Я. Голованов ЗАОБЛАЧНАЯ ИНДУСТРИЯ

Помню тот октябрь. На космодроме стояла какая-то нервная, капризная погода. То набегали низкие плотные облака и ветер тонко свистел в песках, подгоняя сухие шарики перекати-поля, — скольким московским друзьям передарил я эти экзотические колючки — сувенир байконурской пустыни! То вся эта хмарь куда-то улетала, на ярко-голубом небе сияло солнце, все радостно сверкало в его лучах, и телевизионщики начинали копошиться в своем походном багаже, отыскивая нужные светофильтры. И снова эти тучи…

Тогда, в октябре 1969 года, на космодроме была большая работа. Ни до этого времени, ни по сей день не было случая, чтобы три дня подряд стартовали пилотируемые космические корабли: 11 октября «Союз-6» с Шониным и Кубасовым, 12 октября «Союз-7» с Филипченко, Волковым и Горбатко, а на следующий день — Шаталов с Елисеевым на «Союзе-8». Я помню, что все мы, журналисты, аккредитованные на космодроме, практически не спали все эти три дня, которые слились в какую-то одну изнурительную репортерскую вахту. И только потом, отоспавшись в самолете, когда было уже известно, что Москва получила и напечатала в срок мои статьи и журналистский эгоцентризм, утверждавший, что именно твой репортаж — самое важное в данный момент, несколько поунялся, вернув способность мыслить объективно, только потом подумал я о том, какая же адова работа легла на плечи стартовиков и что? в сравнении с их многосуточной вахтой все наши писательские недосыпы!

Однако новаторство тех октябрьских стартов заключалось не только в том, что впервые в истории в космосе неподалеку друг от друга кружили сразу три пилотируемых корабля. С этих стартов начинается история космической технологии. В бытовом отсеке «Союза-6» была смонтирована установка «Вулкан» — вклад в космонавтику киевских инженеров из знаменитого Всесоюзного института электросварки им. Е. О. Патона. Валерий Кубасов, сидя вместе со своим командиром Георгием Шониным в спускаемом аппарате, задраил люк СА — БО (спускаемый аппарат — бытовой отсек), проверил его герметичность, выпустил из бытового отсека воздух, создав «Вулкану» истинно космические, недоступные на Земле условия для работы: глубочайший вакуум при невесомости. Дистанционно управляя установкой, он провел первые опыты по сварке в космическом пространстве. Не все тогда прошло удачно, но главное — было положено начало технологическим экспериментам вне Земли. В будущих полетах, и советских, и американских, и советско-американском (ЭПАС), и на станциях «Салют», и во время международных звездных экспедиций по программе «Интеркосмос», технологические эксперименты были продолжены, расширены, усложнены и стали едва ли не ведущими во многих космических программах. Все чаще говорим и пишем мы теперь о созидательной работе в космосе, о космическом строительстве, о космической индустрии. И невольно на ум приходит одна знаменательная аналогия. Американцы первыми построили и сбросили атомную бомбу. Мы первыми построили и запустили атомную электростанцию. Американцы первыми развернули работы по милитаризации космического пространства. Мы первыми начали работы по изучению возможностей мирной космической технологии. Здесь нет никаких натяжек в угоду сиюминутной политической конъюнктуре. Это записано в истории. А история плохо поддается переделкам.

…Под Карагандой на полях совхоза «Пржевальский» уже лежал снег, и когда «Союз-6» приземлился, на Жору и Валерия первым делом надели теплые летные куртки и сапоги на собачьем меху. Вокруг корабля сновали мальчишки без шапок, без пальто, с горящими глазами, совершенно оглушенные невиданным событием.

— Да что вы раздетые-то, — переживал спортивный комиссар Иван Борисенко.

— А мы прямо с урока сбежали! — кричали в восторге мальчишки.

Сели вертолеты поисковой группы, врачи с носилками побежали к кораблю.

— Спасибо, — крикнул Шонин, — вы нам не нужны…

Фотокорреспонденты требовали, чтобы космонавты непременно обнялись.

— Ну, разумеется, — с родной одесской интонацией сказал Шонин, — ведь мы с Валерой давно не виделись…

Вся эта картина стоит перед моими глазами так ясно, что просто не верится, что столько лет прошло, что Жора — уже генерал, а Валерию в родных Вязниках уже поставили памятник при жизни…

Но если отринуть все эти эмоции и взглянуть на все сухими глазами лапидарного хронографа, времени прошло совсем мало, в исторических масштабах — сущий пустяк, а с учетом к тому же масштабов космических — и вовсе величина невидимая.

Так давайте же воспарим над ранним снегом отдыхающих полей совхоза «Пржевальский» и с высот космических оглядим это историческое событие.

Из всех многочисленных бед, которыми угрожает нам, землянам, нами же созданная цивилизация, на первом месте стоит угроза так называемого экологического кризиса. Уже целые библиотеки тревожных книг об охране окружающей среды написаны в последние годы. Собираются международные форумы, вырабатываются новые, более жесткие нормы допустимых загрязнений земли, воздуха, воды. Причины для тревоги есть, и веские. Уже тогда, когда летал наш «Союз-6», в атмосферу Земли трубы различных заводов и комбинатов выбрасывали 100 миллионов тонн твердых частиц, 300 миллионов тонн оксида углерода, 150 миллионов тонн сернистого ангидрида, более 50 миллионов тонн оксидов азота. Думаю, за последние годы эти цифры вряд ли снизились.

Сегодня человечество сжигает в год около трех миллиардов тонн угля — цифра, ничего уму и сердцу не дающая, поскольку представить себе эту величину невозможно. Недавно я был в Воркуте, спускался в угольную шахту. Длина ее штреков достигает десятков километров, под землей работает несколько сотен людей. Но вместе они добывают в сутки 5600 тонн угля, то есть примерно 2 миллиона тонн в год. Цифра эта показалась мне гигантской. Но это — капля в мировой добыче. Сжигая 3 миллиарда тонн угля, человечество отправляет в атмосферу 225 тысяч тонн мышьяка, 225 тысяч тонн германия, 100 тысяч тонн бериллия, 150 тысяч тонн кобальта, 200 тысяч тонн урана. Эти выбросы в атмосферу приводят к тому, что в промышленных городах температура на 1—2 градуса днем и на 5—8 градусов ночью выше, чем в сельской местности.

Я начал свой рассказ с космического полета. Путешествуя по Центральной России, часто слышал горестные причитания старушек:

— Все эти ракеты да спутники… Из-за них зима не зима, лето не лето…

С вежливой снисходительностью человека просвещенного я начинал объяснять, что байконурские старты не могут повлиять на вологодскую оттепель. Через несколько лет выяснилось, что старушек я обманывал. Оказывается, могут и влияют. Выяснилось, что при приземлении космических кораблей и торможении спутников, «зарывающихся» в атмосферу, образуется окись азота. Количество ее ученые оценивают примерно в 10 процентов от массы космического объекта. Если учесть, что каждый год в космос стартует около ста спутников, космических кораблей, межпланетных и орбитальных станций, то с учетом их средней массы получается около 200 тонн окиси азота. Это величина, на которую уже нельзя не обращать внимания, говоря о состоянии атмосферы.

О загрязнении окружающей среды заговорили еще лет 200 назад. В Германии обвиняли кожевников, которые спускали в речки свои дубильные растворы. В Англии писали жалобы на владельцев дымных каминов. Это были милые цветочки. Ягодки, и очень ядовитые, созрели в XX веке. Об опасности заговорили в середине века, после окончания второй мировой войны, ужасы которой затмили все проблемы или не позволяли их решать, даже если они были видны. В 1948 году известный английский астрофизик Фрэд Хойл говорил, что, когда из космоса будет сфотографирована Земля, мир охватит какая-нибудь новая идея. Прошло совсем немного времени, и человек не только сфотографировал Землю, но увидел земной шар собственными глазами. Весь! Сразу! Увидел, какой он, в общем-то, маленький и ранимый. И новая идея действительно охватила мир. Возвращаясь к своему пророчеству, Хойл в конце 60-х годов писал: «Вы заметили, как все вдруг забеспокоились о том, как мы должны защищать окружающую нас природу? И произошло это как бы по мановению волшебной палочки. Естественно, мы стали спрашивать друг друга: «Откуда взялась эта идея?» Можно, конечно, ответить: от биологов, от защитников природы, от экологов. Но ведь они говорили об охране природы уже годами и ровно ничего не могли добиться. Что-то новое должно было произойти, чтобы пробудить во всем мире сознание того, как драгоценна наша планета. И тот факт, что все это случилось как раз в тот миг, когда человек впервые шагнул в космос, кажется мне не простым совпадением, а чем-то значительно большим».

