7

We use cookies. Read the Privacy and Cookie Policy

Сразу после осуждения Галилея инквизицией в 1633 г. началась работа над новой книгой. Галилей провел несколько месяцев в Сиене по пути во Флоренцию, и здесь, по его собственным словам, он приступил к созданию трактата на совершенно новую тему, полного любопытных и полезных рассуждений. Через год работа была фактически закончена, о чем Галилей так писал своему венецианскому другу Фульдженцо Миканцио: «Трактат о движении, совершенно новый, полностью готов; но мой беспокойный ум не может воздержаться от того, чтобы не размышлять о нем снова и снова, тратя на это массу времени, потому что каждая новая мысль, которая мне приходит в голову, заставляет меня отбросить все прошлые открытия» [20, XVI, с. 163].

На самом деле законченная Галилеем книга, которую он продолжал править и дополнять, отнюдь не была «совершенно новой» — в ней излагались результаты прошлых его исследований, в основном относящиеся к падуанскому периоду, причем спектр там был очень широк — от статики и сопротивления материалов до законов движения маятника и законов падения. Галилей не пришел даже к окончательному решению, как назвать книгу, и она вышла в 1638 г. в Лейдене у Эльзевиров под тем заглавием, которое ей дал Луи Эльзевир. Галилею оно не нравилось, и он даже хотел его изменить, хотя до этого дело так и не дошло. На титульном листе последней книги Галилея стояло:

БЕСЕДЫ

и

МАТЕМАТИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА,

касающиеся двух новых

отраслей науки, относящихся

к механике и местному движению,

синьора

Галилео Галилея Линчео,

философа и первого математика

светлейшего великого герцога Тосканского

с приложением о центрах тяжести различных тел

Строение книги во многом напоминает «Диалог» — она написана в форме свободной дискуссии между знакомыми нам персонажами — Сальвиати, Сагредо и Симпличио, но имеется и различие: Третий и Четвертый день «Бесед» представляют собой обсуждение старого трактата Галилея «О местном движении», написанного по-латыни, отрывки из которого читает вслух Сальвиати, и лишь обсуждение их ведется по-итальянски. Уже самим этим приемом Галилей хотел, по-видимому, подчеркнуть академический характер «Бесед», в отличие от «Диалога» его новая книга в гораздо большей степени адресовалась научному сообществу, чем широкой публике. И если он, поступая таким образом, имел в виду избежать нареканий со стороны духовенства, ему это полностью удалось. Как заметил по этому поводу С. Тимпанаро в предисловии ко второму тому собрания сочинений Галилея: «„Беседы” — книга не менее коперниканская, чем „Диалог". Теологи не осудили ее, потому что они ее не поняли» [23, II, с. 97].

Титульный лист «Бесед»

Две новые науки, обозначенные в заглавии, — это сопротивление материалов, которому посвящены в основном первые два дня (напомним, что главы называются у Галилея днями), и кинематика равноускоренного движения, которая является темой Третьего и Четвертого дней. Уже после смерти Галилея в книгу были включены еще две главы. Пятый день был опубликован в 1674 г. в книге ученика Галилея Винченцо Вивиани «Пятая книга „Начал" Евклида, или же Общее учение о пропорциях, рассматриваемое согласно Галилею и изложенное новым образом и впервые опубликованное Винченцо Вивиани, последним учеником Галилея, с приложениями, принадлежащими Галилею и Торричелли». Последняя глава, в которой обсуждается проблема удара, появилась как Шестой день в 1718 г. при переиздании сочинений Галилея во Флоренции. Существуют, однако, основания полагать, что сам Галилей намеревался вставить ее перед Пятым днем, что подтверждается также некоторыми сюжетными особенностями Четвертого, Пятого и Шестого дней.

Тема Первого дня значительно шире предмета, обозначенного в тексте книги, а именно «науки, касающейся сопротивления твердых тел разрушению». Главный вопрос — почему тела сопротивляются разрушению при растяжении и изгибе — не находит в этой главе определенного ответа, но зато он является поводом для обсуждения многих так или иначе примыкающих к нему проблем. Например, вопрос о сопротивлении предполагает рассмотрение причин связности тел, а они, в свою очередь,— анализ строения материи. Атомистические представления, положенные в основу такого анализа, заставляют Галилея перейти к проблеме дискретного и непрерывного и обсуждению структуры бесконечности. Здесь, в частности, им высказывается замечательная мысль, что мощность множества натуральных чисел равна мощности множества квадратов натуральных чисел — результат поразительный, если учесть, что теория множеств была создана лишь в XIX в. Георгом Кантором. Обсуждая строение материи, Галилей не может не коснуться проблемы пустоты и среды — здесь он опровергает взгляды Аристотеля относительно падения тел в пустоте, отсюда переходит к рассмотрению падения как такового и, наконец, к законам движения маятника.

