3

Нередко можно встретить утверждение, что вклад Декарта в решение проблем механики не столь уж существен, во всяком случае по сравнению с его достижениями в других областях, например философии и математике, что в механике важно лишь то влияние, которое он оказал на людей, подобных Гюйгенсу, хотя сам, по сути, сделал мало [5, с. 60]. Мне кажется, что подобная точка зрения является заблуждением, связанным с неправомерной попыткой отделить механику Декарта от его философии.

Декарт с самого начала стремился к глобальному объяснению мироздания, его неудовлетворяли попытки ученых, направленные на решение частных проблем, оставляющие в стороне фундаментальные основания науки. Вопрос «почему» был для него основным, и он не мог считать задачу выполненной, если не знал на него ответа. Именно поэтому он был так воинственно и критически настроен по отношению к Галилею, ориентированному в первую очередь на решение частных проблем. Он говорил о Галилее, что тот, «не касаясь первопричин в природе, искал причины лишь некоторых ограниченных явлений и таким образом строил здание без фундамента» [6, II, с. 391]. В своем подходе к объяснению природы он претендовал на ничуть не меньшее, чем то, что было когда-то сделано Аристотелем, и в действительности его система не кеплеровский набросок machina mundi, сделанный в неудачных попытках найти гармонию мира, не галилеевские отрывочные открытия и правила, а нечто всеобъемлющее, претендующее на объяснение как целого, так и частностей — от устройства Вселенной до конкретных физических явлений. Для Декарта, провозгласившего примат математического описания, его картина мира, нарисованная лишь качественно (так же как и аристотелевская), выглядит довольно неестественно, но, к сожалению, Декарт не первый и не последний ученый, у которого декларированная методология не соответствует собственной научной практике.

Механика Декарта изложена в основном в трех его главных сочинениях: в трактате «Мир», оставшемся при жизни неопубликованным, в «Рассуждении о методе» и в «Началах философии». (То, что Декарт не отделял свою механику от философии, находит, в частности, отражение и в том, что он ее включил в свои философские труды как составную и неотъемлемую часть.) В этих произведениях он исходит из двух основных положений, из которых в дальнейшем строится вся его система: во-первых, это представление об отсутствии в мире пустоты и о наполненности Вселенной материей, а во-вторых, это отождествление материи и пространства. К этим двум следовало бы добавить еще третье положение — о неизменности Бога, откуда у Декарта непосредственно вытекает закон сохранения количества движения.

Здесь необходимо отметить, что все великие ученые XVII в. были людьми глубоко религиозными (может быть, лишь Галилей представляет исключение) и теологические соображения играли большую роль в защите и пропаганде их собственных взглядов. Так, например, Ньютон, выступая против Декарта, обвинял его в том, что отождествление материи и пространства есть «прямая дорога к атеизму». По Ньютону, материя существует лишь постольку, поскольку Бог создает ее в непрерывном акте творения; у Декарта же она существует изначально. Ньютон не мог принять такой точки зрения, ибо в таком случае допускалось существование независимой от Бога субстанции. На самом деле точки зрения обоих не различались существенно — и в этом одно из доказательств прямой преемственности идей от Декарта к Ньютону. У Декарта Бог наделяет материю свойством непроницаемости, что, собственно, и делает ее материей повседневного опыта. У Ньютона Бог наделяет пространство свойством непроницаемости, и лишь в силу этого оно становится материей. Важно то, что и у Декарта, и у Ньютона непроницаемость, присущая материи в результате непрерывного акта творения, является тем основным свойством, которое ее (материю) определяет.

Посмотрим теперь, как строится декартовская механика, и определим те ее черты, которые были наиболее существенны для будущего развития науки. В главе VII трактата «Мир», озаглавленной «О законах природы этого нового мира», Декарт делает следующее вводное замечание:

«Из одного того, что Бог продолжает сохранять материю в одном и том же виде, следует с необходимостью, что должны существовать известные изменения в ее частях. Изменения эти, как мне кажется, нельзя приписать непосредственно действию Бога, поскольку это последнее неизменно. Поэтому я приписываю их природе. Правила, по которым совершаются эти изменения, я называю законами природы» [7, с. 166]. Если отвлечься от теологических импликаций, в этом отрывке для нас важно одно: по Декарту, в мире существуют законы сохранения, относящиеся ко всему миру в целом и принимающиеся за аксиому Взаимодействия же составных частей мира должны подчиняться законам природы, действующим, впрочем, в рамках этих аксиом сохранения.

