19. Уравнение неразрывности жидкости
19. Уравнение неразрывности жидкости
Довольно часто при решении задач приходится определять неизвестные функции типа:
1) р = р (х, у, z, t) – давление;
2) nx(х, у, z, t), ny(х, у, z, t), nz(х, у, z, t) – проекции скорости на оси координат х, у, z;
3) ? (х, у, z, t) – плотность жидкости.
Эти неизвестные, всего их пять, определяют по системе уравнений Эйлера.
Количество уравнений Эйлера всего три, а неизвестных, как видим, пять. Не хватает еще двух уравнений для того, чтобы определить эти неизвестные. Уравнение неразрывности является одним из двух недостающих уравнений. В качестве пятого уравнения используют уравнение состояния сплошной среды.
Формула (1) является уравнением неразрывности, то есть искомое уравнение для общего случая. В случае несжимаемости жидкости ??/dt = 0, поскольку ? = const, поэтому из (1) следует:
поскольку эти слагаемые, как известно из курса высшей математики, являются скоростью изменения длины единичного вектора по одному из направлений X, Y, Z.
Что касается всей суммы в (2), то она выражает скорость относительного изменения объема dV.
Это объемное изменение называют пооразному: объемным расширением, дивергенцией, расхождением вектора скоростей.
Для струйки уравнение будет иметь вид:
где Q – количество жидкости (расход);
?– угловая скорость струйки;
?l – длина элементарного участка рассматриваемой струйки.
Если давление установившееся или площадь живого сечения ? = const, то ?? /?t = 0, т. е. согласно (3),
??Q/?l = 0, следовательно,
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Повышенный расход охлаждающей жидкости
Повышенный расход охлаждающей жидкости Неисправности системы охлаждения Повреждение радиатора. Проверить герметичность радиатора. Мелкие дефекты радиатора устранить пайкой. При сильных повреждениях радиатор заменить.Повреждение шлангов или прокладок в соединениях.
2. Основные свойства жидкости
2. Основные свойства жидкости Плотность жидкости.Если рассмотреть произвольный объем жидкости W, то он имеет массу M.Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна где M – масса жидкости.Если требуется узнать r в
3. Силы, действующие в жидкости
3. Силы, действующие в жидкости Жидкости делятся на покоящиеся и движущиеся.Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.Сами эти силы можно разделить на две группы.1. Силы массовые. По-другому эти силы называют силами, распределенными по
20. Характеристики потока жидкости
20. Характеристики потока жидкости В гидравлике потоком считают такое движение массы, когда эта масса ограничена:1) твердыми поверхностями;2) поверхностями, которые разделяют разные жидкости;3) свободными поверхностями.В зависимости от того, какого рода поверхностями
23. Уравнение Эйлера для разных состояний
23. Уравнение Эйлера для разных состояний Уравнение Эйлера для разных состояний имеет разные формы записи. Поскольку само уравнение получено для общего случая, то рассмотрим несколько случаев:1) движение неустановившееся. 2) жидкость в покое. Следовательно, Ux = Uy = Uz = 0.В
25. Уравнение Бернулли
25. Уравнение Бернулли Уравнение Громеки подходит для описания движения жидкости, если компоненты функции движения содержат какуююто вихревую величину. Например, эта вихревая величина содержится в компонентах ?x, ?y,?z угловой скорости w.Условием того, что движение
33. Уравнение Бернулли для движения вязкой жидкости
33. Уравнение Бернулли для движения вязкой жидкости Элементарная струйка при установившемся движении вязкой жидкостиУравнение для этого случая имеет вид (приводим его без вывода, поскольку его вывод сопряжен с применением некоторых операций, приведение которых
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь потокПрежде всего,
25. Уравнение состояния идеального газа
25. Уравнение состояния идеального газа Уравнение состояния идеального газа описывает связь между его температурой и давлением. Поскольку давление идеального газа в замкнутой системе P = 1/3 О mn<v2>, P= nkT, то уравнение идеального газа будет выглядеть следующим образом:P =
26. Универсальное уравнение состояния идеального газа
26. Универсальное уравнение состояния идеального газа Отношение массы mгаза (вещества) к количеству газа (вещества) vэтой системы называют молярной массой газа (вещества):М = m/ v.Размерность молярной массы следующая: [M] = 1 кг / 1 моль.Следствие из закона Авогадро позволяет
41. Уравнение состояния Ван-дер-Ваальса
41. Уравнение состояния Ван-дер-Ваальса В общем случае для реальных газов при вычислении параметров состояния нельзя использовать уравнение состояния pv = RT,которое верно для идеальных газов.Общее уравнение состояния для реальных газов. в котором коэффициенты Bi –
42. Уравнение состояния для реальных газов М. Н. Вукаловича и И. И. Новикова
42. Уравнение состояния для реальных газов М. Н. Вукаловича и И. И. Новикова Универсальное уравнение, описывающее состояние любых реальных газов, было получено в 1939 г. русскими учеными И. И. Новиковым и М. Н. Вукаловичем. В немуже учитывалось явление силового взаимодействия
48. Уравнение неразрывности
48. Уравнение неразрывности Согласно газовой теории потока течение газа в случае стационарности определяется с помощью специальной системы уравнений. В нее входят следующие соотношения:1) уравнение энергии для газового потока;2) уравнение состояния;3) уравнение для
55. Дросселирование газа и уравнение процесса
55. Дросселирование газа и уравнение процесса Для водяного пара критическая температура составляет Тк = 647 К, соответственно, Тинв > 4400 К (температура инверсии). В процессе дросселирования всегда происходит охлаждение водяного пара, это связано с полной диссоциацией
О добавлении охлаждающей жидкости
О добавлении охлаждающей жидкости Если при значительном охлаждении автомобиля (-30 °C) уровень ОЖ в расширительном бачке существенно понизится, то не торопитесь доливать. Включите УОПД, запустите мотор, прогрейте его, зарядите ТА. Если после этого уровень ОЖ будет
6.1.3. Рабочие и специальные жидкости
6.1.3. Рабочие и специальные жидкости В зависимости от назначения и свойств жидкости делятся на охлаждающие, тормозные, амортизационные и пусковые.Гидравлические масла работают при больших перепадах температур (от —40 до +80 °C), давлениях 10–15 МПа, скоростях скольжения до