§ 5.8 Изобилие энергии и ХЯС

We use cookies. Read the Privacy and Cookie Policy

§ 5.8 Изобилие энергии и ХЯС

Я продвинулся вперёд в решении загадки, когда в 1899 году получил математические и экспериментальные доказательства того, что Солнце и другие небесные тела равно испускают лучи высокой мощности, состоящие из неуловимо малых частиц, движущихся со скоростью, во много раз превышающей скорость света. Пронизывающая сила этих лучей столь велика, что они способны проходить сквозь тысячи миль твёрдого вещества, почти не теряя скорости. Пересекая пространство, наполненное космической пылью, они испускают вторичное излучение постоянной интенсивности, которое днём и ночью изливается на Землю со всех сторон… Я покорил космические лучи и с их помощью запустил движущееся устройство… Самым большим преимуществом этих лучей является их постоянство. Они льются на нас круглые сутки, и если построить станцию, способную использовать их силу, нам не потребуются устройства для хранения энергии, которые необходимы при использовании силы ветра, приливов или солнечного света.

Никола Тесла [110]

Многие исследователи отмечали, что чем глубже мы погружаемся в недра материи, тем с большими энергиями сталкиваемся [159]. Прежде люди имели дело со сравнительно невысокими энергиями синтеза и распада молекул. На смену им пришли гораздо более мощные энергии синтеза и распада ядер, когда мы спустились на следующий этаж мироздания. Когда мы спускаемся на следующий, субъядерный этаж, то сталкиваемся с ещё более мощной энергией "аннигиляции", слияния электронов и позитронов (§ 1.16). Можно теперь представить, какие нас ждут гигантские энергии на субэлектронном этаже мироздания, заселённом реонами!

И действительно, как понял ещё Тесла, в жизни мы используем лишь ничтожную часть движущихся в пространстве реонов (§ 1.14). Это энергия света, электрического и гравитационного поля, выделяемая в соответствующих установках. Если бы мы научились использовать всю энергию реонов, она бы с лихвой перекрыла любые мыслимые энергетические потребности человечества. Эта энергия движущихся реонов пронизывает нас, всё пространство. Её, по сути, и можно назвать той пресловутой энергией вакуума, о которой теперь так много говорят, но которую ещё никто не выделил и не объяснил её природы. Возможно, знание БТР и строения частиц позволит, наконец, повысить коэффициент использования энергии реонов — энергии электрического поля.

Рис. 194. Никола Тесла (1856–1943).

Другой возможный путь — это использование энергии космических частиц, извлекать которую предлагал всё тот же Н. Тесла (Рис. 194), разработавший и соответствующие устройства [110]. Энергия частиц космических лучей и пронизывающих всё потоков реонов — это такая же даровая и доступная в любой точке Земли энергия, как энергия ветра (потока атомов), но гораздо более внушительная, сопоставимая с общим потоком энергии солнечного света на Землю и доступная в любое время суток [151]. Однако все эти проекты незаслуженно забыты вместе с именем самого изобретателя, подобно имени Ритца, вымаранном из инженерной и научной литературы [110]. Возможно, правильней сравнить энергию свободно носящихся частиц не с ветровой, а с тепловой. Ведь в отличие от ветра, представляющего собой более-менее упорядоченное движение атомов, реоны и космические лучи движутся беспорядочно во всех возможных направлениях, напоминая больше хаотическое, тепловое движение атомов. Но именно тепловую энергию, как считается, нельзя выделить и напрямую преобразовать в работу, согласно второму началу термодинамики. По той же причине скрытая энергия вакуума, — кинетическая энергия реонов, возможно, так и останется навсегда недоступной для нас. Разве что второй закон термодинамики окажется несправедлив в микро- и мегамире, что позволит его обходить. Есть предположение, что энергию беспорядочного движения можно всё же извлечь с помощью особых периодичных решётчатых, сетчатых микроструктур, имеющих шаг, период, сопоставимый с расстоянием между частицами вещества, энергию которых требуется извлечь.

Но БТР открывает и много других путей получения даровой энергии, а также более простые и эффективные способы добычи уже используемых видов энергии. Так, установление действительной природы фотоэффекта позволило бы заметно повысить КПД и понизить стоимость солнечных батарей (§ 4.6). Ведь растения, которые не пользуются никакими квантовыми законами, используют свет Солнца с гораздо большей эффективностью, чем люди с их современными исследовательскими лабораториями. Кроме того, механическое единство всех видов энергий (§ 3.16), возможно, позволит преобразовывать одни типы энергии в другие, минуя промежуточные этапы, напрямую, без потерь в каждом преобразовании существенной доли энергии.

Так же и познание тайн реакций распада и синтеза частиц позволит найти более эффективные и простые методы выделения ядерной энергии, скажем, осуществив холодный ядерный синтез (ХЯС). Ведь из химии известно, что в реакциях для сообщения реагентам энергии активации часто не обязателен нагрев. Благодаря веществам-катализаторам многие реакции интенсивно идут уже при комнатной температуре. Наглядный пример — организм человека — сложная химическая лаборатория, в которой миллионы реакций протекают при температуре тела за счёт природных катализаторов — ферментов. Так же и для ядерных реакций, во многом подобных химическим, однажды удастся найти частицы-катализаторы (§ 3.13, § 3.14). Примером их уже могут служить нейтроны. Именно они позволили осуществить первые искусственные ядерные процессы с их гигантским энерговыделением. Некоторые физики, как, например, В.П. Савченко, предлагают использовать для осуществления ХЯС туннельный эффект. Подобно тому, как альфа-частицы способны преодолеть потенциальный барьер и вопреки ядерному притяжению оторваться от ядра с выделением энергии в ?-распаде, так и в реакциях синтеза теоретически возможно слияние ядер дейтерия за счёт туннельного эффекта. Управлять этим эффектом опять же удастся лишь при верном понимании его природы (§ 3.14, § 3.18, § 4.12).

Обычно, чтоб ядра прореагировали, их стремятся сильно разогнать для преодоления кулонова отталкивания. Но огромная энергия ядер при сближении снижает эффективность взаимодействия, поскольку при быстром подлёте они не успевают прореагировать или отскакивают друг от друга. Поэтому правильней было бы плавно сближать ядра, пока в игру не вступят ядерные силы, что позволит вести ядерный синтез при низких температурах. Так, у нейтронов эффективность взаимодействия с ядрами гораздо выше, если их скорость мала, поскольку при этом больше время взаимодействия. Вдобавок при медленном сближении поле ядра успевает сориентировать нейтрон так, чтобы увеличилась сила ядерного притяжения [19, с. 319], что происходит, когда в кристаллической решётке нейтрона электроны располагаются точно напротив позитронов ядра и наоборот (§ 3.12), порождая ядерное взаимодействие уже на больших дистанциях. То же должно выполняться и для двух сливающихся ядер: для эффективного ядерного взаимодействия они должны плавно сближаться. И сейчас реально известны способы управления скоростью движения атомов и ядер, методы их разгона и торможения посредством лазерного излучения. Выходит, лазеры и впрямь могут быть ключом к синтезу, но к не лазерному термояду, о котором все трубят, а к холодному ядерному синтезу.

Таким образом, именно путь, по которому движется БТР, открывает новые горизонты в плане выделения и использования доселе скрытой энергии. Поэтому в нынешних условиях энергетического и топливного кризиса, загрязнения окружающей среды малоэффективными двигателями внутреннего сгорания, открытие новых источников энергии на базе БТР было бы весьма желательно. Уже только поэтому теория Ритца заслуживает пристального внимания и исследования её возможностей.