3

Итак, в середине января 1665 г. Ньютон стал бакалавром искусств. Университетский сенат присвоил ему, как и его однокашникам, звание авансом, ибо процедура экзаменационных диспутов, приходившаяся на период великого поста и называвшаяся потому «квадрагесима» (сорокадневный пост — quadragesima), была еще впереди. Для Ньютона это было тяжелое испытание — и вследствие трудностей, связанных с подготовкой к экзаменам, и по причине их очевидной бессмысленности, а главным образом потому, что его голова была занята совершенно другим, а именно математическими проблемами нового анализа. С трудом выдержав выпускные экзамены, Ньютон продолжал свои исследования, которые, несмотря на всю их важность, оставались никому не известными.

Летом страну постигло катастрофическое бедствие — эпидемия чумы. Осенью правительство запретило ярмарки и публичные собрания, а еще раньше — 7 августа занятия в Тринити-колледже были прекращены, а университет закрыт. Кембридж, как многие другие города Англии, опустел. Люди стремились укрыться от эпидемии в деревнях и на хуторах, находившихся в безопасной изоляции, студенты, как правило, уезжали вместе со своими тьюторами, чтобы быть в состоянии продолжать учебу вне стен университета. Ньютон не поехал с Пуллейном (окончание университета не означало конца учебы, Ньютон оставался стипендиатом колледжа, и ему еще предстояло получить степень магистра), их интересы разошлись, и Пуллейн ничему его научить не мог. Ньютон отправился в Вулсторп, к матери, и провел там почти два года за вычетом поездки в Кембридж весной 1666 г.

Эти годы оказались для него удивительно плодотворными. Позднее он так вспоминал о них: «В начале 1665 г. я открыл метод приближенных рядов и правило для сведения любой степени любого бинома к таким рядам. В мае того же года я открыл метод касательных Грегори и Слюза, а в ноябре — прямой метод флюксий и в следующем году, в январе,— теорию цветов, а затем, в мае, имел в распоряжении обратный метод флюксий. И в тот же самый год я начал думать о тяжести, простирающейся до орбиты Луны (найдя, как вычислить силу, с которой шар, обращающийся внутри сферы, давит на поверхность сферы); из кеплеровского правила, что периоды планет находятся в полуторном отношении к их расстоянию от центра их орбит, я вывел, что силы, которые удерживают планеты на их орбитах, должны быть обратно пропорциональны квадратам их расстояний от центров, вокруг которых они обращаются: в связи с этим я сравнил силу, потребную, чтобы удержать Луну на орбите, с силой тяжести на поверхности Земли и нашел их весьма близко совпадающими (found them answer pretty nearly). Все это произошло в два чумных года 1665—1666. Ибо в это время я находился в наилучшем для открытий возрасте и думал о математике и философии больше, чем когда-либо позже» [2, с. 143].

Это довольно часто цитируемое высказывание Ньютона содержит поразительный список результатов, которых ему удалось достичь во время вулсторпского уединения, но вместе с тем, исходя из него, может создаться впечатление, что все то, что составляет славу и заслугу Ньютона в науке, а именно изобретение дифференциального и интегрального исчисления, а также открытие закона всемирного тяготения, было сделано им в эти молодые годы, а затем еще долгие десятилетия ждало своего опубликования. На самом деле эти годы знаменуют лишь возникновение идеи (что особенно существенно для представления о всемирном тяготении), которая лишь впоследствии оформилась в строгую теорию.

В каком-то смысле проблема эволюции творчества Ньютона сродни проблеме научной революции как таковой. Представление о том, что главный результат был им получен в годы вулсторпского затворничества — недаром они часто именуются «чудесными годами» — anni mirabiles — в результате чудесного озарения, в такой же степени не соответствует действительности, как и бытовавшее до нашего века представление о том, что наука нового времени возникла, как феникс из пепла, вне всякой связи с предшествующей средневековой схоластической и натурфилософской традициями. К счастью, творчество Ньютона представляет собой более благодатный и обозримый материал для анализа.

