1

We use cookies. Read the Privacy and Cookie Policy

С древнейших времен люди пытались осмыслить устройство космоса и движение планет. Ко времени Коперника взгляды на мироздание основывались на представлениях Аристотеля и кинематической модели Птолемея. Согласно Аристотелю, космос имеет шаровидную форму, он вечен и неподвижен, за его пределами не существует ни времени, ни пространства. В центре его располагается Земля, а затем Луна и другие планеты. Он подразделяется на две области, резко отличающиеся друг от друга — подлунную, или земную, область и надлунную. Соответственно отличаются и законы, управляющие миром внутри лунной сферы и вне ее. Земной мир представляется областью всевозможных изменений: возникновения, роста и гибели, в надлунной же сфере все неизменно и постоянно, там ничего не может ни возникать, ни уничтожаться. Для небесного мира характерны лишь круговые равномерные движения, поскольку окружность является наиболее совершенной кривой, так же как сфера — самым совершенным телом. Так как для Аристотеля наличие пустоты было абсолютно неприемлемо, он наполнил надлунную область эфиром, невесомым пятым элементом, в то время как земные материальные тела у него состоят из остальных четырех элементов — воздуха, воды, земли и огня.

Картина небесных движений дана Аристотелем чисто качественно: весь космос представляет собой конструкцию из концентрических сфер, имеющих эфирную природу; внешняя сфера является сферой неподвижных звезд, которая вращается со скоростью 24 часа в сутки и служит причиной движения большинства остальных 55 сфер, имеющих различные скорости и различные направления вращения. Такое количество сфер потребовалось Аристотелю потому, что он использовал для объяснения видимого движения планет гомоцентрическую схему Евдокса — Каллиппа. Согласно этой схеме, сложное движение планеты на видимом небосводе складывалось из нескольких круговых движений, поэтому каждой планете придавалось некоторое число сфер по числу движений, необходимых для получения результирующего движения; ось каждой последующей внутренней сферы жестко фиксировалась внутри предыдущей, а планета прикреплялась к самой последней внутренней сфере. Число сфер, управляющих движением планеты в модели Евдокса — Каллиппа, варьировалось от трех до пяти, но, поскольку Аристотель поставил движение планет в зависимость от вращения самой внешней сферы неподвижных звезд, он пришел к необходимости добавить для каждой из планет по нескольку «нейтрализующих» сфер, которые исключали бы влияние вращения предыдущей, внешней, планеты на последующую, внутреннюю. Таким образом, общее число сфер возросло от 27 (у Евдокса) или 34 (у Каллиппа) до 56 (включая сферу неподвижных звезд) у Аристотеля.

В кинематической схеме Птолемея сохранены все главные черты аристотелевской иерархии, но изменена модель получения сложных движений. Вместо набора гомоцентрических сфер Птолемей использовал идею Гиппарха, наиболее полно разработавшего теорию эпициклов, которая рассматривалась как альтернатива гомоцентрической модели уже в III в. до н. э. благодаря главным образом трудам Аполлония Пергского. Согласно этой теории, движение планеты вокруг Земли можно представить как сумму двух движений: планета вращалась по кругу, называемому эпициклом, в то время как центр эпицикла совершал движение вокруг Земли по кругу большего радиуса. В частности, им было установлено, что если эти вращения совершаются в противоположных направлениях, а периоды вращений совпадают, то действительной орбитой небесного тела будет окружность, центр которой будет уже не совпадать с центром Земли. Гиппарх назвал такую орбиту эксцентром и, рассматривая движение Солнца вокруг Земли, объяснил с его помощью разницу в продолжительности времен года.

Клавдий Птолемей использовал представления Гиппарха для того, чтобы описать с помощью эпициклов и эксцентра полную картину движения небесных тел. Ему предстояло решить весьма трудную проблему, в первую очередь потому, что сложное движение планет, о котором говорилось выше, включало в себя две существенные нерегулярности: во-первых, скорость перемещения планет по видимому небосводу была неравномерной, во-вторых, планеты совершали то прямые, то попятные движения, т. е., грубо говоря, выписывали петли. Теперь нам известно, что первая нерегулярность обусловлена эллиптической формой орбиты, а вторая тем, что наблюдение происходит с движущейся Земли.