Декарт далее поясняет: «...говоря о качествах материи, мы предположили, что частицы ее обладают различными движениями с самого начала их сотворения и что, кроме того, все они со всех сторон соприкасаются друг с другом, не оставляя нигде пустоты. Из этого необходимо вытекает, что с момента начала движения частицы, встречаясь одна с другой, начали изменять и дифференцировать эти движения. Таким образом, сохраняя их в том же самом виде, в каком он их сотворил, Бог не сохраняет их в одном и том же состоянии» [7, с. 166].

Затем сразу же Декарт приступает к изложению законов, которым должны подчиняться взаимодействия частиц материи; он их называет правилами. Итак,

«Первое правило состоит в том, что каждая часть материи по отдельности всегда продолжает оставаться в одном и том же состоянии до тех пор, пока встреча с другими частями не вызовет изменений этого состояния».

Это правило вроде бы и не похоже на закон механики, в действительности оно им и не является — это некое общее философское положение. Но посмотрим, как далее Декарт его детализирует и делает из него конкретные выводы:

«Иными словами: если частица обладает некоторой величиной, то она никогда не сделается меньшей, пока ее не разделят другие частицы; если эта частица кругла или четырехугольна, она никогда не изменит этой фигуры, не будучи вынуждена к этому другими...»

И наконец, замечательное утверждение:

«Если она (частица) остановилась в каком-нибудь месте, она не покинет его до тех пор, пока другие ее оттуда не вытолкнут; и если она начала однажды двигаться, то продолжает это движение постоянно и с равной силой до тех пор, пока другие ее не остановят или не замедлят ее движения» [7, с 167].

Это утверждение замечательно не только потому, что представляет собой отчетливое выражение закона инерции, оно замечательно потому, что вкладывает в него новый смысл. Новый смысл возникает в результате введения термина «состояние» и его одинакового использования и для случая покоя, и для случая движения. Суть использования термина «состояние» означает для Декарта то, что покой и движение имеют по отношению к объяснению одинаковый статус, и если состояние покоя, в котором тело продолжает пребывать как угодно долго, не нуждается в объяснении, то точно так же и состояние движения, длящееся бесконечно долго, не должно в нем нуждаться. Причем надо отметить, что использование этого слова — не случайное совпадение: на следующих двух страницах трактата Декарт подробно объясняет свою точку зрения, специально подчеркивая равносильность этих двух состояний: «Каждому из своих движений философы приписывают бытие более прочное и истинное, нежели покою, который, как они говорят, не является бытием, а есть небытие. Я же думаю, что покой является качеством, которое нужно приписывать материи, находящейся на одном и том же месте, и что в этом смысле покой не отличается от движения, т. е. качества, которое нужно приписывать материи тогда, когда она меняет свое место» [7, с. 169].

Говоря о движении, Декарт отвергает его аристотелевское определение, включающее, как мы помним, возникновение и уничтожение, сгущение и разрежение, увеличение и уменьшение интенсивности и т. д., утверждая, что движение «заключается в том, что тела переходят из одного места в другое, последовательно занимая все пространства, которые находятся между этими местами». Он полагает, что движение является такой же характеристикой материальных тел, какой являются форма тела или его размеры. Именно поэтому оно должно сохранять свою первоначальную величину, точно так же как четырехугольная частица сохраняет свою четырехугольную форму. Для Аристотеля и средневековых ученых движение составляло достаточно широкое понятие, сводящееся к актуализации потенциальной возможности. Для Декарта, закладывающего основы механики, такая постановка проблемы нелепа, ибо тогда весь его замысел обречен на провал. Поэтому для него движение как actus entis in potentia (акт вещи в потенции) Оккама ничего значить не может.

Возвращаясь к формулировке закона инерции Декарта, можно отметить, что у него не сказано, какую форму примет траектория движения — прямолинейную, криволинейную или какую-либо другую. Мы помним, что в этом пункте у Галилея имелись неясности, и он склонялся скорее к тому, что траектория инерционного движения будет окружностью, а если и высказывался относительно прямолинейного движения по инерции, то никак не увязывал это свое высказывание с первоначальным.

Декарт в этом пункте абсолютно определенен, правда, он высказывается относительно формы траектории несколько позднее, но сути дела это не меняет. Здесь он снова апеллирует к неизменности Бога: «...только Бог является творцом всех существующих в мире движений, поскольку они существуют и поскольку прямолинейны. Однако различные положения материи делают эти движения неправильными и кривыми» [7, с. 176].