Все вехи в приведенном выше высказывании Ньютона указаны правильно. К этому можно добавить, что Ньютона в эти годы особенно отличала редкая целеустремленность. Если же он брался за что-нибудь, то размышлял об этом постоянно и доводил дело до конца. До начала 1666 г. в течение 18 месяцев он занимался исключительно математикой. Закончив 13 ноября 1665 г. свою последнюю математическую статью, он исчерпал свои возможности на данное время и на шесть месяцев прекратил занятия математикой совершенно, «как будто бы он погасил свечу», пишет Уэстфолл по этому поводу. В действительности он «зажег свечу» еще в мае и в октябре 1666 г., когда написал две статьи о методе флюксий. Весь следующий год он занимался физическими проблемами, и в первую очередь механикой.

Он заинтересовался проблемами, с которыми столкнулся при чтении Декарта, но решение которых Декартом его явно не удовлетворило, а именно проблемой удара и анализом вращательного движения.

Как мы видели выше, законы удара по Декарту противоречили здравому смыслу, главным образом в результате того, что он не понимал в полной мере векторного характера величины количества движения. Ньютон решил подойти к проблеме по-новому, представив два движущихся тела как одну систему. Точнее, он рассматривает два тела как систему, центр тяжести которой движется инерциально вне зависимости от того, сталкиваются эти два тела или нет.

В январе 1665 г. он составляет сводку результатов, относящихся к проблеме удара, под названием «Об отражении», в котором дает определения силы, количества движения и т. д.[17] Затем Ньютон высказал предположение, что при столкновении двух тел одно тело действует на другое точно так же, как это другое на первое, и получающиеся изменения в движении обоих тел оказываются одинаковыми. Но Ньютон сразу же понял, что это правило справедливо лишь для равных тел, участвующих в одинаковом движении, поэтому стал искать возможность представить различные движения как движения одинаковые. Такую возможность он увидел в том, чтобы рассматривать движения сталкивающихся тел относительно их общего центра тяжести.

Сначала он доказал, что два тела, движущиеся равномерно, имеют равные движения по отношению к их общему центру тяжести, а затем и то, что в этом случае центр тяжести будет либо покоиться, либо двигаться равномерно и прямолинейно. После этого Ньютон рассматривает общий случай соударения двух тел (представленный на рисунке). Здесь он также говорит о равных движениях тел b и с относительно линии kp или общего центра тяжести. Под словом «движение» надо понимать количество движения, которое имеет не только абсолютную величину, но и направление. Под термином «равные движения» понимаются количества движения, равные по абсолютной величине и направленные либо к общему центру тяжести, либо от него. После того как тела b и с сталкиваются, Ньютон говорит, что «насколько сильно b отжимает с от линии kp, настолько сильно и с отжимает b от нее». Следовательно, когда два тела будут находиться в e и g после столкновения, они будут иметь равные движения от их общего центра тяжести, который будет продолжать равномерно двигаться по линии kp. Таким образом, мы видим, что Ньютон пришел к векторному пониманию количества движения.

Рассмотрение проблемы удара самым тесным образом связано с последующим анализом вращательного движения. Вначале он рассматривает абсолютно упругий прямой удар шара о неподвижный экран. Несколько модернизируя рассуждения Ньютона, можно сказать, что изменение количества движения равно удвоенной его первоначальной величине. Такое же изменение количества движения будет иметь тело, движущееся по окружности при прохождении ее половины. Или, как пишет Ньютон, «вся сила», с которой тело стремится удалиться от центра при совершении полуоборота, вдвое больше той, которая потребна для того, чтобы породить движение. Между этими двумя случаями существует различие, заключающееся в том, что при ударе мы имеем мгновенно действующую силу, а при вращательном движении — силу, действующую постоянно.

