Глава 12 ОСТРОВА У БЕРЕГОВ ЗЕМЛИ

We use cookies. Read the Privacy and Cookie Policy

Циолковский считал, что после первых успешных полетов космических ракет-спутников по орбитам вокруг Земли сначала без людей, а потом и с людьми, после выяснения многих вопросов, с которыми связано осуществление таких полетов, надо будет приступить к созданию постоянного спутника больших размеров, целого межпланетного города — острова у берегов Земли.

На этом острове должно находиться значительное население — большая группа специалистов, выполняющих многочисленные и важные обязанности. Время от времени эти специалисты будут заменяться другими, прибывающими с Большой Земли.

По мнению Циолковского, вслед за первым островом будут созданы и другие, разных размеров на разных высотах, в том числе и на очень значительных — 100, 150 тысяч километров.

Кондратюку принадлежит мысль о создании межпланетных станций, вращающихся не вокруг Земли, а вокруг Луны. Это были бы уже спутники спутника Земли — в природе подобные спутники спутников планет неизвестны. Затем такие же поселения могли бы быть созданы и вблизи других планет солнечной системы, в первую очередь около Венеры и Марса. Можно было бы создать и новые планеты, вращающиеся вокруг Солнца подобно первой советской автоматической искусственной планете, запущенной 2 января 1959 года.

Трудно переоценить роль, которую могли бы сыграть межпланетные станции в развитии науки. Обсерватория, устроенная на подобной станции, значила бы больше, чем все обсерватории мира, вместе взятые. Ведь такая обсерватория находилась бы по ту сторону многосоткилометрового слоя запыленной, мутной, несмотря на всю свою кажущуюся прозрачность, земной атмосферы, представляющей собой главное препятствие для многих и многих астрономических наблюдений. Неудивительно, что астрономы у нас на Земле упорно залезают со своими приборами на высокие горы, забираются в районы, славящиеся чистотой воздуха. И наиболее ценные результаты наблюдений получены именно такими обсерваториями.

Запыленность воздуха, которую мы не замечаем простым глазом, и непрерывное «кипение», перемешивание атмосферы становятся страшным злом, когда глаз вооружается мощным телескопом, чтобы с его помощью проникнуть далеко в глубь Вселенной. Именно эта неполная прозрачность воздуха ставит практически предел возможному увеличению, которое может быть получено с помощью астрономических инструментов. Практически используется увеличение не больше чем в 800 раз, хотя с помощью самых мощных из имеющихся телескопов можно получить увеличение и в несколько тысяч раз.[50]

Оптика позволила бы создать гораздо более совершенные астрономические инструменты, но их совершенство оказывается на Земле бесполезным — изображение становится мутным, расплывчатым, нечетким. Чем больше увеличение, тем сильнее проявляет себя недостаточная прозрачность атмосферы. Зачастую большой телескоп оказывается поэтому хуже, чем малый, а глаз астронома — лучше фотоаппарата. Это препятствие будет незнакомо астрономам межпланетной станции. И как им будут завидовать их земные коллеги!

На заатмосферной обсерватории можно будет наконец получить вполне достоверные фотоснимки Марса и других планет, до конца разгадать тайну «каналов» на Марсе, попытаться проникнуть через непроницаемую пелену облаков, окутывающих Венеру. Можно будет проверить правильность гипотезы советских астрономов о том, что Плутон — только самая крупная из небольших планет, образующих второе, внешнее, астероидное кольцо в нашей солнечной системе.[51] Можно будет рассмотреть многие новые галактики, значительно расширить пределы видимой нами части Вселенной — Метагалактики; ведь на спутнике не будет того мягкого, льющегося с ночного неба света, который является следствием собственного свечения воздуха в верхних слоях атмосферы и который мешает осуществлять длительные экспозиции при фотографировании слабых звезд. Можно будет увидеть планетные системы, подобные нашей солнечной, у звезд, находящихся на расстоянии десятков световых лет — для этого понадобится телескоп с зеркалом, всего в несколько раз большим, чем применяемые в настоящее время. Огромные возможности откроет применение электронного телескопа, который принципиально способен обеспечить гораздо большее увеличение, чем оптический (вспомните электронный микроскоп, увеличивающий в десятки и сотни тысяч раз!). К сожалению, эти чудесные потенциальные возможности электронного телескопа не могут быть использованы на Земле из-за вредного влияния атмосферы.

Вот сколько увлекательных задач поможет решить такая обсерватория!

Земная атмосфера мешает астрономическим наблюдениям не только вследствие своей недостаточной прозрачности. Атмосфера рассеивает солнечный свет, и если мы обязаны этому рассеянному, диффузному свету замечательным голубым цветом неба, то астрономам этот свет причиняет массу неприятностей. Ведь именно поэтому рабочий день астрономов — это ночь, когда свет Солнца не мешает видеть звезды и планеты. Именно поэтому так дорожат астрономы мгновениями солнечного затмения, позволяющими фотографировать и изучать солнечную корону, которую нельзя видеть в ярких лучах Солнца ни в какое другое время.

На заатмосферной обсерватории все будет иначе. Слепящий блеск Солнца будет еще более ярким на фоне бархатно-черного неба, и все же он не будет затмевать холодного света немигающих, как бы замороженных звезд, заполняющих небосвод в гораздо большем числе, чем те 3000, которые, нам удается видеть с Земли даже в самые звездные ночи. Астрономам заатмосферной обсерватории удастся увидеть и сфотографировать еще ни разу никем не виданное зрелище — солнечную корону не затененного Луной Солнца, длиннейшие языки раскаленных газов — протуберанцы, вырывающиеся не из-за черного диска Луны, а непосредственно из пылающего дневного светила, затененного лишь… кусочком картона. И эта возможность будет предоставляться не на мгновения полного солнечного затмения[52] а ежедневно на многие часы подряд. Точно так же можно будет наконец изучить как следует области неба, лежащие около Солнца. В частности, значительно облегчится наблюдение Меркурия, очень затрудненное на Земле из-за близости к Солнцу: он не отходит от пылающего солнечного диска больше чем на 18–20°.

