Глава 11 Системы вооружений

We use cookies. Read the Privacy and Cookie Policy

Глава 11

Системы вооружений

В этой главе

• Совершаем нападение.

• Торпеды: внутри и снаружи.

• Пуск торпед.

• Управление вооружением и навигация.

Впервые вы совершили экскурсию по подлодке в главе 1. Теперь мы возвращаемся туда и рассмотрим подробнее системы вооружений подлодки.

Вы заходите в центр управления через передний вход, расположенный около входа в сонарную комнату и лестницы в тоннель, ведущий на мостик. Вы стоите спиной по направлению движения. Первое, что вы замечаете, это перископная платформа на рельсах и перископы типа 18 рядом с ней. Поддавшись искушению, вы подходите к платформе и заглядываете в окуляр перископа. Вы можете видеть все сквозь сетку окуляра вплоть до штата Мэрилэнд.

Устройство центра управления

Над головой у вас расположены видеоэкраны, которые повторяют изображение экранов сонаров. Они отображают показания в сонарной комнате, но вы можете выбрать, какой экран вы хотите увидеть: водопадный экран, экран узкополосного сонара или активный экран, показывающий соотношение курса и расстояния.

Также над вашей головой находятся несколько микрофонов, свисающих на проводах (система внутреннего оповещения подлодки 1МС, система 7МС для связи с мостиком во время нахождения на поверхности и с комнатой управления реактором), а также телефон для связи с капитаном. Красная коробка, находящаяся рядом, это голосовая система безопасности «Нестор», использующая сверхвысокую частоту, для связи с противолодочным воздушным аппаратом Р-3 Orion или для отсылки голосового сообщения на спутник. Наконец, электрическая цепь с микрофоном, связанная с сонарами, — подводный телефон UQT. Это просто система, которая превращает сонарную систему BQQ-10 в большой громкоговоритель для того, чтобы передать ваш голос в океан.

Когда вы поворачиваетесь назад и становитесь лицом по направлению движения, вы видите перед собой нечто, похожее на панель управления Боингом-747. Это панель управления судном. «Пилот» слева от нас — офицер, управляющий хвостовыми плавниками, справа — рулевой. На каждом пульте управления есть ручка, похожая на ту, которую вы можете увидеть в самолете. Вы скользите взглядом по панели. Консоль между ними имеет выступающие рычаги — экстренные гидравлические рычаги управления рулем, хвостовыми и носовыми плавниками.

На консоли также расположены рычаги управления гидравлическими клапанами. С их помощью вы можете переключаться с основной гидравлической системы на вспомогательную и с вспомогательной на экстренную. Панель сверху напичкана различными приборами, показывающими угол наклона подлодки, глубину погружения и угол поверхностей управления. По центру располагается цифровой прибор, показывающий глубину погружения.

Под правым рычагом находится переговорное устройство для связи с машинным отделением, с помощью которого офицерам в комнате управления реактором передаются конкретные параметры скорости. Кресло позади консоли принадлежит офицеру погружения, который контролирует работу персонала комнаты и докладывает дежурному по судну.

Далее по левому борту расположена панель управления балластными ёмкостями, откуда осуществляется контроль клапанов балластных ёмкостей, системы экстренного взрыва балластных ёмкостей, системы вертикального подъёма на поверхность, системы слива воды, системы внутреннего оповещения подлодки 1МС и контроль аварийной сигнализации. На этой панели отображается состояние баллонов со сжатым воздухом, а также отверстия подлодки. На панели, в шутку называемой «новогодней ёлкой», расположено множество круглых красных лампочек (они показывают открытые элементы подлодки) и зелёных лампочек (они сигнализируют о том, что данный элемент в структуре подлодки закрыт). На ней находится лампочка для каждого люка и клапана балластных ёмкостей. Когда на панели горят только зеленые лампочки, то подлодка может погружаться (в этой ситуации говорят, что дан зелёный свет), Старший вахтенный офицер тоже сидит в этой комнате и регулирует распределение баланса подлодки, следуя указаниям офицера погружения.

Позади кресла дежурного по судну по левой стороне центра управления располагаются консоли инерционной системы навигации судна и фатометр. Сразу за перископами находятся два одинаковых стола с чертежами, один для навигации, другой для систем наведения.

Подводный телефон UQT — довольно забавная штука. Когда ваш голос отражается от океанского дна, он звучит, как голос бога.

Центр нападения

В конце комнаты центра управления, по правому борту расположен ряд консолей с видеоэкранами. Это центр нападения. На переднем краю ряда расположена позиция 1, где сидит офицер и переставляет множество точек на экране, пытаясь навести орудия на цель. Следующая консоль — это позиция 2, сидя за которой офицер контролирует географическое положение. Затем идёт позиция 3 — ещё один человек, расставляющий точки. А затем идет уже центр управления вооружением, который используется для подготовки торпед к запуску, программирования торпедных пусковых установок и орудий. Когда торпеда запущена, он контролирует её статус и направляет, если это требуется (смотрите следующий раздел «Торпеды».