Что же касается основной темы обсуждения, то результаты даются лишь в продолжение Второго дня. Наиболее интересным результатом является исследование сравнительной прочности на изгиб геометрически подобных стержней. Галилей, основываясь на предположении, что все усилия в зоне разлома являются растягивающими и распределенными равномерно по сечению,, пришел тем не менее к совершенно правильному выводу, что прочность стержня прямоугольного сечения пропорциональна ширине стержня и квадрату его высоты, а для круглого стержня она пропорциональна кубу диаметра.

Благодаря своим исследованиям, содержащимся в первых двух днях «Бесед», Галилей справедливо считается основателем науки о прочности материалов, но нас интересует сейчас другая линия его рассуждений, нашедшая развитие в следующих двух днях дискуссий, линия, связанная с разработкой нового учения о движении.

Именно в Первом дне закладываются основы триумфа математической кинематики Третьего дня. Здесь Галилей опровергает точку зрения Аристотеля на связь движения и существование пустоты. Вначале Симпличио формулирует утверждение Аристотеля, согласно которому существование движения противоречит допущению пустоты. Его доводы таковы: «Он (Аристотель) рассматривает два случая: один — движение тела различного веса в одинаковой среде, другой — движение одного и того же тела в различных средах. Относительно первого случая он утверждает, что тела различного веса движутся в одной и той же среде с различными скоростями, которые относятся между собой как веса тел... Относительно второго случая он принимает, что скорость движения одного и того же тела в различных средах различна и обратно пропорциональна степени густоты, или плотности, среды». Из этого второго положения следует уже знакомый нам вывод, что в пустоте тела «должны были бы передвигаться мгновенно, но мгновенное движение невозможно, поэтому вследствие движения невозможна пустота» [16, II, с. 164].

Галилей последовательно, шаг за шагом, опровергает доводы Аристотеля. Он начинает с того, что заявляет, что скорость падения не зависит от веса тела. В ответ на замечание Симпличио, что подобные утверждения должны иметь экспериментальную основу, Сагредо говорит: «Однако я, синьор Симпличио, который производил эти испытания, могу вас уверить, что пушечное ядро, весящее одну или две сотни фунтов, или даже больше, не достигнет земли быстрее, чем всего лишь на пядь впереди мушкетной пули, весящей всего полфунта, если они будут сброшены с высоты двухсот локтей» [20, VIII, с. 106].[13] Эта фраза вызывала недоумение многих историков, поскольку было непонятно, на какие испытания ссылается Галилей. Скорее всего, он и правда не проводил испытаний с телами данного веса, но наверняка те эксперименты, которые он ставил с наклонными плоскостями и движением маятника, вполне оправдывают это утверждение Сагредо. Этому служит подтверждением и вся логика дальнейшего мысленного эксперимента.

Итак, провозгласив, что скорость падения не зависит от веса тела (что противоречит первому доводу Аристотеля), он поясняет затем свой тезис в несколько этапов. Сперва он высказывает уже знакомую мысль, что тезис справедлив для тел равного удельного веса: «Если бы меньший (камень), положенный на большой камень той же плоскости, двигался бы медленнее (в процессе падения по отношению к большему камню той же плотности), то он замедлил бы отчасти движение большего; таким образом, целое двигалось бы медленнее, будучи больше своей части, что противно нашему положению. Выведем из всего этого, что тела большие и малые, имеющие одинаковый удельный вес, движутся с одинаковой скоростью» [16, II, с. 166].

Теперь Галилею нужно распространить свое правило и на тела разного веса; сделать это впрямую нельзя, поэтому ему приходится обратиться ко второму доводу Аристотеля, чтобы ввести в рассмотрение среду и в процессе этого рассмотрения разом покончить и с первым и со вторым доводом.

Галилей показывает, что утверждение Аристотеля: скорость падения в среде обратно пропорциональна ее плотности — ведет к логическому противоречию, ибо одно и то же тело (например, дерево) может падать в менее плотной среде (воздухе) и подниматься вверх в среде более плотной (воде) [16, II, с. 167—168]. А раз так, то именно среда, а вовсе не вес тела играет основную роль в вопросе о скорости падения. Логика мысленного эксперимента немедленно приводит Галилея к вопросу: что произойдет со скоростями падающих тел, если устранить вообще среду? «Что произойдет с различными движущимися телами различного веса в среде, сопротивление которой равняется нулю; при таких условиях всякую разницу в скорости, которая может обнаружиться, придется приписать единственно разнице в весе» [16, II с. 172].