Задача об ударе

К выводу формулы центробежной силы 

Еще не понимая, что это за сила, Ньютон тем не менее стремится избежать такого различия и строит следующую модель (см. рисунок справа): шар, отражаясь от внутренней поверхности экрана в форме окружности, описывает замкнутую фигуру — квадрат. Если шар испытывает одно столкновение, то он описывает половину квадрата и проходит полуокружность; при этом горизонтальная (на чертеже) составляющая его скорости меняет свой знак на обратный, другая остается без изменений. Поэтому изменение этой компоненты при одном соударении равно ее удвоенной величине. Ньютон составляет пропорцию: «2fa : ab :: ab : fa :: сила или давление b на fg при отражении: силе движения b». Более привычная запись пропорции: 2fa/ab = ab/fa, она получается вследствие того, что отношение гипотенузы к катету в прямоугольных равнобедренных треугольниках неизменно. С другой стороны, ab есть мера скорости, а fa — мера ее горизонтальной составляющей. Тогда в современных обозначениях:

2fa/ab = Amv/mv = ab/fa = l/R,

где l — сторона квадрата, R — радиус окружности, mv — первоначальное количество движения, ?mv — изменение количества движения при одном соударении.

Ясно, что для четырех соударений, необходимых для описания шаром квадрата, ?(?mv)/mv = 4l/R. Если стороны квадрата постоянно удваивать, то получим для n-угольника: ?(?mv)/mv = nl/R, При n ? ?, nl ? 2?R и ?(?mv)/mv = 2?, или ?(?mv) = 2??mv. ?(?mv) — полное изменение количества движения за один оборот, следовательно, ?(?mv) = F?T, где T = 2?R/v, откуда

F = mv2/R.

Этот вывод формулы для центробежной силы отличается от ньютоновского только терминологией: Ньютон называл mv силой движения шара, ?mv — давлением, или силой одного столкновения (отражения), ?(?mv) —суммарной силой, a F— силой, в результате действия которой тело удаляется от центра в каждое мгновение.

Получив формулу для центробежной силы, Ньютон сразу попытался сопоставить ее с силой тяжести. Такое сопротивление напрашивалось само собой, если он хотел ответить на вопрос, с которым столкнулся еще при чтении «Диалога»: почему предметы не срываются с поверхности Земли в результате ее суточного вращения? Галилей был на правильном пути, но не сумел довести дело до конца, его объяснение было лишь качественным. Он считал, что сила тяжести, которую он называл gravita, действует на тело, стремящееся при вращении Земли отлететь от нее по касательной, и это действие превалирует над стремлением тела удалиться от центра Земли.

Ньютон решил довести решение проблемы до численного результата. Зная формулу центробежной силы, он смог вычислить достаточно точно ускорение свободного падения в экспериментах с коническим маятником. Он получил значение, равное 960 см/с2. Из данных, содержащихся в «Диалоге», он получил также, «что сила Земли, направленная от ее центра, относится к силе тяжести как один к 144 или около того». Но эти расчеты были проведены с учетом галилеевской величины ускорения свободного падения, которая после проведения Ньютоном опытов с коническим маятником оказалась вдвое заниженной. Ньютон это учел и получил окончательное отношение 1 : 288 [4, III, с. 44—45]. Нет никаких оснований не верить словам Ньютона, что «в тот же самый год он начал думать о тяжести, простирающейся до орбиты Луны (найдя, как вычислить силу, с которой шар, обращающийся внутри сферы, давит на ее поверхность)». Естественно было сначала сравнить центробежную силу на орбите Луны с силой тяжести на поверхности Земли. Легко подсчитать, что центробежная сила на лунной орбите в 14,26 раза меньше, чем на поверхности Земли. Тогда у Ньютона должно было получиться, что сила тяжести на поверхности Земли в 14,26 ? 288 = 4106 раз больше центробежной силы на лунной орбите (Ньютон в своих записках говорит, что эта величина получилась у него немногим более 4000).

Этому результату Ньютон попытался дать другое теоретическое объяснение. При помощи третьего закона Кеплера он показал, что для небесных тел стремление удалиться от центра их обращения обратно пропорционально квадрату их расстояния от этого центра. Действительно, F ~ v2/R и T ~ R3/2 при учете того, что v = 2?R/T, дают F ~ 4?/R2?R3/T2; а так как R3/T2 = const, то F ~ 1/R2.