Когда не проводятся учения или команда не получает боевых заданий, по всему центру управления там и тут разбросаны тактические карты и доски, на которых что-то нарисовано карандашом, то комната становится похожа на Таймс Сквер во время боевых заданий или учений. Система кондиционирования центра управления призвана охлаждать приборы и два десятка человек, набившихся в это небольшое помещение. Потому, когда там находитесь лишь вы и вахтенные офицеры, комната напоминает морозильную камеру.

Аббревиатура WCP (weapons control panel) означает панель управления вооружением.

Торпеды

Вариант торпеды Mark 48 ADCAP, который сейчас преимущественно стоит на вооружении подлодок ВМС США, совершенствовался в течение долгих лет, пока не стал близок к идеалу. Если вы стоите в торпедном отсеке и похлопываете торпеду по её холодному, сверкающему зеленому корпусу, вы можете с уверенностью утверждать, что это убийца. Она имеет обтекаемый цилиндрический корпус 45 сантиметров в диаметре и 7 метров в длину. Нос ракеты имеет форму усечённого конуса, а зелёная сверкающая обшивка уступает место резиновому преобразователю.

Вы двигаетесь по направлению к заднему концу и видите, что он покрыт серым фибергласовым капсюлем. Если вы снимете капсюль, то обнаружите двигатель с реактивным насосом в оболочке, а также катушку с длинным стереопроводом.

Торпеда соединена с судном этой тонкой нитью, которая является проводником сигнала в обе стороны.

Если вы заглянете внутрь торпеды, то увидите, что 1/6 часть внутреннего пространства занята носовым передатчиком и компьютером системы наведения. За компьютером располагается боеголовка, 750 кг специального взрывчатого вещества высокой плотности. За боеголовкой располагается бак с горючим и, наконец, двигатель.

Двигатель внешнего сгорания торпеды

Наверное, самой интересной деталью торпеды является именно двигатель. Это двигатель внешнего сгорания, в котором горение топлива происходит вне самого двигателя. В вашем автомобиле установлен двигатель внутреннего сгорания, в котором горение топлива происходит непосредственно наверху поршней, приводящих в движение маховик и привод.

Реактивный двигатель — это двигатель внешнего сгорания. Топливо и воздух смешиваются и сгорают в камере сгорания, а горячие газы, получающиеся в результате горения, поступают в турбину, которая вращает компрессор. Потом они вырываются наружу, чтобы создать тягу (мы вернёмся к этому при рассмотрении ракет «Томагавк»).

Двигатель торпеды похож на реактивный двигатель. Топливу не нужно смешиваться с кислородом в камере сгорания, а потом воспламеняться от искры. Топливо, названное топливом Отто, — это производная пероксида. Оно уже содержит в себе кислород, поэтому ему не нужен кислород, поступающий извне. Это очень хорошо для торпеды, но да поможет вам Бог, если топливо прольётся в полости над дном подлодки и вспыхнет — вы не сможете потушить этот пожар (о пожарах на борту подлодки смотрите главу 5).

Постройка гидравлического мотора

Топливо Отто распыляется и возгорается от искры в камере сгорания. Горячие газы поступают в турбину. Но турбина не похожа на те, которые вы видели на реактивных самолетах. Она представляет собой гидравлический мотор, сделанный по технологии сервомотора. Два десятка маленьких поршней помещены в два десятка цилиндров. Цилиндры расположены по кругу и прикреплены к круглой пластине размером с обеденную тарелку. Поршни внутри цилиндров подсоединены ко второй пластине при помощи соединительных тяг. Эта пластина специально расположена под углом таким образом, чтобы при вращении агрегата поршни были бы в верхней части цилиндров в положении «3 часа» относительно пластины, к которой они прикреплены, и в нижней части цилиндров в положении «12 часов» относительно пластины, а потом снова в верхней части в положении «9 часов» и в нижней части в положении «6 часов».

Когда производится быстрый пуск торпеды без тщательного прицеливания, обычно в экстренной ситуации, эту операцию называют «мгновенная реакция».

Начало положено

Теперь проделайте отверстие в пластине, чтобы впустить горячие выхлопные газы в один из цилиндров в положении «3 часа». Горячий выхлоп, которому не терпится расшириться и совершить работу по движению поршня, преодолев сопротивление, попадает в один из цилиндров, где поршень близок к своему верхнему положению. Газ расширяется и толкает поршень вниз по цилиндру. Наклонная пластина установлена таким образом, что цилиндр увлекает все 24 цилиндра за собой и совершает цикл, в котором в положении «12 часов» цилиндр находится в своем нижнем положении. Ударная пластина присоединена к валу, который вращает винт.