Проблема была решена Птолемеем в его главном труде, носившем в оригинале название «Математическая система» и определившем дальнейшее развитие астрономии на последующие тысячу с лишним лет. По-видимому, в период упадка александрийской школы греческий оригинал был утерян, сохранился только арабский перевод, который затем, уже в XII в., был переведен на латинский. Поэтому книга Птолемея дошла до нас под арабским латинизированным названием «Альмагест» («Величайший»). Итак, в «Альмагесте» дается следующая модель мироздания: в центре Вселенной помещается неподвижная Земля. Ближайшей планетой к Земле является Луна, а затем следуют Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн. Такой порядок планет объясняется тем, что Птолемей считал, что, чем быстрее движется планета, тем ближе к Земле она расположена. Планеты вращаются вокруг Земли по круговым орбитам — деферентам и в то же самое время совершают движение по малым кругам — эпициклам. Точнее говоря, планеты вращаются по эпициклам, а центр эпицикла совершает круговое движение вокруг Земли по деференту. При помощи комбинации эпициклов и деферентов Птолемеем была объяснена нерегулярность, возникающая в результате движения Земли, т. е. видимые петлеобразные пути планет. Изменения скорости движения планет обусловливались, как и прежде у Гиппарха, введением эксцентра, впрочем, конструкция, связанная с этим Понятием, также подверглась у Птолемея усложнению.

Движение планеты по Птолемею

Для того чтобы модель соответствовала данным наблюдений, Птолемею пришлось Проделать колоссальную работу: во-первых, для уточнения положений планет он выполнил большое число Наблюдений, во-вторых, ему было необходимо рассчитать размеры конструкции и скорости движения планет в своей модели как для эпицикла, так и для деферента. При этом оказалось необходимым ввести в конструкцию еще одно новое понятие «эквант». Эквантом называлась точка, расположенная на диаметре деферента, проходящем через Землю; согласие между теорией и наблюдением можно было получить только в том случае, если движение центра эпицикла по деференту выглядело равномерным из экванта, а не из центра деферента, а каким образом Птолемей пришел к этой идее — неизвестно.

Птолемей в процессе разработки своей системы столкнулся и со многими другими трудностями, связанными с наличием процессии — явления, отмеченного еще Гиппархом и состоящего в медленном смещении неподвижных звезд, а также с необходимостью учитывать угол наклона плоскости эпицикла по отношению к плоскости деферента и т. п. Но как бы то ни было, теория Птолемея давала вполне замечательное по тем временам совпадение теоретических предсказаний и данных наблюдения, особенно для трех внешних планет — Марса, Юпитера и Сатурна. Представления Аристотеля о строении космоса и кинематическая модель Птолемея в период Средневековья были увязаны друг с другом, так что строение Вселенной представлялось в следующем виде. В центре мира помещается неподвижная Земля, которую окружают семь планетарных сфер — Луны, Меркурия, Венеры, Марса, Юпитера и Сатурна. Внутри каждой из них определенная планета движется по соответствующему эпициклу и деференту, а внешней по отношению ко всем планетарным сферам является восьмая — сфера неподвижных звезд, делающая полный оборот за 24 часа. Иногда к восьмой сфере в картине мира прибавляли еще и девятую, которая была ответственна за прецессионное движение и совершала полный оборот за 36 тысяч лет.

Итак, повторим, что система Птолемея позволила с достаточной точностью предсказывать положения планет на небосводе, а также моменты равноденствий и затмений. С другой стороны, эта геоцентрическая система в высшей степени устраивала католическую церковь, так как она могла служить философской основой для представления о человеке как венце божественного творения и потому помещенного в центр мироздания.

Однако по мере развития цивилизации требования к точности астрономических предсказаний все более возрастали, приходилось вводить добавочные эпициклы, чтобы согласовать теорию с наблюдением, а это чрезмерно усложняло и без того достаточно громоздкие расчеты. Уже в XIII в. кастильский король Альфонсо X, имея в виду эти трудности, высказывался в таком духе, что даже он мог бы дать Богу при создании мира совет, как его устроить попроще.