Более отчетливую формулировку закона инерции мы находим в «Началах философии», опубликованных спустя почти пятнадцать лет после написания Декартом трактата «Мир». В «Началах» он уже прямо называет свои правила законами природы. Его первый закон совпадает с первым правилом из трактата, а второй гласит: «Всякое движущееся тело стремится продолжать свое движение по прямой», причем он подчеркивает: «каждая частица материи стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой, хотя некоторые из этих частиц часто бывают вынуждены от нее отклоняться, встречаясь на своем пути с другими частицами...» [2, с. 487].

Итак, закон инерции содержится у Декарта в полном объеме, и, по-видимому, лишь полемическая запальчивость Ньютона удержала его от того, чтобы воздать должное Декарту в своих «Началах»[14]. Но как бы то ни было, заслуга открытия первого закона Ньютона принадлежит Декарту.

Изложив закон инерции в двух правилах трактата «Мир», Декарт возвращается к истоку этих законов и формулирует свое первоначальное положение в механических терминах, что трансформирует его в закон сохранения количества движения (укажем при этом, что под количеством движения Декарт понимал произведение количества материи на скорость, хотя у него и не было ясного представления о массе): «Эти два правила с очевидностью следуют из одного того, что Бог неизменен и что, действуя всегда одинаковым образом, он производит всегда одно и то же действие. Предположив, что с самого момента творения он вложил во всю материю определенное количество движения, мы должны либо признать, что он всегда сохраняет его в таких же размерах, либо отказаться от мысли, что он действует всегда одинаковым образом» [7, с. 178].

Еще более детальное механическое объяснение закона сохранения количества движения дается в письме 1639 г.: «Я принимаю,— пишет Декарт,— что во всей созданной материи есть известное количество движения, которое никогда не уменьшается, не увеличивается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает. Так, если камень падает с высокого места на землю, то в случае, когда он не отскакивает, а останавливается, я допускаю, что он колеблет землю и передает ей свое движение. Но так как часть земли, приведенная в движение, содержит в себе в тысячу, например, раз более материи, чем сколько заключается в камне, то, передав ей свое движение, он может сообщить только в тысячу раз меньшую скорость» [8, III, с. 465].

Введение понятия количества движения mv, как мы видим, тоже обязано Декарту, хотя этот факт часто замалчивался творцами новой науки, и в первую очередь Ньютоном, который хотя и широко им пользовался, но ни разу не упомянул о его картезианском происхождении; впрочем, нелишне здесь напомнить о том, что Ньютон отвергал представление о сохранении количества движения. Вообще, идея о существовании законов сохранения имеет наиболее прочные корни во французской науке (в этом смысле Гюйгенс ее прямой наследник), а система Ньютона, как бы внушительна и плодотворна она ни была, испытывает в ней ощутимый недостаток. Заслуга XVIII в. в том и состояла, что механика Ньютона была существенным образом переформулирована (на языке бесконечно малых) и дополнена, причем законы сохранения явились одним из важнейших дополнений.

Можно не сомневаться в том, что открытие Декартом двух фундаментальных физических законов — закона инерции и закона сохранения количества движения — оказало сильнейшее влияние на все последующее развитие науки, важность этого события трудно переоценить, даже имея в виду неправильную теорию удара, выведенную Декартом на основе этих законов. Как интересно отмечает А. Койре, представление о полной онтологической эквивалентности покоя и движения привело Декарта к неправдоподобной трактовке покоя как сопротивления (антидвижения) и заставило его приписать телу в состоянии покоя некую силу сопротивления (количество покоя), аналогичную и противоположную движущей силе тела (количеству движения), находящегося в движении. Койре говорит, что, именно исходя из такого представления, Декарт со всей присущей ему логикой выводит абсолютно неверный закон удара, согласно которому, с какой бы скоростью ни двигалось меньшее тело, оно не способно привести в движение большее тело, поскольку оно не может преодолеть значительно большую силу его сопротивления [9, с. 219].