Установка продолжает вращать ударную пластину и сжимает отработанные газы до давления, немного большего, чем давление морской воды. Пластина тратит на это энергию, но другие цилиндры приходят в такое положение, в котором газы «хотят» расшириться. Когда цилиндр проходит положение, в котором газы могут попасть внутрь, газ из цилиндра выходит наружу через отверстие, просверленное в пластине, и попадает в трубу, которая выводит его к заднему кожуху торпеды. Существует специальная форсунка, через которую газ выходит в воду, превращаясь в пузыри, делая торпеду менее заметной.

Орудие вашей подлодки называется «боевая единица». «Торпеда» — орудие подлодки противника. Никогда не говорите про свое орудие «торпеда», говорите «боевая единица» или «наша боевая единица». Если вы скажете «Торпеда по курсу 055», капитан поймет, что противник только что выпустил в вас торпеду и что он должен вступить в бой, чтобы спасти судно.

Заряжаем пусковую установку

Чтобы произвести загрузку торпеды в пусковую установку, вахтенный офицер сначала должен согласовать эту процедуру с центром управления, открыть затворную дверь с помощью панели управления торпедами, проверить на наличие неисправностей с помощью фонаря, а затем направить торпеду к гидравлическому поршню. Вахтенный офицер выбирает поршень на панели управления и начинает медленно двигать рукоять от себя. Под действием гидравлической силы торпеда будет загружена в пусковую установку до такого уровня, пока не останется виден серый капсюль.

Затем вахтенный офицер вынет силовой кабель из капсюля и присоединит его к двери. Потом он проделает ту же операцию с сигнальным кабелем, удостоверясь в том, что он аккуратно присоединен, и закроет дверь вручную.

На консоли управления торпедами блокиратор повернется над дверью, закрывая и задраивая ее. Теперь система готова к затоплению пусковой установки. Вахтенный офицер закрывает клапан вентиляции пусковой установки, связывающий её с торпедным отсеком, и открывает клапан затопления.

Теперь ничего, кроме этого, не разделяет команду подлодки и давление морской воды. Если возникнут неполадки в работе клапанов или блокиратора, то подлодку затопит.

Затопление в торпедном отсеке!

В этом случае вахтенный офицер хватает трубку системы внутреннего сообщения 4МС и кричит громко, но отчетливо: «Затопление в торпедном отсеке! Затопление в торпедном отсеке!»

Хотя это звучит странно, но это совсем не обязательно вина вахтенного офицера. А если он не смог остановить затопление и не оповестил команду, он только что убил 130 человек. Сейчас и только сейчас он закрывает вентиляционные клапаны (если пусковая установка затоплена, блокиратор дал сбой, то это не поможет).

Если и это не помогает, то вахтенный офицер бежит к пульту управления ручным закрытием изоляционных клапанов и смотрит, может ли он остановить затопление. Если это не сработает, то он отдаст приказ о приготовлении к затоплению и доложит ассистенту по устранению неисправностей.

Если блокираторы вентиляционных клапанов работают как положено, то вода полностью заполнит пусковую установку и затопление прекратится. Вахтенный офицер осмотрит затопленную ёмкость с водой в заднем конце торпеды. В пусковой установке есть отверстия, открывающиеся в эту ёмкость по команде системы ведения огня.

Теперь вахтенный доложит в центр управления, что с торпедой все в порядке. Они могут включить питание торпеды в установке. Если сложилась напряженная тактическая ситуация, то центр управления может создать давление в пусковой установке (снова открыть клапан затопления, оставив закрытым вентиляционный клапан) и открыть дверь дула.

В центре управления офицеры проделывают примерно такую процедуру при каждом запуске. Эта обыденная процедура заканчивается нажатием на спусковой механизм.

Эта дверь не похожа на крышку, а больше напоминает книжную полку из фильмов ужасов, которая вращается, когда кто-нибудь сдвинул голову статуи. Дверь поворачивается на 180 градусов, чтобы открыть отверстие в пусковой установке для доступа морской воды. Когда она возвращается в первоначальное положение, то подгоняется по обтекаемому контуру корпуса подлодки. Судно может продолжать движение с двумя открытыми дульными отверстиями, двумя торпедами, готовыми к запуску и нацеленными на противника. В этом случае, если противник задумает выкинуть какую-нибудь шутку, например, запустить межконтинентальную баллистическую ракету, направленную на американские города, вы угостите его парочкой торпед Mark 48.