Заатмосферная обсерватория сделает возможным применение новых, более действенных методов астрономических наблюдений. Ведь с тех времен, когда люди впервые начали изучать небо, и, по существу, до последних лет единственным источником наших сведений о небесных телах было их видимое и только отчасти инфракрасное и ультрафиолетовое излучение. Спектральное разложение видимого света вызвало огромный прогресс в астрономии, позволило ученым установить химический состав звезд, находящихся на трудно поддающихся представлению расстояниях от Земли. Оно дало возможность определить температуру раскаленных небесных тел, законы их движения, состояние атомов в этих телах. Фотографии, сделанные в определенных лучах спектра, позволили советскому ученому Г. А. Тихову не только установить наличие растительной жизни на Марсе, но и определить отличия марсианской флоры от земной, положив начало новой науке о растительной жизни на планетах — астроботанике, и многое, многое другое. И все же в основе всех методов наблюдения оставался, по существу, один только видимый свет.

Марс в небе его спутника Деймоса.

И только совсем недавно учеными был сделан новый шаг в направлении расширения средств познания Вселенной, шаг, который сразу привел к поистине замечательным результатам, — в астрономии было применено радио. Эта мысль возникла в 1928 году у советских ученых Л. И. Мандельштама и Н. Д. Папалекси. Они предложили послать в небо мощный радиолуч, который пробил бы «электрический потолок» Земли — ионосферу. Отражение такого луча от небесных тел можно было бы зарегистрировать земными приемниками. Эта мысль была практически осуществлена в 1946 году, когда было получено радиоэхо с Луны. В 1959 году учеными США такое же эхо было получено с Венеры.

Но разработанные для подобных целей чувствительные приемные устройства принимали какие-то радиосигналы и тогда, когда их никто с Земли не посылал. Оказалось, что сигналы приходят из глубин мирового пространства, что Солнце и звезды сами излучают радиоволны. Этим было положено начало радиоастрономии, за несколько лет сделавшей замечательные открытия: были открыты невидимые источники радиоизлучения, названные радиозвездами и радиогалактиками; обнаружено, что излучает радиоволны несветящийся и потому невидимый газ — водород; установлено, что излучают радиоволны Солнце, Луна, Марс, Венера, Юпитер и т. д.

В последнее время было с несомненностью установлено, что источником особо сильного радиоизлучения являются так называемые новые и сверхновые звезды. Мощные потоки радиолучей, идущие из глубин Космоса,[53] являются в этом случае отзвуками тех таинственных процессов, которые происходят внутри звезд и заставляют вдруг некоторые из них раздуваться подобно колоссальному мыльному пузырю, отчего скромная, едва видимая, а то и вовсе невидимая звездочка начинает внезапно ослепительно сиять на ночном небосводе. Недавно было обнаружено, что мощное радиоизлучение, идущее из созвездия Лебедь, вызвано происходящим столкновением двух огромных туманностей, или звездных систем (галактик). Конечно, сама звезды, вероятнее всего, не сталкиваются — они находятся на слишком больших расстояниях друг от друга. Зато с огромной скоростью сталкивается разреженный газ, заполняющий пространство между звездами; это и служит, вероятно, источником излучаемых радиоволн.

К сожалению, на земной поверхности мы можем наблюдать далеко не все излучение мирового пространства. По существу, до нас доходят только лучи, как бы прорывающиеся через два узеньких окошка: обыкновенный видимый свет, и радиолучи с длиной волны примерно от 1 сантиметра до 20 метров. Все остальные лучи поглощаются земной атмосферой: и радиолучи с длиной волны больше 20 метров, и электромагнитное излучение с длиной волны меньше 1 сантиметра, и большая часть инфракрасного и ультрафиолетового излучения, и рентгеновское излучение с длиной волны меньше одной десятимиллионной миллиметра.

Иное дело — на заатмосферной обсерватории. Весь спектр электромагнитного излучения вещества станет в руках астрономов этой обсерватории активным орудием изучения Вселенной. Это будет могучее оружие, ибо установлено, например, что наша звездная система гораздо более «прозрачна» для некоторых радиоволн, чем для видимого излучения. И кто знает, какие новые формы существования бесконечной материи удастся открыть с помощью этого средства познания?

Не в меньшей степени это касается и корпускулярного излучения Вселенной, то есть потоков материальных частиц, которые мчатся на Землю из глубин Космоса и в своем абсолютном большинстве «погибают» в атмосфере. Только вне атмосферы на искусственном спутнике появится наконец возможность всестороннего изучения этих потоков.

И еще один вид астрономических наблюдений, совершенно невозможный на Земле, станет заурядным на заатмосферной обсерватории: появится наконец возможность изучения планеты, о которой мы знаем так много и вместе с тем так мало. Речь идет о планете, на которой мы с вами живем. Как много ценного можно было бы получить, если бы хоть одному из земных жителей удалось взглянуть на Землю со стороны, издалека.