Дальнейший ход рассуждений Галилея полностью аналогичен работе современного физика, стремящегося выделить феномен в чистом виде, отбросить второстепенные факторы и приблизить условия опыта к идеальным: «Для того чтобы доказать требуемое, необходимо было бы пространство, совершенно лишенное воздуха или какой бы то ни было другой материи, хотя бы самой тонкой и податливой. Так как подобного пространства мы не имеем, то станем наблюдать, что происходит в средах, более податливых, и сравнивать с тем, что наблюдается в средах, менее тонких и более сопротивляющихся. Если мы найдем действительно, что тела различного веса будут все менее и менее отличаться друг от друга по скорости падения, по мере того как последнее будет происходить в средах, представляющих все меньшее сопротивление, пока наконец в среде, наиболее легкой, хотя и не вовсе пустой, разница в скорости получится самой малой и почти незаметной, то отсюда с большой вероятностью можно будет заключить, что в пустоте скорость падения всех тел одинакова» [16, II, с. 172-173].

В этом отрывке замечательно также и то, что для науки оказывается необязательным достижение идеала на опыте — достаточно к нему приблизиться как можно ближе, и тогда доказательность утверждения следует с большой вероятностью. Если и можно в каком-то смысле говорить о платонизме Галилея, то это будет скорее платонизм наоборот: в рамках платоновской доктрины мир чувственно воспринимаемых вещей оказывается ложным, не соответствующим идеальному миру, который и есть подлинная реальность; для Галилея, напротив, мир ощущений это и есть реальный мир, который тем не менее допускает идеализацию. Говоря словами Сальвиати в «Диалоге», «наши рассуждения должны быть направлены на действительный мир (в оригинале: al mondo sensibile — на мир ощущений.— В.К.), а не на бумажный» [16, II, с. 211]. Нарисовав впечатляющую картину мысленного эксперимента, Галилей не проводит его, а лишь подробно рассказывает, как его можно провести. Мы не находим в дальнейшем обсуждении рассказа о том, как Галилей постепенно меняет плотность среды и измеряет соответственные скорости падающих тел. Вместо этого он останавливается на некоторых очевидных фактах, ссылку на которые считает, по-видимому, достаточной. Например, он указывает, что, наблюдая за падением шаров из свинца и слоновой кости в воздухе и в воде, легко заметить, что разница их скоростей в воде будет намного больше разницы скоростей в воздухе.

Но затем, чтобы подкрепить свой вывод, и без того кажущийся ему неоспоримым, он еще раз описывает опыт, который должен дать ответ на вопрос, зависит ли скорость падения от веса, но на этот раз он объясняет, каким образом опыт должен быть поставлен. Если просто бросать, скажем, с высокой башни шар из свинца и шар из пробки, то разница в скоростях падения будет чересчур велика из-за того, что пробковый шар будет испытывать слишком большое сопротивление воздуха, а если их бросать с небольшой высоты, разница будет неощутима. «Поэтому, — пишет Галилей,— я пришел к мысли повторить опыт с падением с малой высоты столько раз, чтобы, отмечая и складывая незначительные разницы, могущие обнаружиться во время достижения конца пути тяжелым и легким телом, получить в итоге разницу не только просто заметную, но и весьма заметную» [16, II, с. 181].

Галилей пытается избавиться от влияния среды посредством уменьшения скорости падения, но ему недостаточно для этого уменьшить высоту. «Затем, чтобы иметь дело с движением по возможности медленным, при котором уменьшается сопротивление среды, изменяющее явление, обусловливаемое простой силой тяжести, я придумал заставлять тело двигаться по наклонной плоскости, поставленной под небольшим углом к горизонту; при таком движении совершенно так же, как и при отвесном падении, должна обнаружиться разница, происходящая от веса. Идя далее, я захотел освободиться от того сопротивления, которое обусловливается соприкосновением движущихся тел с наклонной плоскостью. Для этого я взял в конце концов два шара — один из свинца, другой — из пробки, причем первый был в сто раз тяжелее второго, и прикрепил и подвесил их на двух одинаковых тонких нитях длиной в четыре или пять локтей; когда я затем выводил тот и другой шарик из отвесного положения и отпускал их одновременно, то они начинали двигаться по дуге круга одного и того же радиуса, переходили через отвес, возвращались тем же путем обратно и т. д.; после того, как шарики производили сто качаний туда и обратно, становилось ясным, что тяжелый движется столь согласованно с легким, что не только после ста, но после тысячи качаний не обнаруживается ни малейшей разницы во времени, и движение обоих происходит совершенно одинаково» [16, II, с. 181].