Запуск торпеды

Когда центр управления принимает решение о запуске торпеды, воздух под давлением 2000 тонн на квадратный метр впускается в большой стальной гидравлический поршень через быстрый соленоидный клапан. Воздух поступает с одной стороны клапана гидравлического поршня, в то время как другая его сторона, мокрая, присоединена к ёмкости вокруг торпеды. Как только воздух под высоким давлением начинает давить на одну сторону поршня, клапан «хочет» расшириться, а расширяться ему некуда, кроме как толкать поршень, преодолевая сопротивление воды.

Давление в ёмкости вокруг торпеды «взлетает» до 200 атм. Если из-за поведения воды какая-то её часть испытывает давление, то весь объём испытывает то же давление. Люк в задней части пусковой установки открывается, и вода под давлением в торпедной ёмкости начинает толкать торпеду вперёд. Даже на тестовой глубине давление за бортом ниже, чем давление внутри ёмкости вокруг торпеды. Единственным препятствием, разделяющим области с высоким и низким давлением, оказывается торпеда. Она похожа на частичку, попавшую в соломинку, которая находится в бутылке с содовой. Ёмкость вокруг торпеды — рот мальчика, а вода за бортом — воздух комнаты. Торпеда вылетает из пусковой установки с сумасшедшим ускорением. Она набирает скорость до тех пор, пока двухтонная громадина не вылетает из установки со скоростью 25 узлов. Теперь начинается самое интересное. Двигатель сжимает топливо Отто, вырабатывается искра, и силовая установка начинает вращаться. При запуске двигателя торпеда сразу чувствует тягу от силовой установки. В этот момент срабатывает программа торпеды. Если сложилась напряжённая ситуация и вы не хотите, чтобы противник обнаружил вашу торпеду, вы запускаете её на низкой скорости и в пассивном режиме поиска. Но если противник уже обнаружил вас и вы находитесь в сложной ситуации (представьте, что вы попали в пьяную драку, но между подлодками), просто запустите торпеду на высокой скорости и в режиме активного поиска.

Во время пути под водой торпеда погружается на заданную глубину и ускоряется до определенной скорости (высокой, средней или низкой). Она путешествует «молча», разматывая сигнальный кабель, присоединенный с одного конца к хвосту торпеды и с другого — к подлодке. Если подлодка захотела изменить настройке — изменить скорость, курс или режим поиска, — сигнал идет по этому кабелю. Торпеда считает обороты винта и знает, сколько оборотов добавлять за милю. Она проверяет инструкции с борта подлодки и терпеливо идёт к цели, пока не достигает момента активации систем.

При достижении точки активации систем все начинает работать. Если торпеде дано указание осуществлять активный поиск, она начинает посылать высокочастотные сигналы, подобно подледному сонару. Она также осуществляет поиск. Торпеда ведет себя подобно змее: она поднимается вверх на 35–50 метров, затем снова погружается. Одновременно с этим она поворачивается вправо-влево по синусоиде, а сонар «освещает» область в форме конуса перед торпедой. Если же торпеда получила приказ о скрытном поиске, она только слушает (а потом она попадает в вас — сюрприз!). В режиме скрытного поиска она тоже ведет себя как змея. Торпеда продолжает свой поиск, двигаясь по спирали, до тех пор, пока что-нибудь не обнаружит.

Если команда ждёт слишком долго или тратит очень много времени на прицеливание и выверение данных и поэтому теряет прекрасную возможность для пуска торпед, говорят, что моряки полировали подшипники орудия (подшипники орудия работают хорошо, независимо от того, грязные они или нет). Это выражение применяют тогда, когда человек напрасно теряет драгоценное время в безнадежной ситуации вместо того, чтобы поспешить.

Преследуя цель

Хотя кажется, что после пуска торпеды можно успокоиться, но это похоже на то, как вы бросаете мяч в американском футболе. Вы кидаете мяч не непосредственно игроку, а в то место, где он будет, когда мяч прилетит туда. Иногда вы неверно рассчитываете скорость игрока или, что ещё хуже, он неожиданно поворачивает в сторону. Когда цель меняет курс или скорость, торпеда не попадает.

Если цель меняет свое местоположение, то необходимо изменить курс торпеды, иначе она промахнется. Если команда управления вооружением сможет назначить для торпеды другую цель, то они передают информацию в компьютер, управляющий торпедой. Если команда управления вооружением вовремя не получила информацию об изменении курса, а торпеда стоимостью миллион долларов уже запущена, то остаётся гадать, попала ли она в цель или нет. Офицер вооружений, по приказу координатора, дает команду торпеде на изменение курса. Экран компьютера не представляет собой ничего особенного — просто функциональный дисплей, на котором отображается курс торпеды и нужный угол поворота. Как только офицер вооружений отдает приказ торпеде о повороте, он тут же передается в компьютер торпеды. Сигнал путешествует по кабелю длиной несколько километров, Как только сигнал достиг торпеды, она тут же изменяет курс и начинает новый поиск.