Думаю, Хойл прав. Именно человеческий взгляд на Землю из космоса, взгляд «со стороны», привел к тому, что сегодня мы уже по-настоящему прониклись сознанием ответственности за сохранение окружающей среды. Если не на деле, то на словах; во всяком случае, ни одно более или менее крупное человеческое предприятие не рассматривается теперь без учета его влияния на природу. Космонавтика поставила вопрос. И что знаменательно, космонавтика предлагает и один из конструктивных путей его решения. Подобно тому, как энергетический кризис заставляет нас проектировать в космосе солнечные электростанции, обращать свои взоры к космосу заставляет нас и кризис экологический. Разумеется, многие специалисты в области различных промышленных производств, люди реально мыслящие и целиком погруженные в каждодневные, сугубо земные заботы, будут улыбаться, читая о заводах на Луне. Однако же, хотим мы или не хотим, мы будем строить эти заводы. Будем, если собираемся жить дальше на нашей планете. Вот что говорит об этом один из пионеров космонавтики, дважды Герой Социалистического Труда академик В. П. Глушко:

«Общеизвестны весьма важные акты, предпринятые Центральным Комитетом КПСС и Советом Министров СССР в развитие ленинских идей об охране среды обитания, о разумном использовании природных ресурсов.

Человечество должно решительно перестраивать технологию промышленного производства. Наш идеал — чистое производство. Но даже в том случае, если мы разработаем совершенную технологию, найдем новые источники энергии, в частности используем ядерную или иную энергию, заменим одни виды материалов другими, прекратим загрязнение атмосферы, научимся наиболее целесообразно расходовать ресурсы Земли, нам грозит еще опасность — возможный перегрев атмосферы. Повышение температуры на один-два градуса может привести, вероятно, к таянию мировых льдов. А это чревато многими нежелательными последствиями.

И тут я подхожу к главному: к насущной необходимости в будущем вынести хотя бы часть промышленного производства за пределы Земли, создать внеземную индустрию. Как-то академик Сергей Павлович Королев, с которым мы проработали рука об руку более тридцати лет, говорил: «Человечество порой напоминает собой субъекта, который, чтобы натопить печь и обогреться, ломает стены собственного дома, вместо того чтобы съездить в лес и нарубить дров».

Когда В. П. Глушко говорит о «дровах» Королева, он напоминает нам, что речь идет не только об экологических проблемах, но и о том, что запасы всех видов полезных ископаемых на Земле конечны. Между тем в космосе мы можем стать обладателями огромных ресурсов для умножения своей промышленной мощи.

Могут возразить: привезти, например, тонну полезных ископаемых с небесного тела будет стоить огромных денег! Но разве самая первая тонна угля, добытая в современной шахте, не стоит сегодня таких же денег? Стоит! Но тысячная тонна — уже дешевле, а миллионная обойдется в копейки.

Мне вообще кажется, что экономические расчеты применительно к космонавтике имеют относительную ценность. И вовсе не потому, что здесь-де не надо жалеть деньги. Надо, конечно, но…

Пасадена, пригород Лос-Анджелеса, уже, по существу, слившийся с огромным городом, знаменит тем, что где-то здесь прячется от людей гениальный полусумасшедший шахматист Бобби Фишер и здесь же находится лаборатория американского пионера ракетной техники Теодора фон Кармана. В 1936 году он собрал группу энтузиастов, которая занималась теорией и экспериментами и разрослась постепенно в головной ракетный институт США, в стенах которого был создан первый американский искусственный спутник Земли и знаменитые автоматические аппараты «Сервейер», «Маринер», «Пионер», «Викинг». Через десять лет после смерти Кармана я беседовал в Пасадене с его учениками. Это было время наивысшего потепления в советско-американских отношениях, уже совсем скоро в космосе должны были начать совместную работу «Аполлон» и «Союз», и все говорили о новых общих программах обозримого будущего. Замечательное было время! Я вдруг ясно представил себе, как много могут сделать для себя и для всего человечества две великие, не имеющие равных себе по своей научной и технической мощи державы. И не казались фантастикой разговоры с марсианской экспедицией.

— Да, технически, разумеется, возможно, но дорого, очень дорого. И на Марс мы полетим обязательно вместе: США и Советский Союз, — говорили американцы.

Они уже прикинули тогда, во что обойдется человечеству экспедиция землян на Марс. Получилась цифра гигантская. 100 миллиардов долларов.

— Одним нам такое предприятие не потянуть, — смеялись американцы.

Прошло несколько лет, и я читаю: на разработку только боеголовки и системы наведения только одной из боевых ракет, ракеты «Митжетмен», отпущено миллиард долларов. Сто таких боеголовок — вот вам и марсианская экспедиция. На годовой военный бюджет президента Рейгана не одну такую экспедицию можно отправить. Так что экономика здесь понятие относительное.

А кроме того, деньги, хочешь не хочешь, придется выкладывать, если прижмет. Если вы серьезно заболели, то высокая стоимость лекарства пусть даже и огорчает вас, но вы его все-таки покупаете. Потому что жить хочется. А если заболеет планета? Жить-то хочется, и придется лечить, даже если лекарство дорого стоит.

Наконец, еще один довод. При развитии и расширении масштабов любое производство, земное ли, космическое ли, имеет тенденцию к удешевлению. Космические солнечные электростанции с электростанциями тепловыми еще конкурировать не могут, а с атомными уже пытаются. Пытаются, правда, пока на бумаге. Начнут строить, и смета начнет разбухать — всегда так бывало. Но тенденция важна!

Главное, повторяю, надо! Когда прижмет, придется делать. А прижимать уже начинает.

«Мы стоим на пороге индустриализации космического пространства, — пишет доктор технических наук С. Гришин. — Собственно, она уже началась. Как использовать уникальные условия космоса — невесомость, глубокий вакуум, сверхнизкие температуры, излучения — для изготовления материалов с необычными физико-механическими свойствами, крупных монокристаллов, сверхчистых веществ, в том числе медикаментов? Этим сейчас занята космическая технология. Корень проблемы — физика невесомости. Здесь многое еще не ясно. Именно от прогресса физики невесомости будет зависеть прогресс космической технологии».

Продолжением «Вулкана», который работал на «Союзе-6» в октябре 1969 года, можно назвать создание украинскими инженерами малогабаритной установки для плавки, сварки, пайки и резки металлов с использованием лучистой энергии Солнца, которая предназначается для работы на околоземной орбите. В Киевском институте электросварки им. Е. О. Патона создан и опытный стенд-тренажер, который позволяет проводить разнообразные технологические, медико-биологические и эргономические исследования.

Уже сегодня в космосе испытано более двухсот различных исследовательских и производственных процессов, и редкий полет обходится теперь без того, чтобы в его программу не были бы включены подобные работы. Например, во время первого в мире международного космического полета по программе «Союз» — «Аполлон» на эксперименты по космическому производству было затрачено 125 часов полетного времени. Это понятно: условия космического пространства, и прежде всего невесомость, сулят производственникам необыкновенные выгоды. Отсутствие тяжести позволяет, в частности, выращивать кристаллы с высокой степенью чистоты, которые очень нужны для дальнейшего прогресса электронной техники. Более однородные свойства приобретают при плавлении в невесомости эвтектические сплавы. Установлено, что отсутствие силы тяжести влияет на процессы отвердения некоторых насыщенных растворов.

В бортовом журнале «Салюта-5» летом 1976 года один из опытов обозначался кратко: «Поток». Установка «Поток» была частью научного комплекса «Физика», размещенного в приборном отсеке орбитальной станции. Цель эксперимента — изучение движения жидкости под действием капиллярных сил в условиях невесомости. Капиллярность — свойство жидкостей подниматься и опускаться в тонких «волосяных» (в старых словарях слово «капиллярность» заменялось не употребляемым ныне словом «волосность») каналах — исследовалась еще классиками науки. Однако, несмотря на то что изучена она в земных условиях достаточно подробно, нельзя сказать, что явление капиллярности широко используется в промышленности и быту. Всевозможные фитили, уплотнение почв, чтобы поползла по тонким каналам вверх, к корням, влага. Больше — не помню.