Итак, Галилей, наконец, дает полное доказательство того, что падение тела не зависит от веса тела. В этом доказательстве все вызывает восхищение: и сам метод постепенного поэтапного устранения помех, и простота конечного опыта, и более всего — сам результат! Ведь то, что получил Галилей в конце концов — это закон изохронизма маятника, гласящий, что период маятника не зависит от его массы, а зависит лишь от длины нити (точнее, Т = 2???(l/g)). Формулу в таком виде получил позднее Гюйгенс, Галилей лишь указывал, «что длины маятников обратно пропорциональны квадратам чисел их качаний, совершаемых в течение определенного промежутка времени» [16, II, с. 190], т. е. Т2 ~ l. Действительно, независимость скорости падения от массы (веса) тела однозначно определяется тем свойством маятника, что его период также не зависит от массы (веса), и Галилей, который не мог вывести эту связь теоретически, тем не менее, интуитивно это мгновенно осознал. Более того, как следует из его дальнейших рассуждений, его не обескуражило, что скорости оказались в действительности неравными (так как амплитуды качаний получились у обоих маятников различными); он отнес эту разницу за счет влияния среды, в то время как изохронизм маятников счел за бесспорное доказательство своего тезиса.

Результат, полученный Галилеем, имел далеко идущие последствия. Поскольку вес и плотность, как было доказано, не оказывают влияния на свободное падение, стало возможным чисто кинематическое рассмотрение падения в терминах пути, времени, скорости и ускорения. Как указывает Макмаллин, «никогда ранее не было ясно, как мертоновская кинематическая геометрия может быть использована для исследования реального падения, поскольку невозможно было взять в расчет такие негеометрические величины, как вес и плотность. А предполагалось, что именно эти параметры определяют естественное движение — падение согласно формуле F/R. Показав, «что ускорение падения не зависит от веса, Галилей доказал применимость геометрического подхода к кинематике» [6, с. 17].

После того, как в дискуссиях Первого дня было показано, что падение тел не зависит ни от их веса, ни от — в идеальном случае — среды, Галилею представляется возможность рассматривать характеристики падения — скорость, ускорение и пройденный путь как чисто геометрические понятия. В Третьем дне он анализирует динамические закономерности, выводя их из чисто кинематических представлений. Так он приходит к доказательству закона падения, а в следующем, Четвертом дне — к закону параболического движения брошенного тела.

Как-то Макс Джеммер остроумно заметил, что «в новейшей теории первоначальные положения и аксиомы, несмотря на то, что они логически предшествуют выводам, эпистемологически следуют за ними» [24, с. 691]. Именно так поступает Галилей в выводе закона падения: он уже давно знает конечный результат и начинает его доказывать с помощью положения, которое эпистемологически, в развитии его творческой мысли, следовало из уже найденной им квадратичной зависимости. Речь идет о правиле средней скорости, которое хорошо уже было знакомо математическим схоластикам XIV в. и получило в дальнейшем известность как «мертонское правило».

Этот факт послужил основанием Пьеру Дюэму утверждать, что Галилей лишь переформулировал то, что было сделано два столетия до него Оремом. То, что такое утверждение неправильно, обусловливается, во-первых, тем, что Галилей пришел к закону падения, исходя не из мертонского правила, а из евдоксовой теории пропорций, а во-вторых, ученые Парижской школы, равно как и калькуляторы Оксфорда, никогда не применяли это правило к случаю действительного падения тел, или даже вообще к случаю любого действительного движения. Мертонское правило оставалось для них абстрактной закономерностью, применяемой в рамках теории интенсификации и ремиссии качеств. Аннелизе Майер подчеркивает, что для ученых Средневековья было чрезвычайно характерно понимание различия между тем, что мы наблюдаем в действительности, и тем, как мы говорим о том, что наблюдаем [1, с. 30]. В связи с этим существовало два подхода к понятию скорости. «С одной стороны, скорость можно было рассматривать как расстояние, проходимое в определенное время. Такое представление хорошо согласовалось не только с эмпирическим восприятием движения, но также и общим определением «velocitas». С другой стороны, скорость могла рассматриваться в контексте теории качеств как интенсивность движения» [1, с. 38].

К выводу правила средней скорости

Галилей был первым, кому пришла в голову мысль объединить эти два подхода. Суть того, что позднее будет названо «мысленным экспериментом», в этом и состоит. Конфигурации качеств Орема и его геометрическая интерпретация мертонского правила обрели у Галилея физический смысл. Обратимся теперь к тексту «Бесед».

Весь анализ падения основывается на следующем утверждении: «Теорема I. Предложение I. Время, в течение которого тело, вышедшее из состояния покоя и движущееся равномерно-ускоренно, проходит некоторое расстояние, равно времени, в течение которого это же расстояние было бы пройдено тем же телом при равномерном движении, скорость которого равняется половине величины наибольшей конечной скорости, достигаемой при первом равномерно-ускоренном движении» [16, II, с. 248].