После этого торпеда либо обнаруживает цель, либо нет. Если команда «изменить курс» дана верно, то торпеда обнаружит цель или у неё закончится топливо и она пойдёт на дно. Если она обнаруживает цель (обнаружение происходит подобно тому, как вы поворачиваете голову влево-вправо, пытаясь понять направление источника звука), то начинает наведение.

Сигнал об обнаружении цели передается по кабелю в центр управления подлодки. Офицер вооружений командует «Обнаружить!», и команда управления вооружением наблюдает за происходящим, затаив дыхание. В большинстве случаев торпеда обнаружит другую цель, если же нет, то она входит в режим «вторичного нападения», при котором она делает несколько кругов, пытаясь вновь навестись на цель. Второе наведение — очень хороший знак. При третьем цель — это судно с мертвецами. Офицер вооружений командует «Наведение!», и торпеда продолжает свой путь до тех пор, пока не сработают датчики близости цели.

Набор скорости до атакующего уровня

В момент наведения торпеда набирает скорость для достижения атакующей скорости, которая для торпеды ADCAP равна 63 узлам (скорость увеличивается с 45 до 63 узлов). Зверь, способный двигаться со скоростью 63 узла, был разработан для поражения подлодок класса «Альфа» — самых быстрых и глубоководных в мире, Торпеда также способна погружаться на беспрецедентные глубины, чтобы «Альфа» не смогла достичь аварийной глубины и протаранить американскую подлодку. Но к тому времени, когда торпеды ADCAP были поставлены на вооружение, стало очевидно, что «Альфа» уже не представляет опасности: на большей части из семи подлодок этого класса произошли аварии в реакторах, и они были списаны. Ничто не может обогнать торпеду на скорости 63 узла. Если торпеда обнаружила цель и у нее достаточно топлива, цель будет поражена.

При наведении торпеда приводит в готовность детонатор и блокирующую пластину между более мощным и менее мощным зарядами. Первый очень чувствителен, но не обладает большой разрушительной силой, второй же инертен в обычных условиях, но когда возгорается, разносит всё к чертям. Когда мощный заряд возгорается от менее мощного, то происходит то, что нужно.

Теперь полностью вооруженная и готовая торпеда ожидает сигнала от датчика близости цели. Этот датчик представляет собой прибор, который чувствует изменение магнитного поля Земли. В океанской воде эти магнитные волны равномерно распределяются. В непосредственной близости от подлодки или другого судна, тем не менее, магнитные волны концентрируются из-за наличия большого количества металла снаружи подлодки и воздуха внутри неё. Датчик определяет близость корпуса судна. Возгорается меньший по мощности заряд, затем детонирует основной заряд, и взрыв пробивает корпус судна противника. Плохо, что на борту нет пива — было бы веселей.

Крылатые ракеты

Есть два способа потопить судно: проделать брешь в дне, чтобы туда попала вода, или в верхней части судна. Крылатые ракеты подходят для второго способа. Если у противника есть флот из надводных судов, лучшим решением будет выпустить в него пяток ракет «Томагавк». Крылатые ракеты «Томагавк» класса «подлодка-поверхность» (крылатые ракеты для нападения на надводные суда противника) как нельзя лучше пригодятся вам, если вокруг рыскают суда противника, а торпеды вы бережете для подлодок.

Скорее всего, вы прибегнете к помощи «загоризонтной» системы наведения. В конце концов, это же надводные корабли, а любой самолёт или спутник может обнаружить его или другую подлодку. Вы получаете их координаты, вводите их на панели управления вооружением и выбираете тип оружия.

Существует два варианта ракет: капсюльный и запускаемый из пусковой торпедной установки. С целью экономии места для торпед система вертикального запуска установлена в передней балластной ёмкости. В случае с капсюльной ракетой вы готовите её к пуску так же, как и торпеду, и запуск производится из пусковой установки. Капсюль вылетает вертикально вверх по направлению к поверхности воды. Когда передний конец показался из воды, датчик определяет, что вокруг воздух, а не вода, и конусный наконечник отсоединяется от ракеты. Срабатывает первая ступень ракеты, и она вылетает из капсюля и поднимается на высоту до 1 километра.

Если ваш выбор пал на ракету вертикального запуска, процедура будет немного другой. Вы открываете дверь установки и запускаете газовый генератор внизу. Ракета надёжно защищена от морской воды мембранным колпаком в конце установки. Газовый генератор — заряд твёрдого ракетного топлива, поджигаемый под ёмкостью с водой.

Путь наверх

Ракетное топливо превращает топливо в пар, который расширяется и толкает ракету вперёд. Ракета проходит сквозь мембрану и поднимается над поверхностью воды в облаке пара. Когда ракета обсохла, срабатывает первая ступень, и снаряд поднимается, как и ракета, запускаемая из пусковой установки, на высоту до 1 километра.