Если бы нам удалось взглянуть на нее глазами «постороннего», то это оказало бы большую помощь земным астрономам в изучении других планет. Достаточно указать, например, на то, что астрономы знают способность отражать солнечный свет, так называемое альбедо («альбедо» по-испански — «белизна»), других планет, но не знают альбедо Земли, и это не позволяет с достаточной достоверностью судить о характере поверхности планет.[54]

С искусственного спутника Земли можно будет осуществлять и многие наблюдения, непосредственно касающиеся нашей земной жизни, изучать многие земные явления, недоступные для изучения с Земли. Ведь с наблюдательного пункта, лежащего на большом расстоянии от земной поверхности, можно охватывать глазом огромные пространства. Это открывает совершенно новые возможности в отношении геофизики, картографирования, метеорологии. Чего стоит одно наблюдение за движением грозовых фронтов или облаков одновременно на миллионах и десятках миллионов квадратных километров земной поверхности![55] Служба предсказания погоды обогатилась бы ценнейшим орудием и стала бы действовать гораздо более уверенно. А, например, наблюдения за передвижкой льдов в полярных районах и многое другое. Некоторые виды таких наблюдений уже осуществляются с помощью стратосферных ракет. Но разве можно сравнить ценность наблюдений, длящихся мгновения, с постоянными, длительными, непрерывными наблюдениями на спутнике?

Наряду с астрономами, метеорологами, картографами попасть в заатмосферную лабораторию стремились бы и другие ученые. Физико-химики получили бы для исследования свойств молекул и атомов необычайно благоприятные условия, не осуществимые пока на Земле: небывалый, практически абсолютный вакуум, большой температурный диапазон с возможностью использовать наиболее низкие температуры неограниченно долго, а не в течение лишь очень коротких промежутков времени, как это пока возможно на Земле, мощный поток электромагнитного и корпускулярного излучения. Биологи и физиологи изучали бы действие мирового пространства на различные стороны жизни. Магнитологи получили бы в свои руки новое оружие исследования магнитного поля Земли, природа которого до сих пор остается загадкой для науки, и, в частности, влияния на это поле магнитных бурь на Солнце; могли бы установить наконец, является ли земной шар вместе с атмосферой нейтральным или электрически заряженным телом. Ядерные физики «блаженствовали» бы в мощных потоках неослабленных космических лучей и т. д. Не исключено, что спутники позволили бы получить ответ на некоторые вопросы, волнующие ученых. Например, позволили бы проверить вывод теории относительности о «замедлении времени» при больших скоростях движения (время на спутнике должно идти медленнее, чем на Земле) или вывод этой же теории относительно искривления лучей света под действием силы тяготения; помогли бы прояснить природу таинственного «красного смещения» спектра галактик, на основании которого делается вывод о непрекращающемся «разбегании» галактик, то есть их удалении от Солнца, и др.

Радиотелескоп — установка для приема радиоизлучения Вселенной. Этот телескоп построен в Англии в 1957 году; его диаметр равен 76 метрам, вес — 2000 тонн.

Искусственный спутник был бы неоценимой по значению солнечной лабораторией, изучающей жизнь Солнца, процессы на нем, играющие большую роль в нашей земной жизни. Для полноты таких исследований спутник должен совершать свои полеты вокруг Земли по крайней мере в течение нескольких оборотов Солнца вокруг своей оси, а ведь один оборот Солнце делает за 27 дней.[56]

Чрезвычайно ценным свойством обсерватории на спутнике была бы возможность осуществлять наблюдения непрерывно, вне зависимости от времени дня или года, вне зависимости от влияния погоды, причиняющей столько неприятностей астрономам на Земле.

Но наблюдение и изучение Вселенной не исчерпывает всех возможностей искусственного спутника. Наряду с такой пассивной ролью, весьма, конечно, важной, спутники в состоянии осуществлять и очень активное вмешательство в земные дела. Они могут принести большую практическую пользу людям. В настоящее время можно наметить только некоторые методы подобного вмешательства, но нет сомнения, что в будущем, по мере увеличения числа спутников и накопления опыта, будут найдены всё новые и новые формы использования этих искусственных филиалов Земли на небе.

По существу, уже метеорологическая служба спутников представляет собой весьма активную их роль. Не меньшее значение могут иметь такие спутники в качестве станций ретрансляции передач телевидения. В настоящее время любоваться у себя дома волшебным искусством мастеров балета Большого театра, видеть, сидя в удобном кресле у телевизора, прославленные спектакли МХАТа или спортивные состязания, идущие на московском Центральном стадионе имени В. И. Ленина, — короче говоря, использовать чудеса телевидения, этого замечательного достижения человеческого гения, могут только счастливчики, живущие на расстоянии не более чем 100 с небольшим километров от знаменитой Шаболовки — улицы в Москве, на которой находится Московский телецентр. Это объясняется тем, что телепередачи ведутся с помощью очень коротких радиоволн, длиной в несколько метров, а эти волны слабо отражаются от ионосферы. Поэтому передачи на таких волнах уверенно можно принимать только в так называемой зоне прямой видимости передающей станции, куда непосредственно проникают излучаемые ею прямые радиолучи.

Если же снабдить искусственный спутник Земли ретранслирующей станцией, принимающей передачи телецентра и передающей их вновь, то дальность передач может быть неизмеримо большей. Зона прямой видимости со спутника столь велика, что с помощью всего трех-четырех плавающих вокруг Земли по «суточной» орбите ретранслирующих станций можно было бы, например, обслужить телепередачами такие пространства, на которых проживает до 90 процентов всего населения земного шара. Эта цепь спутников могла бы быть полезной не только для телевидения, но и с успехом заменила бы все земные радио- и телеграфные станции, избавила бы радиосвязь от неизбежных на Земле помех, сэкономила бы миллионы тонн кабеля и проводов.