В середине XV в. наступает эпоха великих географических открытий. Развитие торговли неизбежно приводит к стремлению расширить рынки и освоить новые территории, а прогресс мореплавания требует улучшения астрономических приборов для ориентировки в океане, а также составления таблиц, по которым можно было бы определять координаты корабля, причем главной трудностью оставалось определение широты. В течение трех веков для ориентировки корабля, как и вообще для определения положения планет на небесной сфере, использовались альфонсинские таблицы, составленные по указанию Альфонсо X еще в 1252 г. В 1474 г. в Нюрнберге были напечатаны «Эфемериды» Региомонтана, а следующее их издание содержало также и таблицы для определения широты места. Региомонтан, а также его учитель Георг Пурбах занимают одно из ключевых мест в истории науки в период, предшествующий научной революции. Их деятельность была тесно связана с двумя мощными общественными факторами развития науки — реформой календаря и великими географическими открытиями.

Вселенная по Птолемею 

Георга Пурбаха (вернее, Пойрбаха) известный историк физики Ф. Розенбергер называет «родоначальником знаменитых немецких астрономов». Наиболее замечательное произведение Пурбаха — «Новая теория планет», напечатанная в пятнадцати выпусках, начиная с 1460 г. Это сочинение представляет собой наиболее компетентное изложение греческой астрономии, причем там впервые была сделана попытка соединить физику аристотелевского космоса с кинематикой планетных движений Птолемея, т. е. представление о твердых гомоцентрических сферах с теорией эпициклов. Но, по-видимому, самое замечательное достижение Пурбаха в астрономии связано с пропагандой и разработкой теории Птолемея, и в том числе с переводом «Альмагеста». Как говорилось выше, впервые в Европе «Альмагест» стал известен в XII в. благодаря переводу с арабского, сделанного Герардом Кремонским. Этот перевод, однако, не получил большого распространения. В XV в. нашелся греческий текст сочинения Птолемея, но перевод, сделанный в начале века Георгием Трапезундским, оказался неудовлетворительным.

Неудовлетворительность перевода Георгия Трапезундского была ясна уже его современникам. Архиепископ Никеи Виссарион, фактически принявший католичество на Флорентийском «объединительном» соборе (за что он был возведен папой в сан кардинала), переехал в Рим и привез с собой принадлежащий ему греческий текст «Альмагеста», а затем обратился к Пурбаху с предложением о новом переводе. К несчастью, Пурбах не знал ни арабского, ни греческого и до сих пор поправлял прежние переводы, исходя из своих астрономических познаний. Но теперь Виссарион предложил Пурбаху поехать в Италию для изучения греческого, на что тот с радостью согласился. Однако внезапная смерть помешала Пурбаху исполнить свой замечательный замысел.

Тем не менее планируемый Пурбахом перевод «Альмагеста» все же был сделан благодаря трудам его ученика Региомонтана.

Иоганн Мюллер был родом из небольшого городка Кенигсберг в графстве Кобург, в средней Германии. По имени родного города он стал прозываться Региомонтаном. Двенадцатилетним мальчиком он поступил в Лейпцигский университет, а через три года переехал в Вену, где стал учеником, ближайшим сотрудником и другом Пурбаха, который завещал ему на смертном одре довести до конца перевод «Альмагеста». Так, в 1461 г. вместо Пурбаха в Рим поехал вместе с кардиналом Виссарионом Иоганн Мюллер. В Италии Региомонтан в совершенстве овладел греческим, и когда впоследствии в 1471 г. переехал в Нюрнберг, он принялся там за издание греческих математиков и астрономов в своем переводе с греческого на латынь. Состоятельный Бернард Вальтер, одаренный астроном и ученик Региомонтана, построил для своего учителя в Нюрнберге прекрасную обсерваторию, оснащенную замечательной мастерской, библиотекой и типографией. Типография представляла предмет особой гордости Региомонтана, так как он был также выдающимся инженером-печатником, сделавшим так много для усовершенствования типографского дела, что Петр Рамус считал его одним из изобретателей книгопечатания.