Итак, с одной стороны, он получил, что сила тяжести на Земле в 4000 раз больше, чем центробежное стремление на лунной орбите. С другой стороны, он вывел, что согласно закону обратных квадратов сила тяжести должна быть в 3600 раз больше этого стремления (радиус лунной орбиты принимается равным 60 земным радиусам): если предположить, как это сделал Ньютон, что планеты удерживаются на своих орбитах вследствие того, что сила тяготения уравновешивается центробежной силой.

Совпадение и правда показалось ему pretty nearly и достаточным, чтобы увидеть в этом балансе сил рациональное зерно. Но настоящее понимание концепции тяготения, как и истинного смысла центробежной силы, пришло к Ньютону много позднее.

Обычно возникновение идеи о всемирном тяготении связывается с легендой о яблоке. Вполне вероятно, что случай с яблоком действительно имел место, так как он находит подтверждение в четырех независимых свидетельствах: Кондуитта, Де Муавра, Стьюкли и Роберта Грина, а также в связанных с ними утверждениях Уэстона и Пембертона.

Обстоятельства дела сводятся к тому, что «в 1666 году он (Ньютон) снова приехал из Кембриджа к своей матери в Линкольншир, и в то время, когда он размышлял в саду, ему пришло в голову, что сила тяжести (которая заставляет яблоко падать с дерева на землю) не ограничена определенным расстоянием от Земли, но должна простираться много дальше, чем обычно думают. Почему не столь далеко, как до Луны? — сказал он самому себе, а если это так, то это должно сказываться на ее движении и, возможно, удерживать ее на ее орбите. После чего он подсчитал, каково должно было бы быть следствие такого предположения. Однако когда в отсутствие книг под рукой он принял (как это обычно делали географы и наши моряки до того, как Норвуд измерил Землю), что в одном градусе широты на поверхности Земли содержится 60 английских миль, его расчеты не совпали с теорией и ему пришлось допустить, что наряду с силой тяжести может оказывать влияние сила, которой обладала бы Луна, если бы двигалась, увлекаемая вихрями» [2, с. 154].

Сравнивая этот рассказ Кондуитта с вышеприведенным высказыванием самого Ньютона, можно увидеть два существенных несоответствия. Ньютон в рассказе Кондуитта счел расхождение в 16% (3600 и 4000) недопустимым, в то время как в своем собственном рассказе он рассматривает два полученных значения совпадающими «весьма близко». Кроме того, в пересказе Кондуитта имеется ссылка на картезианское объяснение движения планет, которая вроде бы лишала смысла все ньютоновское построение. Эти несоответствия вместе с тем фактом, что закон всемирного тяготения был сформулирован лишь двадцать лет спустя, заставили многих исследователей творчества Ньютона ломать голову над вопросом: откуда взялась эта ошибка в 16% и почему Ньютон, зная о законе всемирного тяготения в 1666 г., удерживался от его обнародования до 1684—1686 гг.?

До настоящего времени эти два вопроса рассматривались взаимосвязано, в чем, по-видимому, и коренилось заблуждение относительно правильного ответа. В действительности Ньютон, по всей вероятности, пользовался заниженной величиной радиуса Земли, взятой из английского перевода «Диалога» (3500 итальянских миль, где 1 итальянская миля равняется 5000 футам, а не 5280, как следовало бы в случае правильного измерения), но сама ошибка вследствие неправильной величины радиуса не может объяснить двадцатилетней задержки в публикации закона. Во-первых, Ньютон мог повторить свой расчет, пользуясь не данными «Диалога», а теми справочниками, о которых говорит Кондуитт, а в них уже с 1636 г. давалось правильное значение радиуса Земли, лишь на 0,5% отличающееся от величины, полученной в результате триангуляции Пикара в 1669—1670 гг. Во-вторых, и это самое главное, у Ньютона в 1666 г. представление о тяготении еще не сформировалось, а только зародилось, поэтому стали возможны картезианские реминисценции.

Другое объяснение было выдвинуто знаменитым математиком Адамсом и несколько менее знаменитым математиком Глэшером которые в конце XIX в. занимались разбором так называемой Портсмутской коллекции рукописей Ньютона. Они полагали, что отсрочка обнародования закона связана с тем, что Ньютон в 1666 г. еще не мог доказать, что тяготение между двумя материальными сферами эквивалентно взаимодействию между точечными центрами этих сфер, если считать, что в них сосредоточена вся масса. Такое объяснение ближе к истине, но на самом деле все было гораздо сложнее.