С помощью спутников можно улучшить использование энергии Солнца на службе человечества. Одна из таких возможностей связана с ночным освещением больших городов. Мощные зеркала, установленные на искусственном спутнике, могли бы посылать отраженные солнечные лучи на Землю в ночные часы, когда на Земле Солнце уже зашло, а высоко летящий над Землей спутник все еще купается в солнечных лучах. Несколько спутников со специально подобранными орбитами могут сделать московскую ночь светлой, как день, без затраты электрической энергии. Вечное бесплатное освещение…

Исключительно богаты возможности использования искусственных спутников в науке, технике, народном хозяйстве, как указывал еще сам автор этой идеи — Константин Эдуардович Циолковский. И только лишним доказательством разложения части буржуазных ученых, поставивших себя на службу поджигателям войны, является чудовищное извращение этих высокогуманных идей Циолковского — намерение превратить спутники в оружие массового уничтожения людей. Но победа останется за передовой наукой, строящей светлое будущее человечества, а на всех и всяческих изуверов от науки прогрессивное человечество сумеет надеть смирительные рубашки.

Весьма важное значение придавал Циолковский спутникам и в решении проблемы межпланетных сообщений. В настоящее время это значение является общепризнанным. Даже простейший межпланетный полет — на Луну, с посадкой на нее и возвратом на Землю — при современном уровне развития реактивной техники практически невозможен, об этом будет идти речь в следующих главах. Однако не только этот, но и более сложные межпланетные полеты становятся возможными уже сейчас при использовании спутников в качестве своеобразных заправочных колонок в мировом пространстве. На таких спутниках могут быть постепенно накоплены запасы топлива, которыми межпланетные корабли смогут затем пользоваться для пополнения своих опустевших баков.

Не меньшее значение спутники могут иметь в качестве пересадочных станций для межпланетных пассажиров. В межпланетных сообщениях самый выгодный полет — это полет с одной или даже несколькими пересадками. «Прямое сообщение» в этих случаях связано с очень уж большими трудностями. Впрочем, опасаться пересадок будущим межпланетным пассажирам нечего — пересадочные станции будут иметь максимум удобств, включая возможность переговоров по радиовидеотелефону с товарищами на Земле. Расписание межпланетных поездов будет согласовано так, что ждать на станции долго не придется, только-только бы успеть пообедать, и никаких опозданий четкая работа службы межпланетных сообщений, конечно, не допустит.

Жить и работать на искусственном спутнике будет интересно и увлекательно и вместе с тем, вероятно, не многим труднее, чем на какой-нибудь дальней зимовке у нас на Земле. «Малая Земля» не только защитит своих жителей от опасного соседства мирового пространства — встреч с метеоритами, вредного излучения, жестокого холода, — но и создаст им максимальный комфорт. Внутри такого спутника благодаря автоматическим установкам кондиционирования воздуха будет всегда свежий воздух и тепло — в этом отношении люди уже накопили достаточно большой опыт. Очищенный от вредных продуктов дыхания, воздух будет обогащаться кислородом, увлажняться и даже насыщаться легкими, приятными ароматами, так что в жилых помещениях спутника будет создаваться то бодрящая атмосфера весеннего утра, то напоенное далекими запахами цветов дыхание теплого осеннего вечера.

Но не одни только баллоны с жидким кислородом будут поставщиками этого «эликсира жизни» на спутнике. Циолковский не только выдвинул идею, но и произвел расчеты оранжерей, растения которых способны поглощать выделяемую обитателями спутника углекислоту и вырабатывать с помощью хлорофилловых зерен зеленых листьев живительный кислород.[57] Чудесное содружество растительного и животного мира, перенесенное с Земли на спутник, не только обеспечит его обитателей свежим воздухом, снабдит их овощами и фруктами, но и украсит спутник вечно цветущим садом, заполнит вазы в жилых помещениях пассажиров цветами.

Отсутствие воздуха вне спутника не помешает пассажирам совершать, при желании, небольшие экскурсии в мировое пространство. Для этого они должны будут надеть специальные межпланетные костюмы, внешне похожие на водолазные скафандры, но гораздо более сложно устроенные.[58]

Ткань этих костюмов должна быть достаточно прочной, чтобы выдержать удары хотя бы крохотных небесных камней и внутреннее давление в костюме, которое будет создаваться установкой кондиционирования воздуха. Ткань костюма должна защищать также от вредного действия различных излучений, пронизывающих мировое пространство. Возможно, что целесообразно будет изготовить межпланетные скафандры из металла с гибкими «гармошками» во всех сочленениях.

Через люк-тамбур, служащий своеобразным шлюзом, пассажиры спутника выберутся наружу, превратившись в самостоятельных спутников Земли. Только там, вне стенок спутника, могут быть осуществлены многие ценные научные наблюдения. Да и вообще такая возможность погулять вне спутника окажется ценной во многих случаях, когда нужно произвести ремонт снаружи, установить новое оборудование на внешней поверхности спутника, при ведении строительных работ во время его сооружения и т. д. Поэтому громоздкий костюм астронавтов должен обеспечивать подвижность рук, ног и даже пальцев.

В оранжерее межпланетной станции.