И в фитилях, и в поле главный спор шел между силами капиллярности, которые в тонких смачиваемых (это важно!) каналах влекли жидкость вверх, и силами земной тяжести, которые тащили ее вниз. В космосе гравитационных сил нет, поэтому теоретики предсказывают расширение полезных применений явления капиллярности.

Эксперимент на «Салюте-5» был классически прост. Два прозрачных шара соединены капиллярной трубкой. Один шар, в котором налита подкрашенная жидкость, изготовлен из материала ею не смачивающегося. Другой шар — смачивается. Еще одна трубка, соединяющая шары, предназначена для перетекания воздуха. Прозрачность установки позволяет вести киносъемку опыта.

По идее, силы капиллярности, не сдерживаемые силами тяготения, должны перетащить, перекачать жидкость из шара в шар гораздо быстрее и энергичнее, чем это они могли бы сделать на Земле. Скорость перетекания действительно возрастет. Не станет ли этот простой опыт прообразом будущих капиллярных насосов межпланетных кораблей, идеальных насосов, которые не имеют никаких движущихся частей и которые не требуют для своей работы никакой энергии?

Если «Поток» по самой мысли своей исследовал нечто отвлеченное, то «Сфера» должна была помочь в решении задач сугубо практических. Оба эти опыта объединялись не только комплексом «Физика», но и предметом изучения: в «Сфере» жидкость тоже взаимодействует с невесомостью.

Герои фантастических романов и вполне реальные герои телепередач космовидения до этого уже не раз демонстрировали, как моментально обретает форму шара пролитая в невесомости жидкость: форма ее определяется лишь силами поверхностного натяжения. На Земле подобные условия невозможны. Правда, наши предки, не зная и слова такого — «гравитация», — стремились обмануть ее, когда изготовляли свинцовую дробь, пропуская расплавленный металл через сита, установленные на верхушке башни. В наши дни, чтобы изготовить особо точные шарики для прецизионных шарикоподшипников, требуется провести более десятка технологических операций. Кроме того, при доводке формы нарушается поверхностная структура металла. Космос — идеальное место для изготовления идеальных шариков. Этот тезис и проверялся в полете «Салюта-5».

Металлические заготовки для космической плавильни для простоты были сделаны из сплава Вуда — смеси висмута, свинца, олова и кадмия, который плавится при температуре чуть выше 60 градусов. (Помните трюк на вечерах «занимательной науки»: чайная ложка в стакане тает на глазах удивленных зрителей под струей кипятка?) Капли расплавленного электрическим нагревателем металла выталкивались в лавсановый мешок, размеры которого были достаточно велики, чтобы капли успели затвердеть до того, как они соприкоснутся со стенками мешка. Мешок, собственно, нужен был только для того, чтобы не ловить потом маленькие шарики по всем отсекам станции.

«Сфера» должна была дать идеально точные сферы. Однако идею требовалось проверить. Форма теоретически может искажаться, если центр масс жидкости не будет совпадать с центром масс самой орбитальной станции. Кроме того, капелька может, затвердевая, колыхаться, хотя теоретически доказывалось, что силы поверхностного натяжения должны быстро справиться с силами вязкости, и капля почти мгновенно приобретает идеально сферическую форму. Если так, то, как сказано в книге И. Белякова и Ю. Борисова «Технология в космосе», «молекулярные силы могут использоваться как средство обработки металлов». Если так, то «допуски на изготовление изделий с помощью сил поверхностного натяжения могут быть уменьшены на несколько порядков».

Только космическая индустрия позволит нам получить новые виды биологических структур, поскольку только в невесомости существуют идеальные условия для разделения биологических материалов на уровне клеток. Космическим исследователям предстоит выяснить новые механизмы — тепло- и массопереноса, управления выращиванием кристаллов и образования многофазных сплавов. Очевидно, все земные инженерные справочники для космических строителей придется переписывать заново, а для этого провести фундаментальные исследования в условиях невесомости и замерить новые значения различных констант в динамике жидкости и газа (числа Рейнольдса, Хартмана и др.), в термодинамике (критерии Грасгофа, Нуссельта и др.), в процессах массопереноса (числа Льюиса, Шмидта и др.). В общем, работы тут непочатый край. При этом надо учитывать, что мы еще сами не знаем всех возможностей космической индустрии и можем лишь домысливать все те преимущества, которые она сулит. Год от года, наряду с физическими, астрономическими, медико-биологическими и другими экспериментами, объем технологических исследований постоянно возрастал.

Я рассказывал о некоторых работах на «Салюте-5». Знаменитый «Салют-7» — орбитальная станция, на которой был установлен, а затем превышен мировой рекорд пребывания человека в космическом пространстве, — был уже просто маленьким многоотраслевым заводиком. Технологические печи «Магма» и «Корунд» позволили провести широкие исследования по механизму массопереноса, анизотропии скорости роста кристаллов и отработке будущих — уже по-настоящему промышленных — процессов производства полупроводников в условиях микрогравитации. Специально созданные и установленные на борту «Союза-7» приборы «Ресурс», «Эласт», «Спираль» и другие позволили провести фундаментальные исследования процессов кристаллизации в невесомости, изучить ничтожное и все-таки принципиально важное влияние микрогравитации, которая, как ни крути, существует, на рост кристаллов, провести изучение характеристик материалов в условиях их работы в космосе.

В течение многих месяцев Анатолий Березовой, Валентин Лебедев, Владимир Джанибеков, Александр Иванченков, Леонид Попов, Александр Серебров, Светлана Савицкая, Владимир Ляхов, Александр Александров, рекордсмены Кизим — Соловьев — Атьков, француз Кретьен и индус Шарма проводили множество разнообразных технологических опытов, итоги которых долго еще будут анализироваться на Земле. Думаю, что к тому времени, когда эта рукопись превратится в печатный текст, и список космических технологов, и тематика их исследований непременно увеличатся — ведь только газетные репортажи в состоянии отразить прогресс в этой области науки и техники с соблюдением реальных временных масштабов. Все книги о современной космонавтике устаревают уже к моменту их появления на прилавках, поскольку проводить научные исследования в космосе мы научились быстрее, чем печатать книги.

Однако не будем отвлекаться земными, а точнее — приземленными проблемами. Мы же договаривались воспарить…

Академик В. П. Глушко писал: «К решаемым проблемам относится космическая энергетика. Создав на небесном теле, обладающем запасами полезных ископаемых, энергетическую базу, можно будет налаживать там добывающую промышленность, а затем, естественно, и перерабатывающую». Академик говорит о небесном теле, но вполне можно обойтись и без него. Тем более что, как выяснилось, космическую индустрию выгоднее всего развивать в открытом космосе, поскольку энергетические затраты здесь будут ниже. Итак, где и на каком сырье может работать космический завод будущего?

Для внеземных промышленных предприятий большинство специалистов рекомендуют вполне определенный «адрес» в межпланетном пространстве. Речь идет о так называемых точках Лагранжа.

«Я снискал некоторую известность в математике», — так скромно оценил в конце жизни свои заслуги перед наукой великий французский математик Жозеф Луи Лагранж.

Он родился в Италии и по желанию своих родителей был определен в Туринский университет, чтобы стать адвокатом. Но уже беглое знакомство с математическими и астрономическими трудами вскоре перерастает в страстное увлечение точными науками, уже в 17 лет Лагранж начинает преподавать математику в Артиллерийской школе в Турине. Отец его, запутавшись в финансовых спекуляциях, окончательно разорился, что, впрочем, нисколько не огорчило молодого ученого. Позднее он писал: «Если я был бы богат, я, вероятно, не достиг бы моего положения в математике; и в какой другой области я добился бы тех же результатов?»

В трудах организованного им научного общества, которое явилось зародышем прославленной Туринской Академии наук, Лагранж публикует свои первые математические работы, которые сразу привлекают внимание крупнейших математиков Европы, и прежде всего Леонарда Эйлера, который добивается избрания Лагранжа сначала иностранным членом Берлинской Академии наук, а затем уговаривает его переселиться в Берлин. Двадцать лет работы Лагранжа в Берлине можно назвать временем постоянного восхождения к высотам науки, которое завершилось созданием классического труда — «Аналитической механики», изданной в 1788 году в Париже, куда Лагранж переехал после смерти своего высокого немецкого покровителя — прусского короля Фридриха II. Свой фундаментальный труд сам Лагранж характеризует так: «Я поставил своей целью свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи».