Ньютон в это время не только не осознавал эквивалентности тяжелых сфер и точек, но еще и никак не связывал с тяготением форму орбиты. Лишь тогда, когда он смог показать взаимосвязь первых законов Кеплера с концепцией тяготения, он смог говорить о тяготении как фундаментальном принципе. А пока лишь он установил, как следует из его заметок 1669 г., что «у главных планет, поскольку кубы их расстояний от Солнца обратно пропорциональны квадратам их периодов, их стремление удалиться от Солнца будет обратно пропорционально квадратам их расстояний от Солнца» [4, I, с. 297—300]. Этот документ, открытый Холлом в 1957 г., показывает, что Ньютон в 1666 г. пришел к мысли о связи между центробежной силой и квадратом расстояния, лишь смутно прозревая в этой зависимости идею всемирного тяготения[18].

В «чумные годы» Ньютон размышлял не только о механических проблемах, его занимала также и оптика, в первую очередь теория цветов. Эта проблема начала его интересовать, вероятно, чуть раньше отъезда в Вулсторп, после того как он прочел «Микрографию» Гука, вышедшую в 1665 г. Без сомнения, в формировании его интереса к проблеме сыграли большую роль сочинения Декарта (особенно «Метеоры») и Бойля — его «Эксперименты и соображения относительно света», опубликованные в 1664 г. Свое критическое отношение к взглядам, существовавшим тогда на природу цветов, Ньютон высказал еще в «Философских вопросах», а впоследствии на остававшихся чистых листах дописал еще свои возражения против представления Гука.

Что же представляли собой эти взгляды? Преобладавшими в ученой среде были представления Аристотеля, согласно которому цвет определялся смешением света и тьмы в различных пропорциях. Декарт сделал существенный шаг вперед в понимании природы цветов — у него имеются три «элементарных» цвета: красный, желтый и синий, а все остальные создаются из их комбинаций. Важно и то, что у него цвет связывался с наличием определенного периодического движения, а именно, определенной скорости вращения частиц второго элемента. Теория Гука была сродни аристотелевской — цвет определялся комбинацией света и темноты, несмотря на то, что в основе его теории лежало представление о волновой природе света. Он считал, что цвет зависит от угла, который составляет поверхность волны с направлением распространения света. Например, «изображение на сетчатке косого и деформированного импульса света (an oblique and confus'd pulse of light), слабейшая часть которого предшествует сильнейшей, является синим», а если, наоборот, ослабленная часть косой волны попадает в глаз последней, то изображение является красным. Если поверхность волны перпендикулярна направлению распространения, наблюдаемый цвет будет белым.

Ньютону все это казалось неверным. Его приверженность атомистической доктрине не давала ему возможности стать ни на точку зрения Декарта, ни на точку зрения Гука. «Чем более одинаково частицы света (globuli) возбуждают оптический нерв, тем более тело кажется окрашенным в красный, желтый, синий и т. д. цвет, а чем более разнообразно они на него действуют, тем более тела кажутся белыми, черными и серыми» [2, с. 159],— писал он в добавлении к «Вопросам».

Ньютон вначале подошел к проблеме чисто теоретически, предположив, что свет является потоком частиц, а белый цвет является составным. Тогда же он связал цвет со скоростью частиц. После того как выкристаллизовалась первоначальная идея, можно было приступать к экспериментам. Направление их было определено работами его предшественников — это должны были быть эксперименты с призмой. Позднее Ньютон так вспоминал об этом: «В начале 1666 г. (в то время, когда я занялся шлифованием оптических стекол иной формы, чем сферическая) я приобрел для себя треугольную стеклянную призму, чтобы с ее помощью попробовать получить знаменитые явления цветов» [2, с. 156].

Нам достоверно неизвестно, ставил ли он опыты с разложением света до своего окончательного возвращения в университет. Во всяком случае, подготовительная работа была проведена.