Галилей доказывает это утверждение с помощью чертежа, весьма напоминающего чертеж Орема. Но здесь уже нет никаких неясностей относительно того, что представляют собой элементы Срисованной фигуры. Итак, отрезок прямой АВ представляет время, в течение которого тело проходит путь CD; горизонтальные отрезки, заключенные внутри треугольника ЛЕВ изображают скорость равноускоренного движения, соответствующую любому данному моменту времени (в начале движения скорость равна нулю, в конце — своей максимальной величине ЕВ). При этом ясно, что путь, пройденный телом, будет изображаться площадью треугольника AEB (Галилей говорит здесь о «сумме», или «совокупности» линий, заключенных внутри треугольника). Аналогичным образом прямоугольник AGFB представляет собой путь, пройденный тем же телом в равномерном движении со средней скоростью FB = ??EB. Желаемое равенство времен следует из равенства треугольников IGA и IEF. Равенство треугольников означает равенство путей: «Отсюда следует, что два тела пройдут равные расстояния в одно и то же время, если одно, выйдя из состояния покоя, будет двигаться равномерно-ускоренно, а другое просто равномерно со скоростью, равною половине максимальной скорости, достигнутой при ускоренном движении, что и требовалось доказать» [16, II, с. 249].

Затем Галилей обращается непосредственно к доказательству квадратичной зависимости пути от времени. В нем он опирается на другое положение, выдвинутое им ранее, а именно, что скорость падения пропорциональна времени падения. Трактовка доказательства этого положения, данного в «Беседах», заслуживает отдельного рассмотрения, поскольку она является ошибочной в большинстве историко-научных работ, посвященных этому вопросу.

К моменту написания «Бесед» Галилей уже давно пришел к ясному пониманию скорости движения, а следовательно, и к пониманию того, что скорость падения пропорциональна времени. Все это, как показано выше, еще не было достигнуто тогда, когда он впервые пришел к установлению квадратичной зависимости пути от времени около 30 лет назад. И вот, в «Беседах» он специально останавливается на выборе альтернативы: чему пропорциональна скорость — времени или пути, и отвергает второе предположение с помощью следующего доказательства от противного:

«Если бы скорости были пропорциональны пройденным или имеющим быть пройденными расстояниям, то такие расстояния проходились бы в равные промежутки времени; таким образом, если бы скорость, с которой падающее тело проходит расстояние в четыре локтя, была вдвое больше скорости, с которою оно проходит расстояние в первых два локтя (на том основании, что одно расстояние вдвое больше другого), то промежутки времени для прохождения того и другого расстояния должны были бы быть одинаковыми. Но прохождение одним и тем же телом четырех локтей и двух локтей в один и тот же промежуток времени могло бы иметь место лишь в том случае, если бы движение проходило мгновенно; мы же видим, что падающее тело совершает свое движение во времени и что два локтя оно проходит в меньший срок, нежели четыре локтя. Следовательно, утверждение, что скорости растут пропорционально пройденным путям, ложно» [16, II, с. 245].

Некоторые исследователи творчества Галилея рассматривают этот отрывок из «Бесед» как пример неправильного доказательства истинного утверждения. Одни связывали доказательство Галилея с использованием мертоновского правила [11, II, с. 95—99; 25]; предполагалось, что здесь Галилей оперирует с понятием средней скорости. В другом случае указывалось, что рассуждение Галилея неубедительно по той причине, что «Галилей рассуждает так, как будто весь путь s, пройденный за время t, проходится со скоростью, достигаемой лишь в конце пути!» [16, II, с. 461]. На самом деле Галилей имел в виду совершенно другое, а неверная интерпретация возникает в результате неточного перевода, когда слово «скорости», стоящее в оригинале во множественном числе, переводится словом «скорость», стоящим в единственном числе. Эта ошибка, как ни странно, имеется во многих переводах «Бесед», в частности, во французском 1970 г., немецком 1891 г. и позднейших изданиях, английском 1914 г. и позднейших изданиях, и наконец, русском 1964 г. Весьма удивительно, что правильный перевод, как и правильная интерпретация данного отрывка ускользнули от внимания исследователей, тем более, что уже в 1649 г. и то и другое было сделано в книге Ж. А. Тенера «Об ускоренном движении». Тенер дает следующее исчерпывающее объяснение ходу мыслей Галилея:

«Пусть тяжелое тело падает (из состояния покоя) и проходит при этом два равных расстояния АВ и ВС, так что скорость в С вдвое больше, чем в В, Без сомнения, на линии АС невозможно найти точку, скорость которой не была бы вдвое больше скорости соответствующей точки на линии АВ. Следовательно, скорость на протяжении всего пути АС будет вдвое больше скорости вдоль всего пути АВ, именно потому, что расстояние АС вдвое больше ВС: а следовательно, АС и АВ проходятся в равное время» [26, с. 8]. Таким образом, вместо понятия средней скорости Галилей основывается на идее взаимно однозначного соответствия между двумя бесконечными множествами скоростей, и приведенные выше возражения снимаются.