Возвращение ученого в Париж накануне Великой французской буржуазной революции, накал политических страстей, знакомство с выдающимися учеными этой бурной эпохи — Деламбером, Дидро, Монжем, Карно, Лавуазье, Лапласом — открывают перед Лагранжем новые горизонты. После революции он назначается членом комиссии по изобретениям и ремеслам, затем председателем Комиссии по установлению метрической системы мер и весов. Одновременно он продолжает заниматься математикой, публикует «Теорию аналитических функций», «Лекции по исчислению функций»; развивая труды Эйлера, создает новое математическое направление — теорию вариационного исчисления. Трудно даже перечислить все работы Лагранжа: собрание его сочинений по математике, механике и астрономии насчитывает 14 томов. Оглядывая его творческое наследие, надо признать, что в современной математике и механике нет таких областей, плодотворное развитие которых не было бы связано с трудами Жозефа Луи Лагранжа. Но среди этого бесконечного множества современных приложений трудов великого француза есть одна, если можно так сказать, суперсовременная.

Речь идет о так называемой «задаче трех тел». Удивительная задача! Когда только знакомишься с ней, кажется: чего же проще?! Но стоит лишь слегка копнуть, и выясняется, что простота эфемерна, что все тут сложно невероятно, связано, перевязано и перепутано… Если условия взаимного положения двух тел определялись законом всемирного тяготения Ньютона, то попавшее в их компанию третье тело все ломает. Забегая вперед, скажу, что над решением «задачи» трех тел» бились выдающиеся математические умы: Леонард Эйлер, Анри Пуанкаре, Карл Зундман. Последнему удалось решить эту задачу в общем виде лишь в 1912 году. Лагранж сделал один из первых шагов: он нашел частные случаи решения.

Что такое «три тела» применительно к интересующей нас проблеме? Это Земля, Луна и завод в космическом пространстве. Именно благодаря работам Лагранжа можно определить пять так называемых точек либрации системы Земля — Луна, то есть таких точек космического пространства, в которых любые находящиеся там тела будут оставаться неподвижными относительно прямой, соединяющей Землю и Луну. Все эти точки лежат в плоскости орбиты Луны. Первая — между Землей и Луной, но ближе к Луне. Вторая — на той же прямой, но за Луной, с Земли ее не видно: Луна загораживает. Вряд ли надо строить здесь что-нибудь: усложняется связь с родной планетой, да и психологически тяжело — в иллюминаторы никогда не заглядывает голубой земной шар. Третья точка — на орбите Луны, но «за солнцем», — диаметрально ей противоположная. Это будет как бы маленькая антилуна. Наконец, четвертая и пятая точки на лунной орбите, но обе стороны от Луны так, что Земля, Луна и две этих точки в плане составляют ромб. Все это и вычислил Лагранж. Вот эти закрепленные законами небесной механики «точки пустоты» и являются теми космическими колышками, которыми размечена будущая строительная площадка внеземных заводов.

Косможители «эфирных поселений» будут обслуживать эти заводы, работающие на сырье, доставляемом с Луны и отбуксированных сюда астероидов.

Еще К. Э. Циолковский писал в своих «Грезах о земле и небе», что люди будут управлять движением астероидов так же, «как мы управляем лошадьми». В 1957 году польские инженеры В. Гейслер и Н. Панков предложили переместить на околоземную орбиту астероид Гермес. Эта глыба диаметром около километра весит миллиард тонн и, по мысли авторов проекта, может быть использована для добычи железа.

Астрономам известно сегодня более полутора тысяч малых планет с диаметром 10—15 километров. Бааде (США) считает, что в пределах Солнечной системы их 44 тысячи. Путилин (СССР) говорит о 140 тысячах. Большинство этих небесных тел не превышают в диаметре трех километров. По подсчетам ученых Массачусетсского технологического института, около 100 миллионов тонн руды астероидов может плавиться в солнечных печах на околоземных орбитах.

Пытливые наблюдатели окрестностей космического пространства пришли к выводу, что и неподалеку от земного шара «бродят» около полусотни «беспризорных» астероидов, которые могут послужить изначальным источником сырья для космической промышленности. По некоторым данным, существуют астероиды, целиком состоящие из весьма дефицитных материалов: на 90 процентов из железа, на 9 процентов из никеля, а оставшийся один процент составляют благородные металлы — золото, серебро, платина. Траектории полета астероидов таковы, что потребуются не очень большие усилия, чтобы, изменив их орбиту, отбуксировать их в одну из точек Лагранжа. К глыбе с массой 10 миллионов тонн можно приделать крылья из солнечных батарей, площадь поверхности которых составит не менее одного квадратного километра. Получаемой энергии будет достаточно, чтобы электрореактивный двигатель, используя в качестве рабочего тела само вещество астероида, тихонько разгонял его в нужном направлении. В зависимости от величины самого астероида и параметров его траектории неспешная эта буксировка может продлиться разное время, иногда несколько лет. Торопиться, собственно, некуда. Швейцарский журналист Тео Гинсбург писал: «Если бы удалось доставить на Землю метеор диаметром 200 метров и использовать его как источник сырья, то это позволило бы сразу решить все задачи, поставленные перед промышленностью Швейцарии на 5 лет». Заметим, что есть промышленность более мощная, чем в Швейцарии, но, на наше счастье, есть и несравненно большие астероиды. Одного кубического километра астероидного вещества достаточно, чтобы обеспечить Землю железом на 15 лет и никелем на 1250 лет. По современным ценам этот металл стоит около пяти триллионов долларов, в то время как реализация описанного способа «отлова» астероидов на современном уровне развития космической техники оценивается в 1,7 миллиарда долларов. К 2010 году, когда подобный проект планируется осуществить, металл может только подорожать, а космические расходы наверняка сократятся. Но уже сегодня задача эта вполне реальная. Другой проект предусматривает направленные ядерные взрывы в космосе, которые раздробят небесную глыбу так, что одна из ее частей изменит свою орбиту в угодном нам направлении, а при очень аккуратной работе этот осколок можно будет, не опасаясь никаких катаклизмов, даже «посадить» в каком-нибудь глухом уголке земного шара.

Все сказанное не столь уж фантастично. Например, для монтажа в космосе электрореактивного двигателя, способного создать из астероидов новую Луну с массой в несколько миллионов тонн, потребуются регулярные космические полеты примерно в течение года. Кстати, эту новую Луну можно будет так расположить в космическом пространстве, что на ее поверхности будет выгодно построить, используя материал самой «Луны», солнечную электростанцию.

«Многодневная работа советских космонавтов на борту орбитальной станции «Салют» и американских астронавтов на борту «Скайлэб» говорит сама за себя, — заметил академик В. П. Глушко. — Сегодня орбитальная станция с исследовательскими целями, а завтра — с производственными. Сейчас на станции три человека, а завтра — десятки и сотни. Сейчас это только станция, а завтра — город-спутник со всем, что свойственно ему на Земле». Стратегический план всякого космического строительства подразумевает первоначальное создание некой скромной конструкции, с помощью которой создается другая, уже побольше и помощнее, за ней третья — еще больше. При использовании космическим заводом до 90 процентов внеземного сырья 6500 рабочих и инженеров смогут в конце концов строить в год до пяти солнечных электростанций с мощностью по 10 миллионов киловатт каждая. Когда же мы говорим о земном сырье, то имеются в виду не только специально адресованные в космос грузы, но и детали космических аппаратов, которые сейчас не используются, — некоторое время они кружат вокруг Земли на низких орбитах, а потом бесславно сгорают в верхних слоях атмосферы.

Если внимательно прочесть основополагающие партийные и государственные документы последних лет, связанных с прогрессом нашего народного хозяйства, нельзя не заметить, что многие абзацы этих документов посвящены робототехнике. Если в земных делах роботам поручаются все более и более сложные работы, то в делах космических им тем более отводится весьма ответственная роль. Очевидно, это будут уже специальные космические роботы нового поколения. Они должны обладать большей самостоятельностью, не требовать постоянных «подсказок» человека и сами реагировать на изменения в окружающей среде. Современный промышленный робот работает по заданной программе, не отвлекаясь на окружающее и не принимая никаких самостоятельных решений. Робот космический должен быть более универсальным и, насколько это возможно, приблизиться в своих реакциях на окружающую обстановку к реакциям человека. Информация, которую он будет получать с помощью телекамер и различных датчиков, поступит в центральную ЭВМ, которая, руководствуясь некой общей логикой поведения, будет принимать решения и управлять действием робота.