 РЕГИОМОНТАН

За несколько лет. проведенных в Нюрнберге. Региомонтан смог напечатать немногое — несколько своих переводов, «Теорию планет» Пурбаха и некоторые из своих собственных таблиц. Большинство же его сочинений было опубликовано лишь после его смерти, а многие были просто потеряны. В определенном отношении судьба Региомонтана напоминает судьбу его учителя Пурбаха. Как и Пурбах, Региомонтан был приглашен в Италию — папа Сикст IV задумал осуществить, наконец, реформу календаря и решил, что никто лучше Региомонтана не справится с этой задачей. Региомонтан, как и Пурбах, с радостью согласился. Возведенный папой в сан епископа регенсбургского, в 1475 г. он отправился в Рим, но осуществить задуманное ему было не суждено — в следующем году он умер.

Заслуги Региомонтана весьма значительны как в астрономии, так и в математике. Благодаря его трудам, например, тригонометрия превратилась из вспомогательной астрономической дисциплины в самостоятельную область математики. Им были составлены также многочисленные таблицы тригонометрических функций. Один из его астрономических трактатов, содержащий также тангенсы, вычисленные через каждый градус, — «Таблицы направлений и удалений», стал впоследствии настольной книгой Коперника, которой тот пользовался в течение всей своей жизни. Среди книг, которые Региомонтан сам смог опубликовать при жизни, особенно выделяются его «Эфемериды», изданные в 1474 или 1475 г. В них содержатся долготы Солнца, Луны и планет, а также широты Луны начиная с 1473 г. Все великие мореплаватели XV в. — Диас, Васко да Гама, Америго Веспуччи и Колумб — пользовались этими таблицами. С их помощью Веспуччи определил в 1499 г. долготу Венесуэлы, а Колумб, как это следует из записей в его корабельном журнале, прибегал к их помощи постоянно для определения долготы. Более того, благодаря таблицам Региомонтана Колумб смог поразить туземцев, сообщив им о предстоящем солнечном затмении 29 февраля 1504 г.

Региомонтан был также выдающимся астрономом-наблюдателем и изобретателем астрономических инструментов. Из его достижений отметим наблюдения кометы 1472 г., которые являются первыми наблюдениями комет в Европе. Впоследствии эта комета получила название кометы Галлея — по имени знаменитого английского астронома, который сумел по данным Региомонтана вычислить ее орбиту.

Наконец, следует сказать, что книга, написать которую завещал Региомонтану его учитель, вышла в свет в Венеции также после его смерти, в 1496 г., под заглавием «Иоганном Региомонтаном и Георгом Пурбахом составленные сокращения Клавдия Птолемея». Это был лучший учебник по птолемеевской астрономии, который когда-либо был написан, и именно по этой книге Коперник двадцать лет спустя познавал птолемеевскую мудрость.

«Альмагест» Птолемея в изложении Региомонтана (фронтиспис)

Америго Веспуччи в Америке (гравюра XVI в.)

Весь XV век прошел под знаком великих географических открытий, а первыми, кто начал исследование дальних морей, были португальцы. Младший сын португальского короля Жоао I, принц Энрико, прозванный Навигатором, был одним из довольно характерных для той эпохи титулованных особ, всерьез занимавшихся наукой. Хорошо знавший математику, астрономию и географию, Энрико снарядил на свои средства ряд экспедиций, которые в течение двадцати с лишним лет исследовали морской путь вдоль западного берега Африки. Более того, он основал обсерваторию в Сагрише, вблизи мыса Сен-Винцент. с целью получить более точные значения солнечного склонения. Греческая идея шарообразности Земли, и в частности представление Посидония, что, плывя на запад по Атлантическому океану, можно в конце концов достичь восточного берега Африки, стала все больше овладевать умами. В этом предприятии была и чисто практическая сторона — португальцы стремились найти морской путь в Индию, свободный от мусульманского вмешательства. Васко да Гама был первым, кто достиг берегов Индии, обогнув мыс Доброй Надежды в 1497 г., но еще привлекательней казалось проверить античную гипотезу. Это удалось сделать Христофору Колумбу.