В зарубежной литературе на этот факт впервые обратил внимание Стиллман Дрейк в своей книге «Галилеевские исследования», опубликованной в 1970 г. [27, с. 228—236], который дал точный перевод, подробный анализ и правильное толкование отрывка. Но интересно отметить, что ошибка в переводе была обнаружена много раньше советским исследователем В. П. Зубовым, который отверг трактовку Коэна, связанную с мертонским правилом, хотя и не подверг это место детальному анализу. Приведем здесь перевод В. П. Зубова, адекватный галилеевскому оригиналу:

«Если скорости стоят друг к другу в том же отношении, что и пройденные или имеющие быть пройденными расстояния, то такие расстояния проходятся в равные промежутки времени: в самом деле, если скорости (le velosita), с которыми падающее тело проходит расстояние в четыре локтя, вдвое больше скоростей (delle velocita), с которыми оно прошло первые два локтя (ибо одно расстояние вдвое больше другого), то, стало быть, промежутки времени, затраченные для прохождения того и другого расстояния, одинаковы. Но прохождение одним и тем же телом четырех локтей и двух локтей за один и тот же промежуток времени может иметь место лишь в том случае, если движение происходит мгновенно; мы же видим, что тяжелое тело, падая, совершает свое движение во времени, и что два локтя оно проходит в меньший срок, нежели четыре. Следовательно, неверно, что скорости растут пропорционально пройденным путям» [2, с. 153].

К выводу закона падения

Итак, вооруженный тезисом, что скорость падения пропорциональна лишь времени, Галилей приступает к доказательству своего закона:

«Теорема II. Предложение II. Если тело, выйдя из состояния покоя, падает равномерно-ускоренно, то расстояния, проходимые им за определенные промежутки времени, относятся между собой как квадраты времени» [16, II, с. 249]. Свое доказательство Галилей вновь иллюстрирует чертежом, он говорит: «Изобразим промежуток времени, начинающийся с какого-либо мгновения А, линией АВ и представим себе, что AD и АЕ суть некоторые части этого промежутка времени. Пусть, далее HI будет линией, вдоль которой падающее тело, вышедшее из состояния покоя, движется равномерно-ускоренно, HL — расстояние, пройденное в течение первого промежутка времени AD, HM — расстояние, пройденное в промежуток времени АЕ» [16, II, с. 250].

Затем Галилей несколько усложняет чертеж, введя горизонтальные отрезки OD и РЕ, представляющие максимальную скорость, приобретенную телом к моменту D и Е соответственно. Для доказательства теоремы он пользуется сперва правилом средней скорости. Слегка модернизируя запись и введя vDcp и vEср, обозначающие соответственно среднюю скорость движения к моменту D и Е, получаем: MH=vEср?AE, H=vDcp?AD; откуда MH/LH =

(vEср/vDcp)?(AE/AD), но

и последнее отношение равно: PE/OD = AE/AD, т. е. скорости пропорциональны времени движения; тогда, с одной стороны, MH/LH = (vEср/vDcp)?(AE/AD), а с другой (vEср/vDcp) = PE/OD = AE/AD.

Комбинируя эти две пропорции, получаем: MH/LH = (AE/AD)? (AE/AD) = AE2/AD2, «следовательно, расстояния относятся, как квадраты промежутков времени, что и требовалось доказать».

После этого легко доказывается, что если «скорость возрастает в равные промежутки времени как простой ряд последовательных чисел, то расстояния, пройденные за те же промежутки времени, относятся между собой как последовательные нечетные числа» [16, II, с. 251]. Этот результат, который Галилей приписывает исключительно себе, на самом деле был получен ранее средневековыми физиками, но они опять же не применяли его к исследованию реального движения и не увидели в нем квадратичного закона падения, легко из этого результата получаемого.

Дальнейшие беседы Третьего дня касаются проблемы движения тел по наклонной плоскости, и получающиеся результаты являются следствиями установленного ранее закона падения. Среди них имеются два замечательных утверждения, первое из которых относится к проблеме наискорейшего спуска — одной из наиболее знаменитых задач конца XVII в., а второе содержит наиболее близкую к современной формулировку принципа инерции. Задача наискорейшего спуска может быть сформулирована так: по какой траектории, соединяющей две точки, находящиеся на разных высотах, должно двигаться тело, чтобы переместиться из верхней точки в нижнюю за минимальное время? Постановка и решение этой проблемы положили начало вариационному исчислению. Инфинитезимальными методами было показано, что брахистохроной, т. е. линией наискорейшего спуска, будет не отрезок прямой, соединяющей обе точки, а проходящая через них циклоида. Решение было получено благодаря усилиям самых выдающихся математиков эпохи, включая Иоганна (в первую очередь) и Якоба Бернулли, Лейбница, Лопиталя, Гюйгенса и Ньютона. Галилей близко подошел к правильному результату и в замечании к теореме XXII указал, «что быстрейшее движение от одной конечной точки до другой происходит не по кратчайшей линии, какой является прямая» [16, II, с. 300]. Без помощи методов дифференциального исчисления он, естественно, не мог установить, что траекторией спуска является дуга циклоида, вместо этого он говорит о дуге окружности.