Листая научные журналы, видишь, что уже в конце нашего века применять космических роботов собираются, например, американцы и французы. В НАСА подсчитали, что пребывание на орбите человека обходится в 10 тысяч долларов в час, поскольку он требует дорогостоящей системы жизнеобеспечения. Роботам она не нужна. Кроме того, обычная аппаратура буквально засыпает наземные службы различной, иногда вовсе ей не требующейся информацией. За сутки могут передать столько, что на переработку потребуется месяц. Роботы смогут стать своеобразными информационными фильтрами, облегчая работу земных специалистов. Французское национальное управление по исследованию космического пространства собирается начать конструирование «умных» космических роботов, с тем чтобы в 1990 году отправить их в космос с помощью европейской ракеты «Ариан».

Роботы-монтажники и роботы-исследователи, работающие на поверхности других небесных тел, очевидно, должны быть снабжены «руками»-манипуляторами. Эти манипуляторы могут управляться с Земли, орбитальной станции, транспортного космического корабля или непосредственно на месте работы. Во всех вариантах манипулятор должен работать в очень сложных условиях. Его конструкторов беспокоит не столько невесомость, сколько глубокий вакуум, который приводит к слипанию металлических поверхностей и лишает механическую «руку» подвижности: подшипники и шарниры нуждаются в атмосфере. Работы по созданию специальных космических смазок ведутся специалистами многих стран уже долгие годы. В конце 70-х годов в Советском Союзе для работы в открытом космосе был получен, например, самосмазывающийся конструкционный материал димолит. Много трудов затратили инженеры для создания узлов манипуляторов, свободных от трения. Впервые это удалось сделать группе молодых ученых и инженеров трех советских вузов: МИЭМ, МВТУ им. Баумана и Владимирского политехнического института, работой которых руководили профессора А. Александров и Л. Воликевич. Так в 1982 году родился первый в мире бесшарнирный вакуумный манипулятор, творцы которого были отмечены за свою работу премией Ленинского комсомола.

Большие надежды связывает внеземная индустрия с использованием не только астероидов, но и лунного сырья. Это уже более сложная задача. Прежде всего надо определить, что есть на Луне для нас полезного, как это полезное добыть, а добытое переработать или отправить для переработки на космический завод с помощью ракет и электрических катапульт. Причем отправить нужно точно в точки либрации, чтобы лунные материалы не разлетались по всему околоземному пространству.

Примериваются к лунным богатствам люди уже давно. Первые советские автоматические станции «Луна» только начали в 1959 году непосредственное изучение нашего естественного спутника, как уже появились проекты использования его природных богатств. Впрочем, разработчики этих проектов сами указывают, что впервые идея создания космических заводов с использованием лунного сырья и солнечной энергии была высказана еще в 1920 году К. Э. Циолковским. Сегодня мы знаем, что недра Луны содержат много очень нужных нам руд и минералов. Интересно, что запасы их неравномерно распределяются между районами лунных гор и морей. В горах железа и алюминия раз в десять больше, чем в морях. Там же в три раза больше сырья для получения стекла. Зато моря в десять раз богаче титаном. Лунная почва, глубина которой больше в горах, может дать сырье для производства стекловолокна и керамики.

Главное богатство Луны — железо. Считается, что металлическое железо составляет до полпроцента состава лунного грунта. (По другим данным — 0,15—0,2 процента.) Ученые предполагают, что на Луне под влиянием корпускулярного излучения Солнца, содержащего ионы и атомы водорода и углерода, происходит естественный процесс восстановления железа из силикатных минералов. Недра нашего естественного спутника скрывают кроме того большие запасы алюминия, марганца, редких металлов. Есть тут титан, хром, кобальт, молибден, медь, никель, вольфрам, цирконий, свинец, уран. В качестве побочного продукта можно получать кислород. При затрате 75 киловатт установка весом в 8 тонн может дать в сутки 91 килограмм жидкого кислорода. Это много. Двенадцати лунным колонистам в месяц нужно для жизни всего около 350 килограмм кислорода. Химикам Римского университета удалось разработать процесс выделения газообразного кислорода из лунной породы. По сообщениям печати, переработка 20 килограммов грунта может дать столько кислорода, сколько требуется одному космонавту в течение суток. Монокристаллический кремний сверхвысокой чистоты очень пригодится для создания фотоэлементов солнечных батарей. К сожалению, в лунных породах мало воды (в астероидах ее содержание доходит до 20 процентов), калия, натрия.

Лунный грунт может дать неограниченное количество сырья для организации базальтового литья — весьма прочных строительных блоков, пустотелых кирпичей, химически стойких труб. Наконец, не подвергая лунный грунт никакой переработке, его можно просто спекать в строительные монолиты, нагревая до 800—900 градусов, а затем, после некоторой выдержки в нагретом состоянии, быстро охлаждая.

Для освоения богатств лунных недр эскизно спроектирована специальная опытная горнодобывающая установка, способная добывать до трех миллионов полезных ископаемых в год и эксплуатироваться в течение 30 лет. Эта установка состоит из экскаватора, десяти транспортеров, различного вспомогательного оборудования и автоматизированной системы управления. Собирать и пускать все механизмы должны люди, а потом присмотр за установкой можно будет поручить роботам, управляемым с Земли. При создании горнодобывающей установки применяется тот же план: от маленького — к большому; производительность ее будет возрастать постепенно с подключением новых и новых транспортеров. Поэтому потребление энергии в начале работ составит всего 8 тысяч киловатт, а после выхода установки на полную мощность вырастет до 930 тысяч киловатт. За 30 лет она должна добыть 16 миллионов тонн лунных пород.

Во всех этих весьма приблизительных эскизных проектах предусматривается невероятная — в сравнении с земными нормами — производительность труда. Например, специалисты космического центра НАСА им. Эймса подсчитали, что для обеспечения добычи и отправки с Луны миллиона тонн сырья и материалов в год потребуется труд примерно 150 лунных поселенцев. Это возможно лишь при предельной насыщенности всего производства всевозможной автоматикой.

Добытое сырье может, как уже упоминалось, отправляться в космос на орбитальные заводы с помощью электрических катапульт. Эти катапульты будут представлять собой мощные сверхпроводящие магниты с силой тока до 100 тысяч ампер. Длина разгонного участка приближается к трем километрам. Короче, это та самая электрическая пушка, которой так увлекались фантасты начала нашего века. Подсчитано, что стоимость транспортировки одного килограмма лунного сырья в космос не превысит одного доллара, что в несколько сот раз дешевле, если отправлять те же грузы ракетами. Другой проект предусматривает создание быстродействующей катапульты, «стреляющей» маленькими — около 4 килограммов — космическими посылками. За год она успеет «настрелять» 60 тысяч тонн. В другом проекте каждая лунная «посылка» весит больше — 22,7 килограмма. Устройство с магнитным приводом разгоняет ее по рельсовому пути длиной 3,6 километра и выбрасывает мешок в космическое пространство. Годовая производительность такой установки 544 тысячи тонн. Есть проекты, в которых лунное сырье разгоняется в кольцевой трассе, подобно тому как в ускорителях разгоняются элементарные частицы или ионы. Лунная посылка летит по баллистической траектории, а в районе орбитального завода захватывается специальной ловушкой. Такая ловушка, по мнению проектировщиков, должна представлять собою конструкцию в виде большой трубы диаметром около 40—50 метров или сети, рассчитанной на прием лунных «посылок» весом до 4,5 тонн. Очевидно, она должна стабилизироваться в пространстве с помощью ракетных двигателей. Двигатели будут нужны и потому, что каждая пойманная лунная «посылка» будет сдвигать ловушку с ее места, изменять ее космические координаты. Если попадание «посылки» не совпадает с центром масс ловушки, это приведет к ее закрутке, и следующая «посылка» может в нее не попасть. Наконец, двигатели нужны и для того, чтобы наполненную ловушку отбуксировать к космическому заводу. Когда наблюдаешь, как много снега просыпается с самосвала, работающего в паре со снегоуборочной машиной, невольно думаешь о всех сложностях работы находящейся в непрерывном движении системы «катапульта-ловушка», представляешь себе, сколько может «просыпаться» там, и начинаешь тревожиться о чистоте околоземного космического пространства.