Колумб родился на Лигурийском побережье Италии и, по-видимому, всегда мечтал быть моряком (он утверждал, например, что стал моряком в 14 лет, хотя существуют документы, говорящие о том, что до 20 лет он был ткачом, как и его отец). Тем не менее в юности он действительно плавал матросом на итальянских, а позднее на португальских торговых судах. Существует предание, что он обучался некоторое время в Падуанском университете, во всяком случае он хорошо знал латынь, был знаком с математикой и астрономией, а также был хорошим чертежником.

Карта Америки (вторая половина XVI в.)

Переехав в Лиссабон, Колумб познакомился там с Мартином Бехаймом, учеником Региомонтана, приглашенным в Португалию для содействия мореплаванию. Под руководством Бехайма Колумб более основательно изучил астрономию и познакомился с достижениями Региомонтана. Известно, в частности, что Бехайм научил его пользоваться изобретенной Региомонтаном астролябией, которая использовалась для определения высот Солнца. После долгих неудачных попыток заинтересовать сильных мира сего своим намерением достичь берегов Индии, плывя на запад (которое особенно ясно выкристаллизовалось у Колумба в результате переписки с итальянским астрономом Паоло Тосканелли), Колумб нашел, наконец, желанную поддержку у испанской королевы Изабеллы, и в августе 1492 г. три каравеллы Колумба отправились в путешествие. 12 октября того же года экспедиция достигла Багамских островов. Так был открыт Новый Свет, но сам Колумб никогда этого не узнал, думая, что он приплыл в Индию. Записи Колумба остались неизвестными современникам, и новый материк был назван по имени флорентийца Америго Веспуччи, первым описавшего неизвестный материк. 34 года спустя после открытия Колумба корабль Магеллана вернулся из кругосветного путешествия, неоспоримо доказав тем самым шарообразность Земли.

Новые горизонты, открывающиеся перед людьми, со всей безусловностью показали практическую важность науки — здесь ценность науки буквально выражалась в деньгах. Достаточно сказать, что торговля с Индией приносила более 80 % чистой прибыли, и португальцы снарядили с 1497 по 1507 г. 11 морских экспедиций в Индию. Но в это время практика еще далеко отставала от последних достижений теории. Если бы Колумб, например, смог хотя бы приблизительно определить долготу места, в которое он приплыл, ему бы и в голову не пришло считать Багамские острова Азией. С другой стороны, и сама теория постоянно нуждалась в улучшениях, чтобы удовлетворять нуждам практики. Ярким примером этому является история реформы календаря.

Наиболее известной астрономической ошибкой была погрешность календаря — действовавший повсеместно юлианский календарь предполагал длину года на 11 минут больше истинного. Эта, казалось бы, небольшая погрешность дает лишние сутки каждые 128 лет, и в результате действительное время весеннего равноденствия перестало совпадать с календарным, а поэтому день празднования пасхи, отсчитываемый определенным образом от дня весеннего равноденствия, смещался все на более позднее время. Голоса с призывом к реформе календаря начали раздаваться с первой четверти XIV в., но еще в течение столетия ничего так сделано и не было. Мы помним, что Сикст IV в конце XV в. приглашал в Рим Региомонтана для того, чтобы сдвинуть дело с мертвой точки. Этому помешала смерть ученого. Но реформа календаря была отнюдь не легким делом даже для ученого ранга Региомонтана.

Исправление календаря содержало две главные трудности.

Прежде всего не была известна истинная величина тропического года. Во-вторых, как нам известно сейчас, но было неизвестно тогдашним ученым, истинная величина тропического года (промежуток времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия) не является постоянной, она уменьшается в геометрической прогрессии вследствие прецессионного движения небесного полюса. Кроме того, эта величина является дробной по отношению к числу суток, а для календаря необходимо, чтобы число суток в году обязательно было целым.