В верхней точке параболической кривой полета ракеты первая ступень исчерпала свой запас топлива и откидывается. Это делается с той целью, чтобы раскрутить реактивный двигатель ракеты на пути вниз. Из-за большой скорости компрессор начинает вращаться, что создает давление в камере сгорания. При запуске все надеются, что активация двигателя ракеты пройдёт прежде, чем она упадет в море. Вращающийся компрессор повышает температуру в камере сгорания, и в нужный момент происходит впрыск топлива и, как следствие, возгорание. Результат достигнут, созданы огромные температура и давление на входе турбины. Турбина имеет небольшие размеры, достаточные для вращения компрессора, чтобы двигатель ракеты был независим. Оставшаяся после прохождения через турбину энергия горячих газов превращается в кинетическую энергию потока, вырывающегося из сопла, Высокая энергия выхлопа поддерживает движение ракеты до цели.

Путь вниз

На пути вниз по бокам ракеты выдвигаются крылья для управления. Теперь ракета движется со сверхзвуковой скоростью на высоте менее 15 метров, используя данные спутниковой системы навигации. Недалеко от цели ракета может послать несколько сигналов радара, чтобы ещё раз проверить местоположение цели, или же она может наводиться на сигнал радара цели.

После этого ракета производит последний подъём, потому что она может с большей точностью поразить цель сверху и потому что орудия судна ведут огонь в стороны, а не вертикально вверх. Ракета пробивает корпус судна и взрывается уже внутри. Ещё один неудачный день для одной из наших мишеней.

Представьте, что вам нужно уничтожить городок Вражинск в Стране Уродов. Вы вносите в программу ориентиры (сначала лететь на улицу Б, повернуть налево около дома 7–11, затем к магазину повернуть направо на втором повороте и прибыть к левому крылу Разведцентра, третьей двери слева). Для этого вам понадобится ракета «Томагавк» для атаки наземных целей. Как только программирование завершено, запуск ракеты напоминает запуск противокорабельной ракеты, за одним исключением: по пути ракета может использовать топографические свойства местности для вычисления местоположения цели. Вы можете запрограммировать «Томагавк» таким образом, что он взлетит в районе Средиземного моря и попадёт в выбранное вами окно в Кремле.

Вот мы и подошли к последнему варианту «Томагавка», — с атомной боеголовкой. Боеголовка имеет небольшие размеры, но это ведь водородная бомба, что вам ещё нужно?

Ещё одна новая система на подходе — противовоздушные ракеты, запускаемые с подлодок, которые могут быть запущены из паруса и поразить патрульные самолеты типа Р-3 Orion. В следующий раз, когда вы заметите его поблизости, то сразу подумаете об этих ракетах. Разумеется, он обнаружил вас, но не успел никому об этом рассказать.

Оружие будущего

Хотя торпеды и очень эффективны, вам придётся ждать целый час, прежде чем одна из них поразит цель на расстоянии 60 километров (торпеда путешествует со скоростью 63 узла только на начальном этапе, если, конечно, вы не запрограммируете её на движение с максимальной скоростью, но это сделает её менее скрытной для противника, да и расход топлива будет гораздо выше). Было бы здорово иметь что-нибудь побыстрее. К счастью, появление торпед нового поколения не за горами. На этот раз русские действительно изобрели их первыми, а мы просто украли у них технологию.

Новые ракеты работают на твёрдом ракетном топливе и имеют заострённый нос. Ракетное топливо делает своё дело и мгновенно доставляет ракету до цели. Пар начинает выходить из носа ракеты, пока он не покроет её до самого конца. В этот момент ракета обладает потрясающей проникающей способностью и разгоняется до скорости 300 узлов. Синий лазерный луч наводит её на цель. Если все прошло нормально, то кинетическая энергия ракеты, летящей со скоростью 300 узлов, и заряд большой мощности позаботятся о том, чтобы этот день стал самым чёрным днём в жизни противника.

Запуск такой ракеты может стать проблематичным. Если возгорание ракетного топлива произойдёт внутри пусковой установки, то внутри будет создано повышенное давление и установка разлетится на куски. Горячий газ ворвется в торпедный отсек и станет причиной детонации всего торпедного арсенала.

Некоторое время считалось, что причиной затопления подлодки «Курск» стала неудачная попытка запуска такой торпеды.

Контроль ведения огня, или

Как мне навести торпеду на цель

Подлодки в основном используют пассивные сонары, поэтому основную часть времени в приготовлении торпеды к запуску занимает вычисление расстояния до цели, её курса и скорости. Чтобы получить эту информацию, требуется много людей и оборудование стоимостью миллионы долларов.

