Нейроны

We use cookies. Read the Privacy and Cookie Policy

Нейроны

Прежде чем говорить о возможностях моделирования мозга как управляющего центра разумных действий, нужно представить себе элементы сложнейшей нервной системы – нейроны – и попытаться создать их модель.

Значительная или даже, пожалуй, основная часть нынешних исследовательских работ по бионике посвящена созданию аналогов биологического нейрона – нервной клетки – основного элемента нервной системы. Конечная цель этих работ – создание систем, предназначенных для накопления, обработки и передачи большого количества информации, электронных машин, способных решать любые сложные задачи без предварительного программирования, различных самообучающихся, адаптивных (самоприспосабливающихся, самоорганизующихся устройств), обладающих малыми габаритами и высокой надёжностью машин. Иными словами, речь идёт о создании широкого комплекса автоматических систем, работающих по тем же принципам.

Что такое нейрон? Это нервная клетка человеческого мозга (рис. 66). В мозге человека их около 15 миллиардов, и мы о них очень мало знаем. Нейрон был и остаётся величайшей загадкой. Каждый нейрон снабжён выходным каналом – аксоном. По нему передаётся возбуждение к какому – либо органу. Например, тело нервной клетки находится в спинном мозге, а её аксон достигает мышц пальцев ноги. Если бы мы захотели сделать в масштабе большую модель аксона, хотя бы в виде шланга диаметром 4 см, то его длина оказалась бы более 16 км. Другие отростки нейрона – дендриты – являются входами в тело нервной клетки.

Рис. 66. Нейрон

Аксоны и дендриты различных клеток переплетаются и соединяются во многих (до тысячи) контактных точках. Через эти контакты – синапсы – может передаваться возбуждение от аксона одного нейрона к дендриту другого.

Нейроны плотно окружены так называемыми глиальными клетками, которых раз в десять больше, чем нейронов. Раньше считали, что эти клетки лишь «закрепляют» нейроны на месте или помогают им питаться. Однако последние исследования показали: глиальные клетки активно участвуют в проведении нервных импульсов, в формировании реакций и некоторых проявлениях функций памяти. Похоже, что разум равномерно «размазан» по всем структурам нервной системы.

Для создания моделей нейрона применяют главным образом метод физического моделирования. Это естественно: ведь инженеры стремятся разработать элементы для электронных или иных вычислительных машин будущего. Конечно, это должно быть вполне реальное yc тройство, как можно белее компактное и дешёвое. Методом математического моделирования пользуются главным образом при моделировании нейронных сетей.

Прежде чем начать работать над моделью, необходимо из всего многообразия свойств живой нервной клетки выбрать те, которые кажутся наиболее существенными для выполнения поставленной экспериментатором задачи. Этот процесс часто называют формализацией нейрона. Первая модель нейрона, дающая его формальное описание и позволяющая применять аппарат математической логики для анализа и синтеза сетей из нейронов, была предложена У. С. Мак – Калло – ком и У. Питтсом. Допущения, принятые ими. сводятся в основном к тому, что нейрон: имеет и входоь и один выход (аксон) с одной или несколькими концевыми пластинками; может находиться в одном из двух состояний: возбуждения или покоя (т.е. работает по принципу «всё или ничего»); имеет входы (синапсы, возбуждающие и тормозящие; активность какого – либо тормозящего синапса абсолютно исключает возбуждение нейрона; располагает некоторым определённым числом синапсов, при одновременном возбуждении которых он сам приходит в состояние возбуждения; это число не зависит от предыдущего состояния нейрона и от расположения синапсов на нём.

Рис. 67. Модель нейрона Мак-Каллока и Питтса

Три последних положения лишь частично отражают реальные свойства нейрона. Дело в том, что эта модель является математической абстракцией, предназначенной для моделирования нейронных сетей на цифровых вычислительных машинах. Электронные модели нейрона гораздо точнее копируют его свойства.

Для имитации нейронов применяют магнитные ферритовые магнитопроводы, специальные генераторы и другие устройства. Модель нейрона Мак – Каллока и Питтса с мультивибратором показана на рис. 67. Она позволяет воспроизвести многие характеристики нейрона, кроме его способности к адаптации, т. е. к изменению порога срабатывания в зависимости от уровня входных сигналов. Следует иметь в виду, что модель Мак – Каллока и Питтса сильно упрощена. Биологический нейрон значительно сложнее.