ef?R2=eh/2?M. Но это в точности равно удвоенному магнитному моменту электрона m=2?. И точно, эксперимент давно подтвердил, что магнитный момент электрона, вызванный его орбитальным вращением в два раза превышает момент от его осевого вращения. Таким образом, орбитальный магнитный момент атома и вещества, действительно, квантуется, меняется дискретно, но связано это не с абстрактными квантомеханическими законами, а — с дискретно меняющимся числом атомов и крутящихся в них электронов. Таким образом, и магнетон Вейсса, и магнетон Бора — это, в конечном счёте, всего лишь следствия магнетона Ритца и его магнитной модели атома. Именно модель Ритца позволяет описать все магнитные свойства веществ.
Возникает лишь вопрос о природе магнитного момента у самого электрона и о том, что задаёт его величину, — значение магнетона Ритца. Давно уже было понято, что магнитный момент электрона создаётся его вращением: любой крутящийся заряд, как говорилось, подобен витку с током, генерирующему магнитное поле, момент. Именно так, электрон становится подобен элементарному магнитику (Рис. 95). Интересно, что первым эту идею выдвинул всё тот же Ритц, связавший анизотропию электромагнитных свойств электрона — с наличием у него оси вращения [2]. Он же выдвинул гипотезу вращения внутриатомных частиц, наподобие волчка, для объяснения гравитации (§ 1.17) и особенностей расщепления спектральных линий (§ 3.5). Однако, поздней физики стали отрицать вращение электрона, и слово "спин", означающее "вращение", стали понимать совсем иначе, считая, что для размытого по квантовым законам электрона неправомерно говорить о таких механических свойствах, как вращение. Например, Паули, считавший частицы бесструктурными (§ 3.11), выступал против гипотезы спина, вращения электрона и снова попал впросак. Но, поскольку здесь следуем классической теории частиц, обладающих конкретной пространственной структурой, геометрической формой и размерами, вполне правомерно говорить о вращении электрона. Раз у всех электронов одинаковый магнитный момент, то и частота вращения должна быть у них одинакова. Почему же электрон вращается и что поддерживает частоту его вращения на одном и том же уровне?
Судя по всему, вращение электрона связано с испусканием реонов. Если вспомнить аналогию электрона с пиротехническими снарядами (Рис. 7, Рис. 139), то сам собой напрашивается и простейший механизм раскрутки электрона реактивными струями реонов, как у вертящихся фейерверочных огненных колёс, или огненных мельниц (Рис. 141). Так же крутится паровой шар Герона, сегнерово колесо, — ороситель для газонов в виде вертушки, раскручиваемой струями воды [75]. Наконец, если ищем электрических аналогий, можно вспомнить описанную в "Физическом фейерверке" [148, с. 163] древнюю зрелищную игрушку — ионно-ветряную мельницу, называемую "колесом Франклина" [137]. Этот прибор представляет собой крестовину — в виде заряженной солнечной свастики, уравновешенной на острие иглы и вращаемой за счёт реакции отдачи стекающих с игл ионов, — реактивных струй ионного ветра, дующего от всех зарядов (Роуэлл Г., Герберт С. Физика. М., 1994, с. 410).
Рис. 141. Реактивная раскрутка: а) огненного колеса; б) электрона e, пускающего бластоны B, взрывающиеся каскадами реонов R на сфере распада; в) водополивалки для газонов; г) ионно-ветряной мельницы.
Возможно, так же вращается и заряженный электрон, испускающий реактивные струи реонов — реонный ветер. Но, возможно, вращение электрона, словно у мельницы, создаётся сходящимся из сферы распада потоком реонов, ударяющим по электрону и раскручивающим его. Если электрон случайно получит небольшое вращение, оно будет ускоряться, поскольку выбрасываемые электроном бластоны обретают окружную скорость этого вращения и передают её при своём распаде реонам, отчего те с большей частотой и скоростью ударяют по той стороне электрона, которая удаляется при вращении (Рис. 141.б). Тем самым, реоны ещё ускоряют это вращение. И так — до тех пор, пока сила реактивной отдачи от испускания бластонов не уравновесит воздействия ускоряющего вращение потока сходящихся реонов. На этом этапе скорость вращения электрона стабилизируется и автоматически поддерживается возле этого значения, обеспечивая постоянство магнитного момента электрона. Примерно так же, и крылья мельницы в потоке ветра, водяные и фейерверочные вертушки, наращивают скорость своего вращения, пока их окружная скорость вращения не достигнет величины на порядок-два меньшей скорости этого потока, после чего автоматически поддерживается на данном уровне.