Нетрудно видеть, что такой вывод находится в противоречии с процитированным выше утверждением Декарта, убеждающим нас, что камень, падающий на землю, передает ей свое движение, чем приводит ее в колебание. Непонятно, каким образом Декарт мог оставить это очевидное противоречие неразрешенным, ведь в данном случае речь шла не о несоответствии теории и опыта (что Декарта не слишком заботило), а о несоответствии двух логических концепций (что было для него принципиально важным). Что же касается того факта, что законы удара, предложенные Декартом, очевидно противоречили опыту, то Декарт на это отвечал, что его «доказательства настолько достоверны, что хотя бы опыт и показал обратное, однако мы вынуждены были бы придавать нашему разуму больше веры, нежели нашим чувствам» [2, 496].,

Хотя Декарт в этой фразе использует сослагательное наклонение, как бы лишь предвидя возможность несоответствия, на самом деле он уже тогда был хорошо осведомлен о том, что его утверждения не согласуются с экспериментом, и поэтому он тут же предпринимает попытку свести концы с концами. Он говорит, что его выводы справедливы лишь в идеальных условиях, предполагающих, что тела взаимодействуют в пустоте, а сами они являются абсолютно твердыми. Но реально эти условия не выполняются: никакое тело не может быть совершенно твердым и все они вынуждены взаимодействовать в среде, заполненной материей. Именно влияние промежуточной среды, оказываемое на погруженные в нее тела, приводит к тому, что его законы удара не подтверждаются на опыте. Декарт продолжал настаивать на справедливости своих выводов, несмотря на все усиливавшуюся критику, и законы удара получили свою адекватную формулировку лишь в трудах физиков следующего поколения — в работах Гюйгенса, Рена и Валлиса.

Неудача декартовой теории удара не должна заслонять его 'великих достижений в механике — установления закона инерции и закона сохранения количества движения. Обычно эту неудачу относят за счет того, что Декарт не осознал векторного характера количества движения. Это действительно так, и для случая двух соударяющихся тел его закон может быть записан в виде

m1|u1| + m2|u2| = m1|v1| + m2|v2|.

Однако это отнюдь не означает, что Декарт не понимал векторного характера движения. Векторный характер скорости был ясен уже итальянским инженерам эпохи Возрождения, и, конечно, для Декарта направление скорости было существенной характеристикой движения. Но его попытки проникнуть в смысл векторного характера движения этим не ограничивались. Одним из важнейших понятий в его анализе движения является «конатус», который можно обозначить как стремление тела двигаться в данном направлении. По Декарту, это «стремление», или «тенденция» движения может реализоваться, а может и не реализовываться в действительном движении в зависимости от тех ограничений, которые на это движение накладываются. Он, например, утверждает, что, хотя в общем случае путь тела представляется криволинейной траекторией, «тем не менее каждая из частиц тела по отдельности стремится продолжать свое движение по прямой линии. Таким образом, их действие (action), т. е. склонность к движению, которой они обладают, отлично от их движения» [7, с. 173].

Далее Декарт поясняет: «Заставьте, например, колесо вращаться вокруг своей оси: все его части будут двигаться тогда по кругу, так как, будучи соединены друг с другом, они не могут перемещаться иначе; однако склонны они передвигаться не по кругу, а по прямой. Это ясно видно, когда одна из частиц его оторвется от других. Как только она очутится на свободе, движение ее перестает быть круговым и продолжается по прямой линии» [7, с. 174].

Было бы упрощенным трактовать декартовский конатус как мгновенную скорость. Скорее это некий эквивалент силы или импульса силы, как показывает следующее за предыдущим утверждение: «Камень не только летит совершенно прямо, выскочив из пращи, но и находясь на ней, все время давит на середину пращи и заставляет натягиваться веревку. Это совершенно ясно доказывает, что камень все время имеет склонность лететь по прямой линии и что по кругу он вращается лишь вынужденно» [7, с. 174].

Мы видим, что в этом отрывке конатус, натягивающий веревку, эквивалентен центробежной силе и направлен от центра по радиусу. Для нас здесь, кроме того, важно, что Декарт ясно заявляет о сведении всех криволинейных движений к прямолинейным (т. е. обратно тому, что было сделано Галилеем, пытавшимся свести все прямолинейные движения к круговым, что подготавливало основу для инфинитозимального анализа движений. В дальнейшем декартовское понятие конатуса как эквивалента силы широко использовалось Гюйгенсом в его механике и оптике.

