Перцептрон

We use cookies. Read the Privacy and Cookie Policy

Перцептрон

Почтовый перцептрон. «Почтовое учреждение в Эдинбурге, господину Виллару Лау, ювелиру, в собственные руки, недалеко от Парламента, вниз по ярмарочной лестнице, против Акциза» – вот как выглядел адрес во второй половине XVIII столетия. Чтобы доставить письмо по назначению, почтальону приходилось выполнять функции адресного стола. Впрочем, писем тогда писали не так уж много.

В наше время на каждом почтовом конверте указан точный адрес: область, город, улица, номер дома, квартиры, фамилия адресата. Нетрудно представить, какого большого числа квалифицированных сортировщиков требует столь огромный объём корреспонденции (пусть и точно адресованной).

Процесс сортировки писем значительно упрощается с введением цифровой шестизначной индексации. Согласитесь, что прочитать шестизначное число, написанное стандартными цифрами, намного легче, чем сам адрес. В соответствии с цифровой системой индексации вся территория Советского Союза условно разбита на отдельные участки. Каждый такой условный участок обозначен первыми тремя цифрами шестизначного индекса. Четвёртая цифра индекса обозначает одну из десяти зон, входящих в участок; пятая – один из десяти секторов зоны; шестая – одно из десяти адресных предприятий связи, относящихся к данному сектору. Для написания цифр применяют специальную сетку, состоящую из девяти элементов (рис. 74).

Рис. 74. Сетка из девяти элементов

Сетку заполняют цифрами, после чего адрес, закодированный шестизначным числом, может прочесть автомат – сортировщик писем.

Как это происходит? По сути, автомату вовсе не обязательно, чтобы начертания цифр имели привычный для нас вид. Главное, чтобы две любые цифры различались хотя бы одним элементом.

Оказывается, что минимальное число элементов, с помощью которых можно составить 10 различных комбинаций – кодов цифр, – равно 4. Если мы выберем элементы 2, 3, 7 и 4 по рис. 74, то коды цифр будут иметь вид, показанный на рис. 75. Значит, опознавать цифры можно с помощью всего четырёх фотоэлементов. Электронное опознающее устройство и является перцептроном.

Принципиальная схема автомата, читающего цифры, показана на рис. 76. Фоторезисторы BR1 – BR4 установлены в считывающей ячейке (рис. 77). В элементе 2 изображения цифры (см. нумерацию рис. 75) расположен фоторезистор BR1, в элементе 3 – BR2, 4 – BR3, 7 – BR4. Последовательно с каждым фоторезистором включена обмотка соответствующего электромагнитного реле К1 – К4. При освещении фоторезистора его сопротивление уменьшается, ток, протекающий через него, увеличивается, в результате чего реле срабатывает. Контакты реле К1 – К4 включены по схеме дешифратора.

Наложим, к примеру, на ячейку цифру 3 индекса, вырезанную из жести или плотного картона. Тогда фоторезисторы BR1 и BR4 будут закрыты, a BR2 и BR3 – освещены внешним светом. Реле К2 и КЗ срабатывают, и включается лампа HL6, подсвечивающая цифру 3. Аналогично автомат опознает и другие девять цифр.

Рис. 75. Вид цифр

Рис. 76. Принципиальная схема читающего автомата

Рис. 77. Считывающая ячейка

Рис. 78. Внешний вид перцептрона

В устройстве применены следующие реле: К1 и К2 – РЭС9 (паспорт РС4, 524.201), КЗ – РЭС22 (паспорт РФ4.500.131), К4 – РС13 (паспорт РС4.523.07). Фоторезисторы – ФСК-1. Трансформатор Т1 набирают из пластин Ш20, пакет толщиной 40 мм. Обмотка I содержит 14000 витков провода ПЭЛ 0,31; II – 450 витков провода ПЭЛ 0,15; III – 45 витков провода ПЭЛ 0,8. Диоды Д226Б можно заменить на Д7Е, Д7Ж, Д226В.

Внешний вид прибора представлен на рис. 78. На лицевой панели корпуса расположена ячейка с фоторезисторами и индикаторное устройство – цифры 1 – 9, О, подсвечиваемые лампами HL1 – HL10.

Описанная модель опознает цифры одного разряда почтового индекса. Увеличив число подобных устройств до шести, мы сможем добиться опознавания всех цифр индекса.

Перцептрон на микросхемах. В 1985 году в журнале «Радио» была опубликована схема микроэлектронного перцептрона, который разработан под руководством Л. Д. Пономарёва и распознает пять цифр (рис. 79).

Глаз перцептрона состоит из четырёх блоков А1 – А4 с фотодиодами BD2 – BD4. На стыке элементов 1 и 2 сетки (см. рис. 74) размещён фотодиод ячейки А1, под ним на стыке элементов 1, 7 и 6 в левом нижнем углу находятся ячейки A3, в правом нижнем – ячейки А4. Над фотодиодами в корпус автомата вмонтированы осветители (на схеме не показаны).

Пока глазу ничего не показывают, все его фотодиоды освещены и транзистор в каждой ячейке открыт. На коллекторе транзистора – небольшое напряжение, соответствующее уровню логического 0. Сигналы с ячеек поступают на дешифратор, состоящий из логических элементов микросхем DD1 – DD4. Выходными элементами дешифратора служат логические элементы с открытым коллектором, поэтому если на выходе этих элементов присутствует уровень логической 1, лампы HL1 – HL4 на табло перцептрона выключены.

Рис. 79. Перцептрон на микросхемах

Как только к глазу перцептрона будет поднесена, скажем, цифра 1, нарисованная черным лаком на пластине из органического стекла, она закроет фотодиоды второй и четвёртой ячеек. Закроются соответствующие транзисторы, и на входах элементов DD1.2, DD1.4 будет напряжение, соответствующее уровню логической 1, а на их выходах – логического 0. Нетрудно проследить, что при этом у элемента DD2.1 на всех входах будет сигнал 1, а на выходе – 0. Включится лампа HL1, высветив на табло цифру 1. Когда глазу перцептрона покажут цифру 2, загорится лампа HL2, при цифре 3 будет светиться лампа HL3, и т.д.

В перцептроне можно применить другие фотодиоды, разброс их параметров компенсируют под – строечным резистором R2 и подборкой резистора R1. Лампы HL1 – НЬ5 – на напряжение 6,3 В и ток не более 60 мА.