Каждый экскурсант будет снабжен разнообразным оборудованием, необходимым для пребывания вне спутника в течение нескольких часов. Прежде всего, конечно, на спине у него будет укреплена небольшая портативная установка для создания внутри скафандра атмосферы, необходимой для жизни человека. Состав воздуха внутри скафандра, давление и температура должны быть привычными для человека. Кислород, необходимый для дыхания, может содержаться в небольших баллонах или, что предпочтительнее, поставляться специальной химической «фабрикой кислорода». Подобные установки так называемого «галетного» типа уже находят применение, в частности, в высокогорных экспедициях альпинистов — с их помощью, между прочим, была покорена высочайшая вершина мира — Эверест, или Джомолунгма. В оборудование каждого «пловца» в мировом пространстве войдут и различные электротехнические установки — крохотная приемо-передающая радиотелефонная станция, фара наружного освещения, которая может оказаться полезной для осмотра не освещенной Солнцем поверхности спутника, а также сухая батарея для их питания. Каждый «пловец» будет, вероятно, снабжен и специальным, возможно пневматическим, пистолетом, конечно, не для охоты на космических зайцев, а для передвижения вдали от спутника с использованием отдачи при выстреле из пистолета — иначе случайный толчок может сделать это путешествие вне спутника если и не вечным, то уж очень длительным. Кстати сказать, пользоваться этим пистолетом надо будет умеючи — сила его реактивной отдачи должна проходить точно через центр тяжести тела стрелка, так как иначе он начнет после выстрела неминуемо вращаться в пространстве. Это будет очень неприятно: выйти из такого вращения будет нелегко, может быть, даже невозможно без посторонней помощи. Поэтому, надо полагать, все экскурсанты, дерзнувшие покинуть спутник, должны будут привязываться к нему тонким тросом. Так вернее!

Искусственный спутник в виде «бублика».

Так может выглядеть межпланетный скафандр.

Но не слишком ли много мы нагрузили на наших экскурсантов, не тяжеловато ли будет им «плавать» в мировом пространстве в таком снаряжении? Нет, конечно, ибо все, что находится на спутнике, в том числе и летящие рядом с ним экскурсанты, ничего не весит. Однако эта невесомость, удобная в данном случае, представляет собой, пожалуй, наиболее неприятную особенность жизни на спутнике.

Что же это значит: «ничего не весит»? Разве пассажиры спутника и все предметы на нем перестают притягиваться Землей? Нет, конечно, они притягиваются по-прежнему, и только на высотах, во много раз больших, сила притяжения становится существенно меньшей. Здесь дело совсем в другом.

В чем проявляется на Земле наш вес? В том, что опора, на которой мы находимся — пол, стул, почва и т. д., — мешает нам падать к центру Земли, в котором мы обязательно очутились бы под действием силы тяготения, если бы у нас не было опоры. Сила давления, которое мы оказываем на опору, и есть наш вес. Если угодно, эту силу можно измерить: для этого достаточно подложить под опору мощную пружину. Под действием нашего веса пружина сожмется, и если мы знаем, какая сила нужна для такого сжатия, то тем самым узнаем и наш вес.

Уберем опору из-под наших ног — и мы сейчас же начнем падать к центру Земли. Мы будем падать все быстрее и быстрее; скорость нашего падения будет стремительно расти — каждую секунду она будет увеличиваться почти на 10 метров в секунду, если не учитывать сопротивления воздуха. Это и есть ускорение свободного падения.

Что же произойдет с пружиной, если мы вместе с опорой действительно окажемся в состоянии свободного падения, то есть будем свободно, без каких бы то ни было помех, падать к центру Земли? Очевидно, что пружина не будет более сжата, так как опора уже не препятствует нам падать.

Можно представить себе и другие случаи падения, когда пружина будет все-таки сжата, но слабее, чем вначале, — например, такой случай, когда пружина сжата наполовину слабее и мы, значит, весим вдвое меньше обычного. Очевидно, для этого мы должны падать к центру Земли, но не с ускорением свободного падения, а с вдвое меньшим ускорением — наша скорость должна увеличиваться каждую секунду только на 5 метров в секунду.

А может ли пружина сжаться сильнее, чем вначале, можем ли мы весить больше, чем обычно? Очевидно, да, только для этого мы должны вместе с опорой «падать вверх», должны удаляться от центра Земли со все растущей скоростью. Так будет, например, при взлете межпланетного корабля (вспомните пушку Жюля Верна).

Выходит, что по сжатию пружины мы можем судить о величине и направлении ускорения нашего движения, а это часто бывает необходимо, и не только в астронавтике. На этом принципе устроен очень важный прибор — акселерометр, измеритель ускорений. Без этого прибора не тронется в путь ни один межпланетный корабль. В акселерометре массивное кольцо скользит по гладкому штифту, опираясь на пружину. С кольцом связана стрелка, указывающая степень сжатия пружины и, следовательно, величину ускорения движения акселерометра.

Прибор, позволяющий судить об ускорении межпланетного корабля и о том, сколько весят его пассажиры. Этот прибор называется акселерометром — «измерителем ускорения». Слева — корабль неподвижен или движется с постоянной скоростью. Стрелка акселерометра показывает 1, вес пассажиров обычный. В середине — корабль взлетает, его скорость непрерывно увеличивается. Стрелка акселерометра показывает 4, это значит, что пассажиры весят в 4 раза больше обычного. Справа — корабль летит с остановленным двигателем, следовательно, свободно падает на Землю. Кольцо акселерометра, а значит, и пассажиры корабля ничего не весят. Стрелка показывает 0.

Вот наш акселерометр установлен на ракете. Сначала ракета стоит неподвижно на Земле — стрелка показывает на единицу. Это значит, что на пружину акселерометра действует только обычный вес кольца. Теперь ракета взлетает — пружина сжата, и стрелка показывает уже не 1, а, допустим, 4. Это значит, что ускорение взлетающей ракеты в 4 раза больше ускорения свободного падения, вес кольца в 4 раза превышает обычный.[59] Но вот двигатель ракеты остановился, и она сейчас же начала свободно падать на Землю (конечно, при этом вначале она будет продолжать двигаться вверх за счет накопленной скорости, затем на мгновение остановится и потом начнет движение вниз, к Земле) — стрелка акселерометра показывает на нуль; теперь пружина уже вовсе не сжата, кольцо ничего не весит.