Другое замечание, содержащееся в задаче IX, еще более интересно. Оно касается существа понятия движения и гласит, «что степень скорости, обнаруживаемая телом (при движении) ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними» [16, II, с. 282]. Это утверждение определяет фундаментально новый подход к проблеме движения и покоя, получивший в дальнейшем исчерпывающую разработку в трудах Декарта и Ньютона. До сих пор покой и движение рассматривались как категории, имеющие различный онтологический статус, покой понимался как состояние, естественное для тела и не нуждающееся ни в какой внешней причине. Напротив, движение всегда подразумевало внешнюю причину, необходимо его обусловливавшую. «Естественные» движения надлунных сфер Аристотеля не идут в расчет, поскольку для земной физики они всегда являлись недостижимой абстракцией. Разрушение Галилеем дихотомии земной и небесной физики, естественных и насильственных движений неизбежно должно было привести к изменению точки зрения на движение как таковое. В процитированном выше утверждении Галилея это продемонстрировано с наибольшей ясностью: равномерное движение — так можно перефразировать его слова — ненарушимо лежит в природе тела (этим самым равномерному движению придается тот же онтологический статус, что и покою), в то время как внешние причины могут вызывать ускорение или замедление тела (в этом соблазнительно усмотреть предпосылки ньютоновой концепции силы.

Центральный результат Четвертого дня «Бесед» — закон параболического движения снаряда. Благодаря открытиям Дрейка мы знаем теперь, что Галилей пришел к формулировке этого закона еще в 1608 г., однако, по-видимому, лишь много лет спустя он обрел в его глазах концептуальную доказательность. Косвенным подтверждением этого факта может служить известный отрывок из «Диалога», в котором Галилей утверждает, что падающее тело будет описывать полуокружность, оканчивающуюся в центре Земли. Правда, необходимо отметить, что, поскольку построение полуокружности в данном месте «Диалога» играло второстепенную роль, Галилей мог выбрать окружность из соображений большей простоты и наглядности, с другой стороны, у Галилея никогда не было законченной концептуальной механической системы, и поэтому, естественно, что он мог вводить в обсуждение различные доказательства, часто и не согласующиеся между собой. Наконец, «Диалог» в гораздо большей степени был пропагандистским трактатом, чем «Беседы», где главный акцент делался на математическое доказательство, а не на красноречивое убеждение. Различие между двумя книгами хорошо определил Лодовико Джеймонат, сказав, что «Беседы» «в отличие от „Диалога" не являются манифестом коперниканства, скорее они являются трудом, написанным целиком в рамках нового коперниканского направления науки, углубляющим ее основы и расширяющим ее применение» [12, с. 177].

В Четвертом дне «Бесед» Галилей дает ясные и исчерпывающие формулировки тех принципов, которые косвенно или неявна содержатся в дискуссиях «Диалога». В теореме II он постулирует принцип независимости и сложения движений: «Если какое-либо тело движется равномерно двойственным образом, а именно, горизонтально и вертикально, то импульс, или момент его сложного движения равен в потенции совокупности моментов первоначальных движений» [16, II, с. 315]. Выражение «равен в потенции», очевидно, соответствует временному «равен геометрической сумме», поскольку Галилей снабжает доказательства данного утверждения рисунком, изображающим векторный треугольник. Тот же принцип применяется им и для сложения неравномерного движения с равномерным, причем здесь также утверждается, «что такие движения и скорости слагаются, но не мешают друг другу» [16, II, с. 309]. Это положение кажется Галилею настолько фундаментальным, что он вначале постулирует его для смешанных движений, и лишь потом — для равномерных. Поэтому основной результат дня содержится в самой первой теореме: «Теорема I. Предложение I. При сложном движении, слагающемся из равномерного горизонтального и естественно-ускоренного движений, бросаемое тело описывает полупараболу» [16, II, с. 305].

Галилей пришел к этому выводу давно, но тем не менее, он: еще долго не решался его опубликовать, так как теоретическая основа закона была ему не вполне ясна. В «Диалоге» он основывается на довольно туманном тезисе из анализа неделимых, который даже ему самому не кажется убедительным, и не дает ясной формулировки. Но он отчетливо понимал всю важность своего открытия и столь ревниво относился к вопросу о приоритете. «Диалог» был закончен в январе 1630 г., а два года спустя, одновременно с выходом его в свет, Кавальери опубликовал правильный закон движения снаряда в своей книге «Зажигательное зеркало» (Болонья, 1632). Галилей был совершенно вне себя, как показывает его письмо к Чезаре Марсили:

