Здравствуй, микроэлектроника!

We use cookies. Read the Privacy and Cookie Policy

Здравствуй, микроэлектроника!

Современная микроэлектронная техника позволяет создать малогабаритные и высокочувствительные системы зрения самого различного назначения.

На рис. 55 приведена принципиальная схема фотореле с цифровым логическим элементом. Датчиком служит фотодиод BD1, который подключён непосредственно к входам элемента DD1.1 (К155ЛБЗ).

Когда фотодиод освещён, его сопротивление мало и напряжение на выходе инвертора DD1.1 близко к нулю. На выходе элемента – высокий уровень, который закрывает транзистор VT1. Реле К1 отключается.

Стоит прервать световой поток, как сопротивление фотодиода увеличится, транзистор откроется, реле включится.

Порядок работы фотореле можно изменить – заставить реле срабатывать при освещении. Для этого вместо одного следует включить последовательно два инвертора.

Рис. 55. Микроэлектронное реле

Микроэлектронная система обнаружения пламени. В условиях современных роботизированных цехов особое значение имеют системы предупреждения о пожарной опасности. Ими можно оснастить самих роботов. Применение для обнаружения пламени темпера – турно – световых датчиков в ряде случаев оказывается нецелесообразным, так как они срабатывают не только при возникновении или исчезновении пламени, но и по разным другим причинам, например при случайном увеличении освещённости, повышении температуры. Поэтому при использовании таких датчиков необходимо принимать зачастую очень сложные меры, чтобы исключить ложные срабатывания. Очевидно, что для чёткого обнаружения пламени необходимы датчики, действие которых основано на изменении факторов, непосредственно характеризующих пламя.

Для открытого пламени, как показывает практика, наиболее характерна пульсация его инфракрасного и ультрафиолетового излучения – интенсивность различных видов излучения пламени не остаётся постоянной, а изменяется во времени. Явление пульсации, обусювленное физическими процессами, происходящими при горении, можно наблюдать, в частности, на примере обычной газовой юрелки.

Как показали опыты, пульсация характеристик пламени многих горючих материалов, в том числе при искусственном распылении топлива (например, в топках котлов и других теплоустановок), происходит с частотой, лежащей в пределах 15…30 Гц.