Несмотря на энергетические преимущества создания внеземной индустрии в открытом космосе, существует немало проектов и лунных промышленных предприятий. Научно-исследовательский институт Луны и планет в техасском городе Хьюстоне проанализировал, какие же технологические процессы могут быть применены на Луне для переработки полученного сырья. Выяснилось, что наиболее эффективны будут гидрохимический и металлургический процессы. Рекомендован также электролиз кремниевых расплавов, карбохимический и кремнийтермический методы преобразования веществ и углеродно-хлорное восстановление, особенно эффективное для получения железа, алюминия и титана.

Еще в 1963 году советский специалист Э. Иодко предложил свою технологию добычи лунного железа. По его мнению, железо на Луне следует не плавить, а возгонять — переводить из твердого состояния в газообразное. В этом случае можно будет обойтись без водяного охлаждения, которое на Луне обойдется недешево. По мысли изобретателя, пары железа, проходя через шахту с кусками углеродистого материала, превратятся в смесь паров железа, углерода и угарного газа. В конденсаторе, соприкасаясь с холодной поверхностью бесконечного транспортера, железо и углерод перейдут в твердое состояние и осядут на транспортере, а угарный газ уйдет в «атмосферу» Луны. Регулируя температуру в шахте, можно повышать или понижать содержание углерода и, таким образом, получать сталь разных марок. «Производство металла в условиях глубочайшего вакуума Луны и других космических тел позволит готовить действительно неземные по прочности, пластичности и иным свойствам стали и сплавы, не содержащие газов и неметаллических включений, — пишет Э. Иодко. — По существу, неблагоприятные для металлургии условия мы имеем не на Луне, а на Земле с ее плотной и насыщенной кислородом атмосферой…

Луна и другие небесные тела, лишенные атмосферы, со временем смогут не только обеспечить нужды космических полетов в рядовых и высококачественных металлах, но станут снабжать своей металлургической продукцией Землю и другие планеты».

Английские металлурги из Бристольского университета подсчитали, что процесс восстановления железа на Луне пойдет в 500 000 раз интенсивнее, чем он идет сегодня на оснащенных передовой техникой металлургических заводах компании «Бритиш Стил корпорейшн».

Иные технологические рекомендации дает в своей книге «Космическая индустрия будущего» американец Краффт Эрике. По его мнению, в основу лунного производства должны быть положены подземные ядерные взрывы. Идея эта привлекательна уже потому, что в случае ее осуществления достойное применение находят наконец все и всякие ядерные боеголовки, накопленные в земных арсеналах. Подлунный взрыв может высвободить огромное количество кислорода: ядерный заряд в 100 килограммов может генерировать 10 тысяч тонн. Если откачать его из образовавшейся в недрах Луны полости достаточно быстро, в окружающих неокисленных породах останутся богатые металлические руды.

Взрывная технология может обеспечить лунных поселенцев и водой. Эрике подсчитал, что индустриализация Луны обойдется в 60 миллиардов долларов. Это совсем не много, если вспомнить, что нынешний военный бюджет США достигает 280 миллиардов. Автор считает, что промышленные лунные комплексы будут выпускать металлы, металлокерамику, волокнистые и кристаллические композитные материалы, ситаллы и специальные стекла, порошкообразные строительные материалы и даже драгоценности. Любопытно, что еще до постройки первого лунного дома автор говорит об охране природы Луны и сохранении такого ценнейшего фактора, как глубокий вакуум на ее поверхности.

Интересно, что в проектах лунных промышленных предприятий почти никогда не упоминается о том, как будут выглядеть эти заводы и фабрики. Поскольку одним из действенных факторов космической технологии является вакуум, надо думать, что лунные установки вряд ли будут помещаться в какие-то замкнутые и герметичные пространства. Другими словами, они будут мало отвечать нашим традиционным представлениям о заводах и фабриках. Впрочем, и земные предприятия, например некоторые химические производства, тоже располагаются вне всяких цехов, просто под открытым небом. Но на Луне и неба нет…

«Думаю, что уже в начале XXI столетия, — пишет специалист в области космической техники, доктор технических наук В. П. Сенкевич, — появятся первые космические поселения, лунные станции, будут совершены экспедиционные полеты к Марсу». Что же будут представлять собой лунные станции?

Различных проектов предостаточно. Еще до полетов человека на Луну известный астроном З. Копал рекомендовал будущим лунным поселенцам искать так называемые «лавовые трубы» — длинные подземные пещеры, в которых, не боясь метеоритов, космических и солнечных излучений, можно было бы жить и работать. Однако в последние годы чаще говорят об искусственных, рукотворных сооружениях на поверхности Луны.

В проектах лунного строительства доминирует уже известная нам стратегия развития, которую по аналогии с реакцией можно назвать цепной. Вначале — маленькая лунная база, скромный домик, не превышающий по своим размерам нынешние орбитальные станции. В домике, построенном целиком из земных материалов, будет работать маленький десантный отряд — не более 4 человек. Они проведут на Луне месяца 2—3. Потом база начнет расширяться, от нее будут отпочковываться другие домики, население лунной колонии начнет расти до 6, 12, 24 человек. Срок пребывания продлится до года. Первым источником энергоснабжения будет, очевидно, ядерный реактор. Когда режим существования станции достигнет 10 тысяч человеко-дней, потребуется уже биологическая система жизнеобеспечения с растениями, а затем и с животными. Растения, надо думать, смогут расти и на лунной почве, если ее удобрить азотом, цинком, бором и ввести некоторые микроэлементы. Сооружение кислородной установки, о которой я упоминал раньше, позволит перейти к индустриальным экспериментам и расширять свое хозяйство.

Считается, что количество видов растений, которые люди будут выращивать на Луне, должно быть не меньше полусотни. Тогда можно будет уже научно сбалансировать рацион питания. Еще лучше, если удастся добавить к этому рациону свинину и рыбные продукты, выращенные на Луне. Для обеспечения одного человека вегетарианской пищей потребуется около 450 квадратных метров посевных площадей. Внедрение гетеротрофов — организмов, использующих для своего питания готовые органические вещества (некоторые растения, грибы, многие бактерии), — поможет уменьшить эту площадь до 250 квадратных метров. В этом случае общий вес конструкции, оборудования, воды одного цикла очистки для потребностей лунного поселенца оценивается всего в 4339 килограммов — это меньше максимальной массы космического корабля «Восток» (4730 килограммов). Если же использовать местные ресурсы, величину эту можно снизить до 2159 килограммов, — это уж, согласитесь, совсем немного.

Постепенно начнутся геофизические и геохимические (точнее, лунофизические или селенохимические, — но уж больно звучит непривычно!) исследования, астрономические наблюдения (из-за отсутствия атмосферы разрешение телескопа с диаметром зеркала в один метр будет таким же, как у земного телескопа с 6-метровым зеркалом), сооружение космического порта, горнорудных установок, электростанций, электрических катапульт, а там уж, гляди, начнется подготовка к полетам на другие планеты.

Лунный вакуум непременно подтолкнет космических архитекторов к сферическим многослойным конструкциям. Почему многослойным? Вот как объясняет это Н. Н. Варваров, автор «лунной» книги «Седьмой континент»:

«Внешняя, прозрачная для полезных участков солнечного излучения оболочка не должна пропускать губительных для живого организма космических лучей. Назначение второй оболочки — поддерживать в помещении нормальный температурный режим. Пространство между этими оболочками будет заполнено озоном. Давление озона должно составлять около половины давления воздуха в жилом помещении, благодаря чему не только уменьшится перепад давления в жилом помещении и в окололунной пустоте, ко и станет поглощаться губительная ультрафиолетовая радиация Солнца. Озон выбран не случайно. Известно, что, если бы не слой озона на высоте 40—50 км от поверхности Земли, все живое на Земле подверглось бы разрушительному действию ультрафиолетового излучения. Третья оболочка — силовая, увеличивающая прочность сооружения. Подобно покрышке футбольного мяча, не дающей лопнуть камере, эта оболочка примет на себя нагрузку избыточного давления, стремящегося раздуть герметичное помещение».