Интересно оценить, исходя из этого, скорость вращения электрона. Если магнитный момент электрона ?=eh/4?M создан его вращением, то, как нашли, ?=m=ef?r2, где r — радиус электрона. То есть ef?r2=eh/4?M. Отсюда окружная скорость на экваторе электрона V=f2?r=h/2?rM. Если взять в качестве r классический радиус электрона r0=2,8·10-15 м, получим V=4,1·1010 м/с. Это на два порядка больше скорости реонов с=3·108 м/с. Если же, как выяснили, окружная скорость вращения должна быть, как в мельнице, сопоставима со световой скоростью с потока реонов, вызывающих вращение, то получим, что гораздо естественней принять r=a0/2=2,7·10-11 м — половину межэлектронного расстояния (§ 3.1), что даёт скорость V=4,3·106 м/с, — как раз на два порядка меньшую световой скорости потока реонов. Как видим, радиус сферы распада, с поверхности которой и выбрасываются реоны и которую можно условно считать внешней границей вращающегося электрона, в действительности, равен не классическому радиусу электрона, а межэлектронному расстоянию, сопоставимому с радиусом атома. К такому же выводу о величине внешнего радиуса сферы распада электрона пришли и в предыдущем разделе (§ 3.18). Если инертная масса электрона и ядерная энергия, пропорциональные 1/r, задаются более существенным, в этом случае, — внутренним радиусом r0 электрона (точней его сферы распада), то для магнитного момента m=ef?r2, пропорционального r2, напротив, определяющим окажется внешний радиус a0. Фактически, именно по этому внешнему радиусу и циркулирует круговой ток электрона, поскольку именно там расположено большинство источников поля, бластонов, в момент их взрыва реонами.
Как видим, ритцева модель, представляющая электрическое воздействие — через распад электрона, в процессе испускания им реонов, кроме природы заряда, автоматически раскрывает и природу спина электрона, его стандартного магнитного момента, а также причину его "квантования" и, вообще, квантования магнитного момента в атомах и телах. Обычно открытие спинового магнитного момента электрона связывают с именами С. Гаудсмита и Дж. Уленбека, а открытие спина ядра — с именем В. Паули. И никто не вспомнит, что впервые элементарный магнитный момент частиц, образующих атом и ядро, был предсказан Ритцем ещё в 1908 г., задолго до этих теоретических "открытий", сделанных в 1924–1925 гг. Именно Ритц первым предположил выделенную ось у электрона, на основе анализа непрерывного спектра ?-распада (§ 3.15). Именно Ритц предсказал в 1908 г. квантование, дискретное изменение магнитного момента ядра и образующих его крутящихся частиц, исходя из анализа атомных спектров и расщепления их линий во внешнем и внутриатомном магнитном поле. А, потому, весьма возможно, открытие спина, так же как другие открытия Ритца, было просто украдено у него кванторелятивистами. Ведь, при "открытии" спина они, повторяя Ритца, исходили из анализа спектральных линий и их расщепления в магнитном поле ядра, которого до Ритца никто даже не предполагал. Кроме того, "открытие" спина состоялось с подачи П. Эренфеста, больше других общавшегося с Ритцем и бывшего в курсе его идей. Именно Эренфест был консультантом и руководителем Гаудсмита и Уленбека, направившим их заметку в печать [154, с. 140]. При этом идею вращения электрона подал Уленбек, бывший чистым классиком, не знакомым с квантовой механикой, тогда как сторонник квантового подхода Гаудсмит, по признанию Эренфеста, просто подписал готовую заметку. В связи со всем вышесказанным напрашивается вопрос: а сделано ли вообще хотя бы одно открытие самими кванторелятивистами, или же каждое было похищено у Ритца и других физиков-классиков?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
ПОМОЩНИКИ АТОМА
ПОМОЩНИКИ АТОМА Инженер-капитан 1 ранга В. ГЕРАСИМОВ, кандидат технических наукКогда говорят об атомном ракетоносном подводном флоте, обычно подчеркивают тот вклад, который внесла в его развитие физика. Действительно, благодаря атомным силовым установкам подводные
§ 3.1 Магнитная модель атома и принцип Ритца
§ 3.1 Магнитная модель атома и принцип Ритца Напрашивается гипотеза, что колебания в сериальных спектрах создаются чисто магнитными силами. Далее будет показано, что это позволяет легко понять законы спектральных серий и аномальные эффекты Зеемана Вальтер Ритц,
СОТРУДНИКИ ЦНИИ ИМ. АКАД. А. И. КРЫЛОВА Специалисты в области совершенствования параметров магнитного поля ММК
СОТРУДНИКИ ЦНИИ ИМ. АКАД. А. И. КРЫЛОВА Специалисты в области совершенствования параметров магнитного поля ММК И. М. Фомин Л. А. Рудня В. А. Скулябин Е. П. Лапицкий И.И. Гуссв Э. П. Рамлау С. Т. Гузеев К). И. Назаров И. П. Краснов Г. Н.
3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
3.5. ОТКРЫТИЕ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ И СОЗДАНИЕ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и