Все эти показатели можно рассчитать и с помощью бумаги и карандаша. Командование ВМС также настаивает на том, чтобы информацию, полученную при помощи высокотехнологичного оборудования, перепроверяли, используя простые приборы. Оно настаивает и на обратной процедуре на случай, если «мудрёное» компьютерное оборудование выйдет из строя. Вообще, хороший вахтенный офицер может рассчитать все эти показатели в уме, используя перископ и показания сонара. Все основано на тригонометрии: в случае с отдаленным объектом, движущимся перпендикулярно относительно вас, если вы знаете уровень изменения его курса (как быстро изменяется расстояние до него в градусах/минуту) и его перпендикулярную скорость, то вы знаете расстояние до цели (расстояние = перпендикулярная скорость : курс судна).

Это начало расчёта расстояния с помощью метода Экелунда. Вообще это уравнение гласит, что расстояние до объекта примерно равно перпендикулярной скорости, деленной на изменение курса. От дежурного по судну требуется выполнение многоуровневых тригонометрических вычислений в уме. (Это проще, чем кажется, потому что берутся примерные значения тригонометрических функций синуса и косинуса, а расстояние по системе Экелунда тоже является приблизительной величиной.)

Вышеупомянутое уравнение является уравнением 1-ого уровня. Более точное расстояние можно получить при помощи уравнений 2-ого и 3-его уровней. Вы вычисляете положение цели с помощью уравнения 1-ого уровня за 2 минуты, а потом совершаете маневр. После того как вы получаете информацию из уравнения 2-ого уровня, вы берете изменение значения перпендикулярной скорости и делите его на изменение координаты, чтобы получить расстояние. Если вы хотите считать в уме, то можете использовать специальную линейку. Ни один младший офицер не может считать себя полноценным без неё.

Вы можете также определить курс и скорость объекта при помощи чертежного стола и линейки скорости. Имея информацию сонаров о количестве оборотов винта, опытная команда по управлению ведением огня может навести торпеду на цель, вообще не прибегая к помощи компьютеров.

Говорят, что компьютеры быстрее и точнее, но им всё равно нужен человек, который вводит примерные данные расстояния до объекта и его скорости. Без опытного оператора за пультом управления компьютеры просто выдают бесполезную информацию. Компьютер управления ведением огня вводит информацию сонаров в единицы данных фиксированного интервала, обрабатывая данные о курсе объекта с интервалом в 20 секунд. На экране с точками компьютер показывает вертикальную линию, состоящую из точек, которая образуется при обработке информации компьютера. Точки соберутся в одной области экрана, если введена верная «догадка» о положении и скорости объекта. После трех этапов пространственно-временного анализа (трех маневров вашего судна относительно линии горизонта) обычно только одна комбинация данных о скорости и курсе цели заставляет кривую в форме буквы Z превратиться в горизонтальную линию. Когда это происходит, вы получаете нужный результат.

А что если эта идеальная, выверенная прямая вдруг изменит своё направление? И офицер, контролирующий курс, заметит, что он вдруг изменился? Или если офицер, наносящий на чертеж данные о частоте узкополосного сигнала объекта и времени, неожиданно изменит показания? Любой из этих фактов свидетельствует о том, что объект совершил маневр. Один из вахтенных офицеров систем ведения огня говорит: «Возможная цель изменила курс», и вся команда делает все возможное, чтобы подтвердить или опровергнуть его слова. Если координатор считает, что объект изменил курс, то он отвечает: «Подтверждаю изменение курса объекта!» Если торпеда готова к запуску, капитан объявляет: «Отменить огонь!», что отменяет пуск торпеды. Затем проводится очередной этап пространственно-временного анализа, чтобы вновь собрать данные, необходимые для наведения торпеды на цель. Возникает вопрос: почему он совершил маневр? Он тебя обнаружил? Если так, то могут возникнуть неприятности. Вам, может быть, даже придётся уточнить информацию.

Как только вычисления закончены, помощник капитана говорит: «Капитан, мы вычислили цель» (обычно это говорится с гордостью и нетерпением атаковать. Вы говорите таким же тоном фразу: «Дорогая, стейки готовы»).

И начинается рок-н-ролл.

Существует только два типа судов — подлодки и мишени. Мишени, в свою очередь, делятся на два типа: подлодки противника, называемые «подводными мишенями», и надводные суда, которые называют «скользящими по поверхности» (в конце концов, они и в самом деле лишь скользят по поверхности). Обычно офицеров и моряков, которые плавают на надводных судах, вежливо называют «скользящими мерзавцами».

Навигация, или

«Где мы находимся, чёрт возьми?»