Как происходит сгорание капли топлива в условиях невесомости: вверху — фотографии пламени при сгорании капли, внизу — фотографии газов и нагретого воздуха у горящей капли; а — в обычных условиях; б — при невесомости.

То же самое происходит и на спутнике, ибо и он со всем содержимым свободно падает на Землю — все, как говорил Циолковский, увлекается на спутнике одним потоком. На таком спутнике все невесомо. Эго делает жизнь на нем не только очень необычной, но, надо признаться, и малоприятной. Вероятно (как об этом будет сказано ниже, в главе 21, специально посвященной этому важнейшему для всей проблемы межпланетных сообщений вопросу), человек не сможет находиться долгое время в условиях невесомости, и потому придется принимать меры для создания искусственной тяжести на спутнике.

Из-за отсутствия веса на спутнике исчезнет представление о том, где верх и где низ, столь привычное для жителей Земли.

Для того чтобы все-таки ходить на ногах, а не на голове, может быть, придется снабжать подошвы ботинок сильными магнитными подковками. Впрочем, понятие «ходить» в этих условиях тоже наполняется необычным смыслом. Мы можем передвигаться по Земле благодаря наличию трения между подошвами и почвой, но это трение возникает только потому, что нас прижимает к почве наш вес. Если нет веса, то нет и трения, и обычное хождение будет невозможным. Вероятно, стены кают и коридоров на спутнике придется снабдить множеством ручек и петель, чтобы люди могли передвигаться с их помощью. Эти стены, а также пол и потолок (впрочем, это разделение становится в данном случае весьма условным) придется покрыть толстым слоем мягкой обивки, иначе неосторожные движения обитателей спутника, которые способны унести их в самом неожиданном направлении, могут закончиться для них ссадинами и ушибами.

У нас на Земле сила тяжести осуществляет непрерывное тепловое перемешивание атмосферы. Если не предусмотреть на спутнике хитроумной вентиляции всех помещений, то люди будут задыхаться в продуктах своего собственного дыхания, мучиться от жары, «закутанные» в неподвижный слой нагретого их телом воздуха, а спичка или папироса погаснут из-за отсутствия кислорода. Это и наблюдалось в опытах, поставленных для изучения сгорания в условиях невесомости. Для этих опытов использовалась специальная стеклянная камера, внутри которой происходило сгорание капли топлива. Когда камера была неподвижной, то пламя горящей капли было обычным, но если капля горела в свободно падающей камере (эту камеру просто сбрасывали с некоторой высоты), то пламя свертывалось в шар и вскоре гасло. Чтобы раскрыть причины этого, с помощью специальных приборов фотографировали обычно невидимый воздух у горящей капли, и все сразу стало ясным. Когда камера была неподвижна, то образующиеся у самой капли продукты сгорания быстро поднимались кверху, так как они легче окружающего более холодного воздуха. Иное дело — в свободно падающей камере. Здесь веса нет, и потому продукты сгорания продолжают оставаться у горящей капли, укутывая ее шаровой газовой подушкой, не позволяющей свежему воздуху подойти к капле. Понятно, что сгорание капли вследствие этого прекращалось.

Попить на «невесомом» спутнике можно, лишь всасывая жидкость через специальные трубки или же пользуясь пластмассовыми тюбиками, вроде употребляемых для зубной пасты, из которых жидкость можно выдавливать прямо в рот. Ведь из опрокинутого графина вода не выльется в подставленный стакан, а если ее все-таки вытряхнуть туда, то она не заполнит его, как мы к этому привыкли на Земле, а расползется слоем по его стенкам или же соберется под действием поверхностного натяжения в шар. Неосторожное движение — и различных размеров шарики воды, супа или какао начнут передвигаться внутри кабины по всевозможным направлениям. Такие летающие шарики воды можно было видеть, когда демонстрировался фильм, снятый на самолете во время исследования невесомости. Впрочем, в другом аналогичном фильме «летал» в кабине уже сам летчик, точнее — пассажир самолета.

Вот почему организация питания Лайки на втором советском искусственном спутнике была совсем не простым делом. Нужно было в строго определенное время, в соответствии с предварительной тренировкой, выдвигать перед собакой специальные сосуды с пищей (впрочем, путем тренировки можно приучить собаку пользоваться постоянными сосудами).

Но, надо думать, на спутнике будет создана искусственная «тяжесть» и его обитателям не придется испытывать «экзотических» переживаний. Во всяком случае, авторы довольно многочисленных уже проектов спутников стремятся преодолеть невесомость на них, создать искусственное ощущение тяжести. Для этого предлагается единственно возможное средство — вращение.

В главе 3 уже шла речь об инерционных перегрузках, возникающих, когда скорость движения резко изменяет свою величину или направление. Эти перегрузки могут во много раз увеличить наш вес, когда происходит взлет космического корабля, но они же могут и восстановить вес, когда он исчезнет на спутнике. Для этого надо заставить спутник вращаться так, чтобы возникающее при вращении ускорение было равно ускорению земного притяжения. Впрочем, это ускорение может быть и меньшим, тогда вес на искусственной планете будет меньше земного и равен, допустим, весу на Марсе или Луне. Идея создания искусственной тяжести в виде силы инерции, возникающей при вращении, принадлежит также Циолковскому.

Конечно, аналогия искусственной тяжести, возникающей при вращении спутника, с настоящей тяжестью будет неполной. Пока пассажиры будут находиться в покое, никакого различия между искусственной и настоящей тяжестью они установить не смогут, но стоит им начать двигаться или вступить во взаимодействие с движущимися предметами, как сразу же возникнут необъяснимые на первый взгляд явления.