Декарт стремился построить механическую модель мира, в которой все было объяснено, по крайней мере на качественном уровне, с помощью представлений механики. Он не считал возможным закон или явление, взятое из непосредственного наблюдения в природе, поставить на уровень аксиомы (что со времени Ньютона входит в практику физика-теоретика), а искал им объяснение в терминах «ясных и отчетливых идей». Ярким примером такого отношения является его объяснение тяготения. Предпринятая Ньютоном попытка постулировать закон тяготения в качестве основного закона природы, не сводимого к более понятным взаимодействиям, многими считалась неудовлетворительной и после выхода «Математических начал». Ньютон и сам был этим не вполне удовлетворен, большинство же ученых континента воспринимали его подход к проблеме как введение в науку «оккультных качеств». Задолго до появления «Математических начал» Декарт так высказывался по этому поводу: «Мы прибавим к нашим предположениям, если вам это угодно, что Бог не совершает в нашем мире никаких чудес» [7, с. 170]. И более конкретно: «То, что Галилей говорит относительно скорости падающих тел, не имеет основы — ему надо бы сказать, что такое тяжесть; если бы он понял ее природу, то увидел бы, что не существует пустого пространства» [6, II, с. 391].

Декарту кажется, что он может «сказать, что такое тяжесть» и «что он понял ее природу». В своем объяснении тяготения он оперирует с центробежной силой, показывая, что существование центробежной силы в пространстве, заполненном материей, необходимо вызывает центростремительную силу, которая и есть тяготение. Конечно, он не использует термина «центробежная сила», который лишь позднее был введен Гюйгенсом, как нет у него и «центростремительной силы» — термина, который впервые использовал Ньютон, но качественная картина от этого не меняется. Согласно Декарту, каждая планета окружена вихрем тонкой материи, и частицы тонкой материи (или эфира), участвуя в быстром вращательном движении, стремятся удалиться от центра вихря. Но поскольку материя заполняет все пространство во Вселенной и все пространство вокруг планеты (более того, пространство, по Декарту, тождественно материи), то, чтобы частицы тонкой материи переместились дальше от центра вихря, необходимо, чтобы частицы грубой материи, составляющие обычные весомые тела, переместились к его центру.

Чертеж из трактата «Мир», поясняющий сущность тяготения 

Говоря словами Декарта, «ни одна из частиц, находящихся в равновесии, не может ни подняться, ни понизиться без того, чтобы другая не сделала в тот же момент противоположного; всегда перевес на одной стороне влечет перевес на другой. Так, например, камень Р противостоит в точности равному его величине количеству воздуха, находящегося над поясняющий сущность тяготения ним. Место этого воздуха он должен будет занять в случае, если он удалится сильнее от центра T, а воздух этот неизбежно должен опускаться по мере поднимания камня. Точно так же камень этот противостоит другому подобному количеству воздуха, находящемуся под ним. Место этого воздуха он должен будет занять, если станет приближаться к центру; подъем этого воздуха является необходимым условием того, чтобы камень опускался» [7, с. 208]. Но, поскольку частицы тонкой материи вращаются гораздо быстрее, чем Земля, к которой принадлежат и камень, и воздух, а «материя неба более располагает силой, заставляющей камень Р опускаться к T, чем силой, заставляющей опускаться туда окружающий его воздух» [7, с. 211], в результате камень будет падать на землю.

В этом объяснении Декарта есть одна тонкость, заключающаяся в только что процитированной фразе. Это высказывание предполагает, что воздух, занимающий больший объем, а следовательно, большую поверхность по сравнению с камнем равного количества материи, обладает большим сопротивлением по отношению к движению к центру (по сравнению с камнем), и отсюда тяжесть получается пропорциональной не только массе, но и поверхности тела. Эта черта декартовой теории тяготения интересна для нас потому, что она характерна для представлений о природе тяготения, принадлежащих Ломоносову, который, очевидно, испытал сильнейшее влияние картезианских взглядов. А Декарт заключает свой анализ таким образом: «Так как этой материи в камне значительно больше, чем в количестве воздуха равного с ним объема, то он должен быть толкаем к Т значительно сильнее, чем этот воздух» [7, с. 211].

Объяснение процесса удара и сущности тяготения принадлежит к ошибочным теориям Декарта, хотя они и оказали большое влияние на формирование правильных представлений об этих явлениях.

Теперь остановимся еще на одной трактовке механических понятий, содержащейся в сочинениях Декарта, а именно на понятии относительности места и движения. Согласно Декарту (и в противоположность Ньютону), не существует абсолютной системы отсчета, а следовательно, и абсолютного движения. Декарт говорит, что «в мире нет неподвижных точек» и что «ни для какой вещи в мире нет твердого и постоянного места, помимо того, которое определяетcя нашим мышлением». Поскольку в его картине мира материя эквивалентна пространству, а материальное тело — части пространства, которую оно занимает, то «самые названия «место» и «пространство» не обозначают ничего, действительно отличного от тела, про которое говорят, что оно «занимает место»; ими обозначаются лишь его величина, фигура и положение среди других тел» [2, с. 471].