Этот сложный вопрос обычно задается за навигационным столом с чертежами. Ответ можно получить при помощи бумаги и карандаша и старого, доброго чертежа. Не важно, сколько технологии задействовано в этом процессе и плазменных дисплеев подключено к спутниковой системе навигации, ВМС США все равно будет продолжать использовать предметы, которые выиграли войну 1812 года, — чертёж, карандаш, компас и секундомер.

Если вы знаете свое точное местоположение в данный момент времени — скажем, около пирса № 22, — вы проводите прямую линию от вашего предыдущего местоположения до того места, куда вы прибыли. Так как расстояние равно произведению скорости и времени, то зная вашу скорость и время в пути, вы можете рассчитать длину вашей линии на бумаге. Это называется примерный расчёт позиции судна (неопытный моряк может сказать, что это точный расчет местоположения, потому что он не знает, откуда взялся этот термин). К сожалению, позиция, полученная в результате примерного расчета, может быть далека от реальной, потому что необходимо делать поправку на ветер, прилив и, что самое важное, течение.

Поэтому нам нужно точно знать, где мы находимся. Сейчас в нашем распоряжении есть Глобальная система навигации, которая представляет собой серию сигналов, посылаемых на Землю навигационными спутниками, чтобы дать информацию о нашем положении с точностью примерно 7–15 метров. Этого бывает достаточно, чтобы навести межконтинентальную баллистическую ракету и запустить её таким образом, чтобы она попала в самый центр бункера. Иногда мольба навигатора: «Мне нужно определить мое местоположение!» похожа на монолог героинового наркомана.

Это одна из причин, почему подлодка поднимается на перископную глубину. На перископной глубине перископная антенна получает навигационные сигналы со спутника и предоставляет вам необходимую информацию для определения положения объекта. Но как же быть все те 3 или 10 часов, когда вы находитесь глубоко под водой, не обладая этими данными? Примерная информация о местоположении судна может быть настолько неверна, что если вы двигаетесь на полном ходу, то диаметр района вашего примерного положения может достигать 20, а то и 30 морских миль. Однажды солнечным утром в Средиземном море подлодка врезалась в подводную скалу. Она осуществила экстренный подъём на поверхность, используя взрыв балластных ёмкостей, и кое-как доплыла до порта с выведенным из строя сонаром и повреждённой передней балластной ёмкостью. (Когда подлодка прибыла в итальянский порт, на пирсе её ждали новый капитан судна и адмирал. После этого старый капитан отправился «командовать» пыльной партой в подвале Главнокомандующего подлодками Атлантического флота).

Поэтому подводная навигация остается ключевым моментом. Эта проблема решается двумя путями. Первый — бортовая инерциальная система навигации. Она представляет собой гироскоп с множеством колокольчиков и свистков. Если с этим прибором обращаться аккуратно, то он даст навигатору вполне сносную информацию о местоположении. Но все равно к этим данным относятся с известной долей недоверия.

Второй прибор — это фатометр, или прибор для «простукивания» дна. Навигация контура морского дна работает превосходно, когда дно имеет отличительные особенности (как, например, в области Атлантического водораздела, делящего Атлантику пополам). Но если дно таковых особенностей не имеет, то эта система бесполезна. Если дно плоское и песчаное, то тут нам потребуется другая система. Вот почему мы изобрели систему контроля изменений магнитного поля.

Проблема с магнитной навигацией и системой контроля изменений гравитационного поля Земли состоит в том, что вам приходится тратить время — очень много времени, — плавая вокруг, собирая информацию, нанося её на чертёж, проверяя чертеж и снова выверяя его. Может быть, это является сложной задачей для многих ВМС других стран, но в США эта проблема решается просто: подлодкам, несущим на борту баллистические ракеты, во время стратегического патрулирования нечего больше делать, кроме как бродить по просторам океана, «прячась» от возможного противника (в своём желании остаться незамеченными они обрабатывают информацию с рыболовных судов, траулеров, яхт, торговых судов или любого другого судна, которое может их обнаружить). Во время путешествия оборудование подлодки обследует дно в поисках отличительных черт и контролирует изменения магнитного поля Земли.

Система контроля изменений магнитного поля всё ещё находится в разработке, но она основывается на изменениях в магнитном поле Земли, происходящих в районах концентрации железа. Четвёртый метод сейчас проходит начальное тестирование — измерение гравитации. Этот метод улавливает малейшие изменения в гравитационном поле Земли.

Минимум того, что вам нужно знать:

• Центр нападения расположен на правой стороне центра управления, где команда управления ведением огня делает свое дело — превращает суда в обломки.

• У торпеды есть свой собственный двигатель и свое топливо, которые доставляют её до цели.

• Современные подлодки могут производить запуск ракет для поражения наземных целей и надводных кораблей.

• Управление ведением огня — искусство, которое помогает вашему снаряду поразить цель.