Представьте себе, что вы лежите на койке в каюте спутника, на котором создана искусственная тяжесть вращением спутника вокруг оси. Примерно в метре от вас на стене висит барометр. Вдруг он срывается со стены — обломился крючок. Вы сохраняете спокойствие — барометр упадет на почтительном расстоянии, вам ничто не грозит. Но увы, так было бы на Земле, где предметы имеют обыкновение падать по вертикали, отвесно. За незнание особенностей жизни на спутнике с искусственно созданной тяжестью вы сейчас же наказываетесь — падающий барометр описывает какую-то чудодейственную кривую и… обрушивается на вашу голову. Потирая ушиб, вы изучаете таинственный барометр, пытаясь выяснить причину столь необъяснимого поведения. Конечно, опыт должен быть повторен, иначе разгадку не найти.

Результаты первого невольного опыта еще так впечатляюще живы в вашей памяти, что на этот раз вы избираете более невинный объект для исследований — мячик для настольного тенниса. Вы решаете бросить его вверх — интересно, что случится с мячиком, полетит ли он действительно к потолку или тоже начнет куролесить по каюте. Ну так и есть, опять загадка! Мячик долетает до потолка, но стукается об него совсем не там, где это случилось бы в обычных условиях на Земле, а в стороне на метр с лишним, описывая в воздухе кривую. Но что это? Отскочив от потолка, мячик летит совсем не по прежней кривой, он вычерчивает в воздухе какую-то замкнутую фигуру и… шлепается прямо вам в руки. Что за чудеса?

Подумав, вы начинаете понимать, в чем дело. Вы вспоминаете, как гигантский маятник, подвешенный под куполом Исаакиевского собора в Ленинграде, на ваших глазах начинал отклоняться от вертикали, уходя от нанесенной на полу черты все дальше на восток. Ведь этот маятник Фуко, как его называют, служит одним из доказательств вращения Земли — не то же ли самое происходит и на спутнике, вращающемся вокруг оси? Все эти непонятные явления на спутнике связаны с действием силы инерции, всегда появляющейся при движении во вращающейся системе и носящей название силы Кориолиса, по имени открывшего ее итальянского ученого. Эта же сила вызывает такие грозные и важные для всей жизни на Земле явления, как циклоны и антициклоны, она отклоняет течение рек и т. д.

Искусственная тяжесть создается вращением.

«Чудеса» искусственной тяжести: 1 — так упал бы барометр на Земле; 2 — траектория падения барометра, как она представляется пассажиру корабля; 3 — та же траектория в представлении постороннего наблюдателя.

Вам все стало бы сразу ясно, если бы вы наблюдали за всеми событиями на спутнике, находясь не внутри, а вне его. При таком взгляде со стороны вы увидели бы, как барометр, сорвавшийся со стены, стал двигаться вовсе не вертикально вниз, как это было бы в условиях нормального тяготения, а полетел бы в сторону. Понятно, почему это так: падающий барометр движется со скоростью, которую имел поддерживавший его крючок. С интересом глядя на дальнейшие события, развертывающиеся в каюте спутника, вы видели бы, как каюта вращается вместе со всем спутником, и так как пол каюты находится на большем расстоянии от оси вращения, чем крючок, на котором висел барометр, то он движется с большей скоростью, чем этот крючок. Именно поэтому барометр упал не по вертикали, а отклонился в сторону, противоположную направлению вращения спутника (как пол Исаакиевского собора отстал от маятника). Ну, то, что он угодил как раз в вашу голову, не более чем невезение! Конечно, со временем обитатели спутника могли бы привыкнуть к особенностям искусственной «тяжести». Правда, для этого требуется одно необходимое условие — угловая скорость вращения должна быть достаточно мала, чтобы не вызывать раздражения вестибулярного аппарата пассажиров спутника.

Нужно сказать, что вращение спутника связано со многими неудобствами — его конструктивным усложнением, затруднениями в отношении ведения научных наблюдений, в особенности астрономических, и другими. Только доказанная на опыте необходимость в создании искусственной «тяжести» для того, чтобы человеческий организм мог нормально функционировать в течение длительного времени (об этой проблеме см. главу 21), заставит пойти на введение такого вращения.

Как же будут выглядеть искусственные спутники Земли, населенные людьми, — «эфирные жилища», как называл их Циолковский? В настоящее время уже разработано много проектов таких спутников и все время появляются новые проекты. Одни из них более обоснованны, другие — менее, одни рассчитаны на ближайшее будущее, другие — на более отдаленное.

По-разному представляют себе различные ученые, инженеры и изобретатели внешний вид и устройство межпланетной станции. Циолковский предлагал станцию в виде цилиндра с полусферами на концах — этот конструктивный элемент повторяется в различных вариациях во многих предложениях. По Кондратюку, станция должна представлять собой конструкцию из четырех частей, соединенных фермами. Предлагались станции в виде шара, колеса, сигары, различных сложных геометрических тел.

Одной из наиболее напрашивающихся форм спутника является шар: он потребует наименьшего расхода конструкционных материалов и представит ряд других удобств. Шар диаметром 20 метров должен делать 5-10 оборотов в минуту вокруг своей оси, чтобы вес на нем (у «экватора») равнялся земному или был вдвое меньше его.

Популярна идея создания спутника в виде огромного колеса, «бублика», или тора, как называют тело такой формы в геометрии. Это колесо может иметь сравнительно большой диаметр, 60–70 метров, и поэтому вращаться относительно своей оси с небольшой скоростью, например всего в 2–3 раза быстрее секундной стрелки. Для обитателей такого колеса его внешний обод был бы полом, а внутренний — потолком.