Чертеж из книги «Начала философии»

Итак, уже само «место» есть относительное, а не абсолютное понятие, а поскольку движение в общепринятом смысле есть не что иное, как «действие, посредством которого данное тело переходит с одного места на другое» [2, с. 477], то и движение как таковое становится понятием относительным. Более того, попытка Декарта каким-то образом индивидуализировать тело, обусловить возможность проведения с ним эксперимента приводит его к необходимости дать еще одно определение движения, еще более «релятивировать» это понятие. Так, Декарт наряду с движением в общепринятом смысле (le mouvement pris selon Fusage commun) вводит понятие движения в подлинном смысле слова (le mouvement proprement dit), которое есть «перемещение одной части материи, или одного тела, из соседства тех тел, которые непосредственно его касаются и которые мы рассматриваем как находящиеся в покое, в соседство других тел» [2, с. 477].

Понятие покоя, таким образом, тоже становится относительным — покой мыслится локальным, тогда как в целом покоящиеся тела (или места) в действительности непременно находятся в движении, именно поэтому «движение и покой — лишь два различных модуса» [2, с. 478] движущегося тела. В этом смысле покой неотличим от движения, «ибо перемещение взаимно, и нельзя мыслить тело АВ переходящим из соседства с телом СО, не подразумевая вместе с тем перехода СО из соседства с АВ и не имея в виду, что и для одного, и для другого требуется одинаковое действие. Поэтому, если мы хотим приписать движению природу, которую можно было бы рассматривать в отдельности, безотносительно к другим вещам, то в случае перемещения двух смежных тел — одного в одну сторону, другого в другую, в силу чего тела взаимно отдаляются,— мы не затруднимся сказать, что в одном теле столько же движения, сколько в другом» [2, с. 479-480].

Взгляд на движение как на относительное понятие, помимо чисто физических приложений, имел для Декарта еще и ту привлекательность, что избавлял его, как ему казалось, от опасности быть осужденным церковью за свою приверженность к коперниканству, как это произошло с Галилеем. Койре обратил на этот момент особое внимание, подчеркивая, что новое определение движения позволило Декарту утверждать, «что, хотя Земля носится в своем вихре и посредством этого своего вихря вокруг Солнца, в действительности она не движется. Следовательно, утверждал Декарт, осуждение его не касается: он не приписывал Земле движение, наоборот, он утверждал, что она покоится. Неудивительно, что эта столь субтильная и в то же время столь наивная попытка отмежеваться от Коперника и Галилея, предпринятая (как его именовал Боссюэ) очень осторожным философом, никого не обманула, кроме разве что нескольких современных историков. Тем не менее она удалась» [9, с. 221]. «Начала философии» были включены в «Индекс запрещенных книг» лишь в 1664 г., и не по причине явного коперниканства Декарта, а из-за того, что его понятие материи было несовместимо с догматом пресуществления.

Оптика Декарта примыкает к его механике, вместе с которой она входит как основная составная часть в систему мира в целом. Недаром главное сочинение Декарта, нежно им лелеемое в лучшую нору жизни и оставшееся неопубликованным, носит характерное название: «Мир, или трактат о свете». В этой работе он с самого начала пытается представить свет как естественный повод поговорить и порассуждать о множестве вещей, которые на первый взгляд со светом никак не связаны. Заявив, что из имеющихся в мире тел ему известно «лишь только два вида таких, которые обладают светом, именно — звезды и пламя или огонь» [7, с. 133], Декарт переходит к рассмотрению свойств пламени, твердости и жидкости, рассуждает о возможности существования пустоты, о числе элементов и их качествах, о законах движения и, наконец, переходит к описанию устройства Вселенной. В частности, он полагает, что вся существующая в природе материя состоит из частиц трех типов, различающихся по величине. Самые тонкие частицы образуют так называемый первый элемент, или элемент огня, более крупные частицы принадлежат второму элементу — элементу воздуха, и наконец, наиболее грубые частицы составляют третий элемент — элемент земли. Не вполне понятно, как эти атомистические представления уживаются с картезианским принципом отсутствия пустоты и бесконечной делимости материи. По этому поводу Декарт лишь замечает, «что элемент огня можно назвать наиболее тонкой и всюду проникающей жидкостью, какая только существует на свете» [7, с. 152]. Затем он приступает к обсуждению света как такового.