«Не скрою от вашего превосходительства, что известие едва ли меня обрадовало — видеть, что первый плод более, чем сорокалетних трудов, большую часть которых я открыл под большим секретом вышеназванному Отцу (т. е. Кавальери.— В. К.), должен быть отнят у меня, и что я лишен той славы, которую я столь страстно желал и надеялся получить после столь долгих усилий; ибо действительно первым моим намерением, которое привело меня к размышлению над движением, было найти эту линию, и хотя я смог продемонстрировать это, я знаю, как много несчастий я претерпел, прежде чем прийти к этому выводу» [28, III, с. 1278]. Кавальери был чрезвычайно огорчен, что он явился причиной столь резкого неудовольствия, выраженного его учителем, и немедленно написал, что, во-первых, он многим обязан Галилею и Кастелли, о чем он неоднократно говорит в этой книге, экземпляр которой он послал Галилею, во-вторых, каждому известно, что открытие параболической траектории принадлежит Галилею, и сам Кавальери был убежден, что тот уже давно опубликовал свое открытие, почему он и упомянул об этом в «Зажигательном зеркале». Галилей удовлетворился ответом Кавальери, и таким образом конфликт был улажен. Отношения были полностью восстановлены, и в «Беседах» уже говорится о Кавальери как о новом Архимеде.

Тем не менее вся эта история показывает, насколько высоко ценил Галилей открытие параболической траектории и какую важность он ему придавал в эволюции своего творчества.

Беседы Четвертого дня интересны еще и тем, что в них совершенно корректно, хотя и неявно, используется принцип инерции. Проблема, связанная с оценкой роли Галилея в создании принципа инерции, занимала многих ученых, и она остается открытой до сих пор. Действительно, в разных местах Галилей давал этому принципу противоречивые формулировки и само понятие инерциального движения трактовал по-разному.

В «Диалоге» он, по-видимому, считает инерционным движением движение по окружности с центром в центре Земли: «...к движению, не удаляющемуся от центра и не приближающемуся к центру, тело не имеет ни склонности, ни сопротивления, а следовательно, нет и причины для уменьшения вложенной в него силы» [16, I, с. 248].

В этой формулировке неявно содержатся два предположения: считается, что тело движется, во-первых, в отсутствие внешних движущих сил, а также сил сопротивления; во-вторых,— благодаря внутренней силе наподобие средневекового импетуса.

В «Беседах» анализ движения на наклонной плоскости приводит к мысли о горизонтальном движении на гладкой поверхности как идеальном примере инерционного движения. Но такой вывод сразу ставит перед затруднением, ясно сформулированным Симпличио: «Мы предположили, что горизонтальная плоскость, не имеющая ни наклона, ни подъема, представляет собой как бы прямую линию и что подобная линия во всех своих частях равноудалена от центра; это, однако, неправильно... Отсюда как следствие вытекает, что движение не может быть постоянным» [16, II, с. 309].

Из этого затруднения Галилей предлагает два совершенно различных выхода. Один он предлагает в «Диалоге», где говорит, что путь тела, движущегося по инерции, изгибается тяжестью, а если бы тяжести не существовало, то движение было бы прямолинейным. Так происходит при движении снаряда, брошенного из пращи: «круговое движение бросающего оставляет в бросаемом теле (в момент, когда они разлучаются) импульс движения по прямой, касательной к кругу движения в точке отрыва, и стремление продолжать по ней движение, постоянно удаляясь от бросившего... по такой прямой линии брошенное тело продолжало бы двигаться, если бы его собственная тяжесть не прибавляла склонения вниз, вследствие чего получается изгиб линии движения» [16, I, с. 293]. Это говорит о вполне ясном понимании принципа инерции: инерциальное движение, по-видимому, будет прямолинейным, но вследствие тяжести путь оказывается искривленным.

В «Беседах» же Галилей дает совсем другой ответ. По сути, он уклоняется от него, говоря, что в пределах точности эксперимента кривая и прямая совпадают [16, II, с. 310]. Вместо того, чтобы выяснить, какой будет траектория тела, движущегося по инерции, Галилей здесь пытается для такого тела реализовать на практике отсутствие внешних сил: «Степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними; это можно заметить лишь на горизонтальной плоскости, ибо при движении по наклонной плоскости вниз наблюдается ускорение, а при движении вверх — замедление. Отсюда следует, что движение по горизонтали является вечным» [16, II, с. 382]. Здесь Галилей уже не рассматривает круговое движение как инерционное, поскольку внешние причины изменения движения могут быть устранены лишь на плоскости.

Наконец, еще раз подчеркнем, что в выводе параболического закона в Четвертом дне «Бесед» Галилей, возможно еще не вполне осознанно, приходит к тому, что инерционное движение вовсе не нуждается в плоскости под движущимся телом. Горизонтальная компонента движения уже является той самой абстракцией, которая необходима для полного обоснования закона инерции. Лишь непоследовательность не позволяет Галилею сделать этот заключительный шаг.