Уже сегодня рассматриваются районы для первых лунных поселений. Перспективным считается, например, район на северо-востоке видимого с Земли лунного диска у кратера Святого Георга, вблизи Апеннинских гор. Неподалеку от этих мест по Луне путешествовали астронавты Дэвид Скотт и Джеймс Ирвин — экипаж лунной кабины «Аполлон-15». Авторы проекта расположили здесь лунное поселение «Контрапункт», в котором первоначально должно жить не более 15—20 человек. Через десять лет его население должно вырасти в десять раз (разумеется, не за счет рождаемости). В «Контрапункте» будут три космодрома, подлунные и надлунные ангары и ремонтные мастерские для космической техники, сельскохозяйственные угодья, культурный центр, жилые дома для постоянных жителей, гостиницы для гостей, не говоря уже о научно-исследовательских лабораториях, электростанциях и горнорудных предприятиях. Доставка с Земли людей и грузов планируется в три этапа: Земля — орбита спутника Земли, орбита спутника Земли — орбита спутника Луны и, наконец, спуск с орбиты спутника Луны на ее поверхность Получается, что эти пересадки и перегрузки оправдывают себя с энергетической точки зрения. Для каждого этапа путешествия Земля — Луна потребуется специализированный космический аппарат, способный выполнить лишь одну частную задачу на своем участке пути.

На Луне будет работать свой транспорт. Возможно, поселенцы построят подвижную лабораторию, способную удаляться от базы на расстояние до 400 километров. Путешествия на лунных роверах астронавтов с «Аполлонов» показали, что хороших «дорог» на Луне мало. Потребуется создание лунных вездеходов. В этом деле уже есть кое-какой опыт. Достаточно вспомнить наши «Луноходы», которые довольно лихо преодолевали всякие препятствия на своем пути. Можно позаимствовать и опыт шведских конструкторов. В конце 70-х годов ими был сконструирован вездеход «Икс-мышь». Повинуясь своему водителю, он может катиться, а когда нужно — и шагать. Его колеса крепятся не на оси, а устанавливаются на длинных полуметровых рычагах, которые могут опускаться, подниматься и даже вращаться по кругу. Опустив рычаги вниз, водитель поднимает кабину, увеличивая проходимость вездехода. Задрав все четыре колеса кверху, он опускает «Икс-мышь» на «брюхо», превращая то ли в сани, то ли в лодку. Короче, шведская конструкция, как мне кажется, обладает многими весьма ценными для внеземного транспорта качествами.

Известный архитектор-новатор Поль Мэймон, много работавший над проблемами застройки океанского дна, опубликовал проект лунного города, внешне напоминающего раскрытый веер. Каркас из металлических трубок и предварительно напряженных тросов держит крышу из стальной пластмассовой ткани. Любопытно решена проблема фундамента, который состоит из мешков стальной ткани, заполненных лунным грунтом. Архитектор и скульптор Кеннет Снельсон создал проект инопланетного поселения с каркасом из труб и тросов, придающим всей конструкции максимальную жесткость и упругость. «Металлические» шары Снельсона, очевидно, могли бы пригодиться марсианским поселенцам, которых ожидают ураганы и пыльные бури.

Этот и многие другие проекты весьма интересны, оригинальны, но все они прочно стоят на фундаменте земной архитектуры. Города под колпаками, замкнутые поселения с искусственным климатом проектировались и для наших земных нужд: например, для полярных областей. Сферы, подобные сферам Снельсона, разработанные его учителем Бакминстером Фуллером, получили очень широкое «земное» распространение (например, центральное здание выставочного комплекса в парке Сокольники в Москве). Строить на далеких небесных телах, конечно, очень трудно, во сто крат труднее, чем в Антарктиде, но все-таки мы более или менее представляем себе, что и как мы будем там строить.

Советские ученые, например, предложили использовать при строительстве уже созданные самой природой цирки и кратеры. Накрытые крышей и соединенные между собой подземными переходами, они могут образовать обширное внеземное поселение. Проект поселения «Контрапункт», о котором я рассказывал, разрабатывался Джоном Досеем и Гиллермо Тротти. Колония у кратера Святого Георга представляет собой полузаглубленную в лунный грунт конструкцию. Проект разработан с учетом сегодняшних возможностей ракетно-космической техники и может быть осуществлен в течение десяти лет.

В другом проекте планируется жилой блок, который состоит из восьми модулей, состыкованных друг с другом. Первоначально он рассчитан на 16 поселенцев. Потом, пристыковывая такие же модули, колонию можно расширять.

Посекционная сборка характерна для архитектуры так называемых экстремальных условий. Одна калифорнийская фирма в городе Лос-Алтос выпускает цельнопластмассовые дома. Конструкция представляет собой в плане прямоугольную или треугольную трехслойную оболочку. Из двух типов элементов весом по 90 килограммов каждый можно собрать 144 варианта жилых домов разной формы — сводных, купольных, смешанных. Дома из этих «детских кубиков для взрослых» уже построены на Аляске, в нескольких западных штатах и на Гавайских островах.

Аналогичные работы ведутся в лаборатории архитектурной бионики ЦНИИ теории и истории архитектуры совместно с ленинградским и киевским зональными НИИ экспериментального проектирования. Идею трансформируемых конструкций архитекторам подсказывает сама природа — раскрывающиеся лепестки цветов, складывающиеся листья растений. Компактно упакованные дома-«складни» нужны полярникам, геологам, промысловикам. Хорошую службу могут сослужить они и в сельском хозяйстве для создания птичников, оранжерей и складов. Так чисто земные потребности способствуют развитию космической архитектуры.

Одно из главных требований лунной архитектуры — сократить, насколько это возможно, использование земных материалов уже на самом первом этапе строительства, когда оно еще лишено местной производственной базы. В частности, предполагается использовать лунную пыль как теплозащитное покрытие. По расчетам проектировщиков, на одно помещение потребуется около 200 тонн пыли. Придется сконструировать специальный пылесос, способный отсосать и транспортировать такое количество пыли.

Вообще мы плохо представляем себе еще свойства лунного грунта как строительного материала. Это особые свойства, подобных структур мы на Земле не имеем. Все астронавты, побывавшие на Луне, отмечали, что поверхность ее рыхлая, на ней хорошо отпечатываются следы, колеса лунного ровера поднимают облака пыли. С другой стороны, если вы попробуете воткнуть в лунный грунт какой-нибудь штырь, палку, то сразу почувствуете его плотность, неподатливость. Отмечалось, что лунная пыль какая-то липучая, словно бы мокроватая. Считается, что склонность к слипанию вызвана накоплением статического электричества и образованием под действием солнечной радиации свободных химических связей. Пыль ложится на поверхности тонким слоем, но этого достаточно, чтобы изменить оптические, фрикционные и тепловые свойства материалов, а значит — во все эти расчеты надо вводить какие-то поправочные коэффициенты «на пыль». Известно, что американцы с трудом могли углубиться в лунный реголит на 3 метра с помощью электробуров. Исследования вернувшихся на Землю буров советских автоматических «лунников» показали, что на них металл интенсивно изнашивается, на режущих кромках образуются ямочки, подобные следам оспы. Рыхлый, но плотный, сухой, но влажный, — как поведет себя такой материал в строительных делах, предсказать трудно.

Совершенно ясно, что архитекторы будут стараться использовать в космических новостройках земной опыт, хотя делать это всегда придется с большими оговорками. Но все-таки кое-что земное может, мне кажется, пригодиться на Луне. Группа архитекторов разных стран — Ф. Отто (ФРГ), О. Эруп (Англия), К. Танге (Япония) — спроектировала для условий Крайнего Севера город под куполом. Его диаметр 2570 метров при максимальной высоте 240 метров. Это пневматическая конструкция из сети полистироловых тросов, покрытых двумя слоями прозрачной поливинилхлоридной пленки. Купол можно установить прямо на грунте и надуть за 50 часов. Атомная электростанция, обслуживающая город, находится вне купола.

Поскольку водоснабжение в необжитых районах обходится очень дорого, американские проектировщики временных поселков строителей северных нефтепроводов стремятся сократить потребление воды. В частности, в этих поселках предусматривается создание бань-саун, которые снизят потребности в ваннах и душах. Питьевая вода там регенерируется для многократного использования. Бани, прачечные и сушилки сосредоточиваются в одном центре коммунального обслуживания, чтобы не разбазаривать воду. Такой центр объемом в 200 квадратных метров уже построен в Эммонаке. Думается, и этот опыт пригодится архитекторам лунных колоний.

Надо признать, что архитектурные контуры лунных поселков просматриваются сегодня еще весьма туманно. Туман этот сгущается, когда мы начинаем говорить о колонизации других небесных тел, в частности Марса и Венеры — наших ближайших космических соседей.