Декартова теория света была в своей основе корпускулярной, т. е. свет — это действие, производимое частицами второго элемента; он говорит даже, что «свет можно также хорошо представить посредством движения» [7, с. 136]. Но на самом деле свет, по Декарту, был не столько движением частиц, сколько «конатусом» — стремлением к движению, импульсом силы, распространяющимся мгновенно и прямолинейно в среде тонких частиц второго элемента, заполняющего промежутки между видимыми макротелами.

Для понимания его теории идея конатуса особенно важна (кстати, эту же идею впоследствии использовал Гюйгенс); «... прежде всего нужно подчеркнуть, что, когда я говорю, что некоторое тело стремится в такую-то сторону, я не хочу, чтобы при этом думали, будто бы тело это имеет в себе какую-то мысль или волю, влекущую его туда. Я хочу сказать только, что это тело склонно двигаться в известном направлении, причем безразлично, движется оно туда на самом деле или же ему мешает в этом какое-нибудь другое тело» [7, с. 216]. Итак, не движение, не перемещение частиц, а передача их стремления двигаться представляет собой свет. Давление частиц на глаз и вызывает ощущение света, поэтому моделью света может служить палка слепого, которая ощупывает предметы и, натыкаясь на них, мгновенно передает об этом информацию — импульс. Зрение, таким образом, превращается в осязание, прикосновение, давление, механическое понятие.

Замечателен перечень свойств света как «действия, посредством которого могут быть толкаемы глаза людей» [7, с. 230]:

«Основными свойствами света являются следующие: 1) он распространяется во все стороны вокруг тел, называемых светящимися, 2) на всевозможные расстояния, 3) мгновенно и 4) обычно по прямым линиям, называемым лучами света; 5) некоторые из этих лучей, исходя из различных точек, могут собираться в одну и ту же или 6) исходя из одной точки, расходиться в различные пункты; 7) исходя из разных точек и идя к разным точкам, лучи эти могут проходить через одну и ту же, не мешая друг другу, 8) но иногда, когда сила их значительно неравна и превосходство одних над другими в этом отношении весьма велико, они могут мешать друг другу; 9) направление этих лучей может быть изменено посредством отражения или 10) преломления; 11) сила их может быть увеличена или 12) уменьшена благодаря различным положениям или качествам передающей их материи» [7, с. 231].

Как следует из свойства 8), Декарт не имел ясного понятия о том, что сегодня называют принципом суперпозиции, т. е. в данном случае, что пересекающиеся световые лучи не влияют друг на друга, хотя в объяснении предыдущего свойства он указывает, что «каждая из частиц второго элемента способна получать в одно и то же время несколько различных движений» [7, с. 234]. Эта двойственность позиции Декарта, которая выражается уже в том, что он постулирует для света два противоположных свойства — седьмое и восьмое, определяется тем, что его теория занимает промежуточное положение между корпускулярной теорией истечения и волновой теорией. И хотя главным материальным агентом у него является частица второго элемента, свет не есть движение этих частиц, а лишь передача склонности к движению от частицы к частице. Но, поскольку наглядно объяснить, что такое этот конатус непросто, Декарт прибегает к вполне наглядным чисто корпускулярным аналогиям (в данном случае к пересекающимся трубам, по которым движется воздух), и сразу многообещающая тонкость его представлений утрачивается.

Вообще, физическая оптика Декарта весьма своеобразна, но, несмотря на ошибочность многих представлений, она удивительным образом сработала при выводе двух фундаментальных положений: закона преломления и отражения, а также объяснения образования радуги. Строго говоря, слово «сработала» здесь не вполне уместно, потому что в действительности Декарт не выводил закона преломления из своих качественных представлений, он лишь впоследствии приспособил свою теорию для объяснения уже найденного им соотношения. Каким же именно образом он к нему пришел, до сих пор остается загадкой. Долгое время авторство Декарта в установлении закона преломления вызывало сомнения, многие ученые, в том числе Христиан Гюйгенс, обвиняли его в плагиате и заимствовании формулировки закона у Виллеброрда Снелля, который открыл его в 1621 г. Однако это открытие оставалось неизвестным вплоть до 1632 г., когда Голиус обнаружил рукопись Снелля, содержащую этот закон. Тем не менее сегодня существуют веские доказательства того, что Декарт независимо от Снелля открыл закон преломления в 1626 г., когда друг Декарта Клод Мидорж изготовил для него гиперболическую линзу, лишенную сферической аберрации и рассчитанную исходя из декартова закона синусов для преломления.