Итак, задача состояла не только в том, чтобы поправить юлианский календарь, приблизив дату весеннего равноденствия к 21 марта, но и в том, чтобы исключить — в действительности же — сделать минимальной возрастание разницы между календарной и истинной длительностью года. Если бы исходная разница между юлианским и средним солнечным годом оставалась неизменной, то ошибка достигла величины в одни солнечные средние сутки за время, чуть больше 130 лет. На самом деле ко времени григорианской реформы она нарастала со скоростью одни сутки за каждые 128,5 лет.

Проблема была решена никому неизвестным медиком из Перуджийского университета по имени Луиджи Лилио, который потратил более 10 лет на тщательную разработку своей реформы, но, к несчастью, так и не дожил до ее осуществления. После смерти Луиджи в 1476 г. его брат Антонио представил папе Григорию XIII написанный им трактат, озаглавленный «Краткое руководство нового плана восстановления календаря». После многочисленных обсуждений плана реформы духовными лицами и специалистами он был признан наилучшим и стал основой предполагаемого исправления календаря. Суть предложенного Лилио плана проста: в григорианском календаре число дополнительно вводимых в качестве поправок дней на 3 дня меньше, чем в юлианском, т. е. 97 дней на 400 лет вместо 100 дней на 400 лет (годы, кратные 100, в григорианском календаре не считаются високосными в отличие от юлианского).

Это означает, что средняя продолжительность года выбирается равной 365, 2425 суток. Откуда Лилио взял эту цифру — до сих пор остается загадкой. Если бы сама длина тропического года постепенно не уменьшалась, календарь, составленный по плану Лилио, давал бы ошибку в одни сутки лишь за 3550 лет, а поскольку эта длина уменьшается, такая ошибка будет наблюдаться за промежуток около 2000 лет.

Дальнейшая работа по исправлению календаря была проделана известным астрономом иезуитом Кристофом Клавием, который предложил сразу изъять накопившуюся разницу в 10 дней и день 5 октября 1582 г. считать 15-м октября. Переход на новую систему летосчисления был узаконен папской буллой от 24 февраля 1582 г., предписывавшей всем христианам по всей Европе принять григорианский календарь по крайней мере со следующего года.

История с исправлением календаря показывает, что и в основах астрономии имелись существенные пробелы, на что указывал уже Коперник, говоря, что астрономы не могут себя считать компетентными, если не могут даже определить истинную величину тропического года, т. е. тот самый базис, на котором основывается кинематика небесных движений.

Пурбах и Региомонтан были последними рыцарями птолемеевского царства; к началу XVI в. одинаково чувствовалась как недостаточность теории, так и необходимость в более точных и всеобъемлющих экспериментальных данных. Это объяснялось несовершенством измерительных приборов; например, чтобы предсказать появление Марса в данном месте с точностью в один час, первоначальные измерения должны были быть сделаны с точностью в 2 дуговые минуты, чего было абсолютно невозможно достичь с помощью астрономических инструментов того времени — до изобретения телескопа цена деления большой астролябии не могла быть сделана больше чем 5 минут {1, с. 17}.

Наиболее отчетливо кризисная ситуация в астрономии описана Коперником в его предисловии к книге «О вращении небесных сфер»: «…я ничем иным не был приведен к мысли придумать иной способ вычисления движений небесных тел, как только тем обстоятельством, что относительно исследований этих движений математики не согласны между собою. Начать с того, что движения Солнца и Луны столь мало им известны, что они не в состоянии даже доказать и определить продолжительность года. Затем, при определении движений не только этих, но и других пяти блуждающих светил, они не употребляют ни одних и тех же одинаковых начал, ни одних и тех же предположений, ни одинаковых доказательств. Действительно, некоторые ученые употребляют круги, другие же эксцентрики и эпициклы, но тем не менее не достигают желаемого. Те, которые придерживаются кругов, хотя и могут доказать происхождение разнообразных движений из совокупности таких кругов, но выводы их не согласны с наблюдениями. Изобретатели эксцентренных кругов хотя и могут на этом основании вычислить большую часть видимых движений, но принуждены бывают допускать много такого, что кажется противным первоначальным правилам равномерного движения. Даже главного — вида мироздания и известную симметрию между частями его — они не в состоянии вывести на основании этой теории» {2, с. 12}.