Пока мы не очень хорошо представляем, зачем, собственно, нам может понадобиться Марс, содержит ли он некие неведомые до поры богатства, которые заставили бы думать о его колонизации. Очевидно, в недалеком будущем, когда космические межпланетные автоматы доставят с Марса образцы его грунта, можно будет сказать что-нибудь более определенное. Но уже сегодня можно говорить о Марсе как заправочной космической станции, на которой можно получить, скажем, кислород для жидкостных ракетных двигателей и систем жизнеобеспечения межпланетных пилотируемых кораблей. Атмосфера Марса, как известно, на 95,3 процента состоит из чистого углекислого газа. Если сжать марсианский воздух, подогреть примерно до тысячи градусов и подавать в ячейку с твердым электролитом, можно получить окись углерода и кислород. Коли удастся добыть на Марсе или привезти с Земли жидкий метан, то полученный кислород несложно хранить в жидком состоянии. Кстати, метан можно использовать как ракетное топливо.

Если мы увидим, что Марс стоит того, чтобы организовать на нем постоянные поселения, то самым лучшим вариантом будет такое преобразование всей его природы, которое бы позволило землянам жить на Марсе без скафандров, в обычных «земных» домах и наслаждаться неведомой на Земле легкостью. Теоретически это возможно. С помощью колоний зелено-голубых морских водорослей можно в процессе фотосинтеза генерировать кислород и выпускать его в марсианскую атмосферу. Правда, расчеты, сделанные на ЭВМ, показывают, что для ее насыщения потребуется около ста тысяч Лет. Этот процесс можно ускорить в десять раз, если сделать Марс теплее, заставить его поглощать больше солнечной энергии. Примерно сто лет потребуется, чтобы засыпать песком и пылью полярные шапки планеты, которые отражают много солнечных лучей.

Сложнее «приручить» еще более чуждый человеку мир Венеры. Несмотря на то что существует научно обоснованная гипотеза, утверждающая, что в начале своего существования эта планета имела более благоприятный климат и на ней существовали океаны, сейчас огромное давление венерианской атмосферы и жар ее поверхности делает существование человека на «прекраснейшей из звезд небесных» (слова Гомера) очень сложным. Проекты «преобразования» Венеры включают очень много пунктов. Прежде всего планету требуется охладить. С одной стороны, солнечные лучи хорошо отражаются облаками, с другой — эти облака создают тепличный эффект. Таким образом, Венера должна быть облачной планетой, но менее облачной, чем сейчас, для того чтобы остыть. Чтобы «остудить» поверхность Венеры до 26—27 градусов тепла, надо увеличить теплопередачу за счет ускорения вращения планеты. Сделать это возможно, как считает американский журнал «Космический полет», установив на Венере мощные реактивные двигатели, которые должны работать непрерывно более 12 лет. Какие двигатели способны иметь такой ресурс работы и откуда взять невообразимое количество топлива, для них — неясно. Сократить продолжительность венерианских суток можно, сталкивая Венеру с большими астероидами. Если хорошенько прицелиться и ударить 350-километровым астероидом по экватору планеты, продолжительность венерианских суток сократится с 243 до 20,1 земных суток. После третьего столкновения уменьшится до 11 суток, а если учинить 46 таких столкновений, сравняется с земными сутками. Разумеется, такие удары порядком изувечат лик планеты, названной в честь богини любви и красоты. От каждого такого удара на ее лице останется «оспина» — кратер диаметром больше четырех километров. Весь вопрос в том, хватит ли астероидов… После всех этих соударений надо обогатить атмосферу Венеры азотом и кислородом, что, по мнению журнала, можно сделать, снова столкнув Венеру на этот раз с ядрами комет.

Подобный пример «плана преобразования» иных миров я привел скорее для юмористической разрядки читателей, чем для иллюстрации действительных проблем космической колонизации, имеющих реалистические решения. В самой идее преобразования природы других планет нет, разумеется, ничего антинаучного, но острейшие земные заботы сегодняшнего дня заставляют думать, что человечество еще не скоро примется за подобную работу, возможно и неблагодарную.

Да, возможно, и неблагодарную, но сердцу не прикажешь, мечту не остановишь. В «Комсомольской правде» прочитал я отрывок из школьного сочинения: «Я стану архитектором, буду проектировать новые дома, театры, клубы… Дома будут строиться из цветного стекла, и, открыв дверь этого дома, мы услышим тихую, легкую музыку… На советы архитекторов будут приезжать архитекторы с других планет. Будут обмениваться опытом, какие у них строятся города. Вот один архитектор с Марса начал рассказывать, какие у них строятся дома: «Наши дома похожи на цветы, на огромные шары, кубы. Все это сделано из цветного стекла, пластмассы. В парках вместо дворников дорожки убирают роботы, все это сделано совместно с советскими архитекторами!..»

И, может быть, жизнь так же переселится на Луну. Там тоже нужны архитекторы. На Луне будут красивые города. И один город обязательно будет называться Детство. Там будут жить только дети…»

Мальчик мечтает. Кто знает, может быть, он действительно построит город, о котором все мы мечтали в отроческие годы…

Итак, в том случае, если речь идет о станциях с генерацией искусственной тяжести или о Луне, Марсе, Венере и даже, если уж вволю расфантазироваться, о спутниках Юпитера, астероидах и прочих небесных телах, масса которых меньше массы нашей планеты, мы имеем некие переходные варианты от земных условий к невесомости, варианты «облегченного мира», в котором жизнь во внешних ее проявлениях будет более или менее походить на земное существование. При определенной сноровке, потренировавшись, можно будет научиться и ходить, и лежать, и держать все подвижные окружающие предметы в относительном повиновении. Экспедиции «Аполлонов», например, показали, что в облегченном в шесть раз по сравнению с земным лунном мире требуется примерно двадцать минут, чтобы научиться ходить и приобрести особую «лунную» осанку, которую медики назвали «позой усталой обезьяны». Да, мы знаем хотя бы на примере Луны, что «облегченный мир» — среда весьма специфическая, что природа новых миров весьма «неохотно», «с ленцой» будет подчиняться нашим земным порядкам. Мы понимаем, сколько усилий, сколько изобретательности потребует от архитекторов эта увлекательная работа вне Земли.

«Есть два пути, — пишет в своей книге «Города на орбитах» Ф. Ю. Зигель, — или человек так перестроит свой организм, что превратится, говоря словами Циолковского, в «животное космоса», способное переносить и невесомость, и вакуум, и вредные облучения, и другие трудности открытого космоса; или (что несравненно реальнее) перенесет в космос кусочек земного уюта, то есть создаст в космических поселениях (на планетах ли или между ними) искусственную земноподобную обстановку».

По какому из этих двух путей пойдет земная цивилизация, распространяющаяся в космосе, мы узнаем только в будущем. Но уже сегодня ясно, что любой из путей ведет нас в неизвестную страну, где нас ждут приключения, о которых не могли даже мечтать герои Жюля Верна и Ивана Ефремова.

Не знаю, удалось ли мне в чем-нибудь убедить вас, благосклонный читатель. И тем более вас, специалист земной индустрии, скептически относящийся к космическим фантазиям. Но я попытался выстроить свой рассказ так, чтобы ответить на вопросы самые простые и самые важные. Зачем строить, зачем городить весь этот звездный огород? Где строить? Из чего? Кому это предстоит делать? Что это может в принципе нам дать? Где приблизительно проходит граница нынешних научно-технических реалий и пусть даже обоснованных, но все-таки научно-технических фантазий?

Цифрам, здесь приведенным, можно не верить. В наш век все так быстро меняется, что всякий цифровой материал неизбежно устаревает. Да и не нужно мне, по правде говоря, чтобы вы верили моим цифрам. Мне другое нужно. Мне нужно, чтобы вы поняли, что весь этот наш с вами странный разговор не из пальца высосан, что пройдет несколько лет, пусть десятилетий, и все наши туманные подчас рассуждения окажутся темами серьезных разработок, студенческих дипломов, кандидатских и докторских диссертаций. Что рано или поздно всем этим придется нам заниматься, потому что, расплавив в примитивном горне кусок метеоритного железа много тысячелетий тому назад, мы уже тогда приговорили себя к этой сложной и дорогой работе. И никуда нам от нее не деться, не спрятаться. Разумеется, если мы хотим в счастье, достатке и чистоте жить на своей родной Земле. А мы хотим.