В 1637 г. в «Диоптрике» Декарт дает уже пространственное доказательство закона преломления, основанное прежде всего на его двух законах механики, а именно на принципе инерции и на законе сохранения количества движения. Несмотря на то что (как уже говорилось выше) количество движения он понимал как скалярную величину, конатус, или стремление имело у него всегда векторный характер и могло быть разложено на компоненты.

Для вывода своего закона Декарт моделирует свет с помощью теннисного мяча, падающего на плоскую поверхность. Сначала он выводит закон отражения и для этого представляет, что мяч падает на поверхность СЕ, которая мыслится идеально твердой и неподвижной. Предположим, говорит Декарт, что теннисный мяч, посланный ракеткой в точке А, двигается равномерно по линии АВ и попадает на поверхность СЕ в точке В. Разложим его стремление на две составляющие — АС, которая перпендикулярна поверхности, и АН, ей параллельную. Так как мяч, ударившись о поверхность СЕ, не сообщит ей никакого движения, скорость его после отскока не изменится по величине, и он по прошествии времени, равному тому, которое ему потребовалось для прохождения отрезка АВ, окажется где-то на окружности, описанной радиусом АВ вокруг точки В. После отскока составляющая стремления АН, параллельная поверхности СЕ, останется без изменений (AH = HF), а вертикальная составляющая АС изменит свой знак на противоположный. Итак, горизонтальная составляющая определит прямую FE, находящуюся от вертикали НВ на расстоянии HF. Ясно, что по прошествии нужного времени мяч должен будет находиться на пересечении этой прямой с окружностью, т. е. в точке F. Отсюда с необходимостью следует, что угол падения АВН равен углу отражение HBF.

К закону отражения Декарта

К закону преломления Декарта 

Закон отражения был известен давно, и для Декарта его доказательство лишь прелюдия к объяснению явления преломления, действительно нового и неизвестного. Но для этого он коренным образом изменяет свою модель (для него — как позднее для Максвелла — модель не столько картина реальности, сколько способ понимания, поэтому он и может изменяться). Теперь поверхность СЕ уже не представляется абсолютно твердой и неподвижной, мяч не только может проходить через нее, но при этом он необходимо теряет часть своего движения, т. е. скорости. Если отношение скоростей до и после прохождения поверхности СЕ раздела двух сред равно р : q, то время, потребное для мяча, чтобы достичь окружности, описанной из В радиусом АВ (т. е. чтобы пройти путь, равный АВ), будет относиться к первоначальному так же, как р : q (поскольку движение предполагается в обоих случаях равномерным). Затем Декарт снова находит величину горизонтальной компоненты конатуса; очевидно, что после прохождения границы раздела эта компонента будет иметь большую величину, чем до столкновения с границей, потому что мячу придется пройти больший путь по горизонтали, прежде чем достичь круга, описанного радиусом АВ. И снова размеры горизонтальной компоненты после и до столкновения будут находиться в отношении р : q, т. е. FH:АН = р: q, тогда мяч достигнет круга в точке I.

В этом пункте Декарт снова видоизменяет свою модель. Дело в том, что согласно его теории света скорость света увеличивается с ростом плотности среды, в которой распространяется свет. Буквально Декарт утверждает, что свет проходит сквозь более плотные среды с большей легкостью, а это нельзя интерпретировать иначе, как лишь увеличением его скорости. (Это утверждение очевидно противоречит его постулату о мгновенном распространении света. По-видимому, Гюйгенс именно поэтому отказывался понимать теорию света Декарта.) Кроме того, прямые эксперименты показывали, что луч света в более плотной среде отклоняется по направлению к вертикали, а не к горизонтали. Поэтому Декарту необходимо, чтобы теннисный мяч в его модели не уменьшал свою скорость, попадая в более плотную среду, а, наоборот, ее увеличивал. Чтобы удовлетворить этому условию, он представляет, будто бы мяч при прохождении границы раздела приобретает добавочную скорость, как если бы его снова ударили ракеткой. Закон преломления получается вне зависимости от того, больше или меньше единицы отношение р : q, и, следовательно, для самого вывода закона последнее, видоизменение модели не нужно. В самом деле

Вывод закона преломления Декартом дает замечательный пример довольно часто встречающегося в истории науки случая, когда правильные выводы следуют из целиком неправильных предпосылок; это еще раз подтверждает справедливость слов Джойса, что ошибки гения являются вратами в открытие.

Зная закон преломления, Декарту не составляло большого труда дать объяснение происхождения радуги. Рассматривая преломление лучей света в сферическом сосуде, заполненном водой, он рассчитал радиусы главной и побочной радуг.