Имеются предложения построить спутник в виде гигантских гантелей. Две большие пассажирские кабины (или только одна из них пассажирская) соединены в этом случае трубой и вращаются вокруг общего центра массы. Иногда соединительная труба между пассажирскими кабинами заменяется просто тросами, как это предложил еще Циолковский.

По одному из последних предложений, спутник должен быть построен в виде центрального шара, в котором будет сосредоточена большая часть всей массы спутника, и отходящих от этого шара в стороны симметрично расположенных пассажирских кабин, двух или нескольких. При такой конструкции, как предполагается, перемещения пассажиров внутри спутника не вызовут значительного нарушения его равновесия.

Один американский инженер разработал в общих чертах проект искусственного спутника, представляющего собой целый город в Космосе с населением в… 20 тысяч человек! По этому проекту спутник должен состоять в основном из цилиндрической части длиной 900 метров, в которой будут находиться рабочие помещения, и связанного с этой частью жилого диска диаметром 450 метров и толщиной 10 метров. Диск будет вращаться для создания искусственной «тяжести». Общий объем всех сооружений такой межпланетной станции должен составлять примерно 85 миллионов кубометров. Наряду с научными лабораториями, магазинами, театрами и спортивными залами спутник должен располагать, по существу, целым заводом для сооружения космических кораблей.

Идея отделения жилой части спутника от его рабочих помещений с целью создания искусственной «тяжести» только в жилых помещениях находит отражение в ряде проектов. Переход из вращающейся в невращающуюся часть, и наоборот, осуществляется в этих случаях с помощью специальной камеры, или шлюза, расположенного у центра вращающейся части, где относительная скорость вращающихся частей минимальна.

Конечно, подобные межпланетные станции должны весить сотни и тысячи тонн. Вряд ли можно рассчитывать на то, что такую станцию можно построить на Земле и забросить с помощью ракеты на орбиту, находящуюся на высоте сотен или тысяч километров. Подобный поезд весил бы при взлете сотни тысяч, если не миллионы тонн. Очевидно, межпланетную станцию нужно будет построить на Земле, испытать ее, а затем снова разобрать на части и отправить ракетами на орбиту, где и будет осуществлена сборка станции.

Такое «строительство» в мировом пространстве будет представлять собой гигантскую по размаху и необычную по трудностям задачу. Создание этого небывалого в истории строительной техники «сооружения без фундамента» будет вестись, вероятно, много месяцев, а может быть, и не один год.

Сотни грузовых ракет будут доставлять к месту заатмосферной стройки все необходимое оборудование и части станции. Для этого придется создать специальные ракеты, способные переносить на орбиту увеличенный полезный груз. Так как возврат с орбиты на Землю представляет большие трудности, то он будет, вероятно, осуществляться только для ракет, перевозящих людей. Что касается грузовых ракет, то чрезвычайно целесообразным является их использование в качестве конструктивных элементов будущей станции. Подобное использование и предусматривается большинством проектов создания межпланетных станций.

Переброску грузов на орбиту как при строительстве межпланетной станции, так и при подготовке космического корабля в его далекий рейс можно будет осуществлять с помощью трех- и четырехступенчатых ракет. По одному из проектов, взлетный вес четырехступенчатой ракеты с полезным грузом 3,5 тонны должен равняться 870 тоннам (это соответствует отношению взлетного веса к полезной нагрузке 250, что под силу нашей ракетной технике). Этот огромный поезд имеет высоту 35 метров и расходует на полет к орбите более 700 тонн топлива. Последняя, четвертая, ступень поезда может быть снабжена крыльями, если на ней находятся люди и предусматривается, следовательно, ее посадка на Землю.

По другому, еще более внушительному проекту, трехступенчатая грузовая ракета с полезным грузом примерно 35 тонн должна весить при взлете с Земли около 7000 тонн! Высота этой ракеты около 80 метров, расход топлива равен 6100 тоннам. Последняя ступень и этой ракеты может иметь крылья для посадки на Землю.

Строители станции будут жить в небольших орбитальных кораблях — последних ступенях грузовых ракет. Все эти корабли будут составлять вместе своеобразный жилой поселок, мчащийся в мировом пространстве в непосредственной близости от стройки. На работу строители «Заатмосферстроя» будут выходить в своей космической спецодежде — описанных выше межпланетных костюмах, снабженные необходимым инструментом. Вероятно, будет целесообразно снабдить монтажников специальной обувью с электромагнитными подошвами, чтобы они могли стоять на поверхности будущего спутника.

Не следует преуменьшать трудностей создания такого искусственного спутника. Если запуск автоматических спутников Земли уже осуществлен Советским Союзом и США, а запуск небольших искусственных спутников с людьми будет осуществлен, несомненно, в недалеком будущем, то этого никак нельзя сказать о создании больших межпланетных станций. Строительство подобных станций в мировом пространстве связано не только с огромными техническими трудностями, но и с трудностями принципиального, астрономического характера. С этими трудностями очень непросто справиться, и строителям острова у берегов Земли придется проявить немало изобретательности и искусства.

Монтаж массивных конструкций спутника в мировом пространстве будет во многом облегчен отсутствием веса — не понадобятся ни подъемные краны, ни блоки, ни строительные леса. Однако надо все время помнить о том, что отсутствие тяжести не делает части спутника менее массивными. Забывшему о законе инерции монтажнику может не поздоровиться, если он по невнимательности окажется зажатым между двумя столкнувшимися массивными частями спутника!

Отсутствие веса не только упростит сборку спутника, но и позволит во многих случаях облегчить его конструкцию (можно применять полые детали уменьшенного сечения и т. д.). Вместе с тем это позволит, например, применять астрономические приборы гораздо больших размеров, чем на Земле. Некоторые телескопы на Земле весят больше 100 тонн, так как они должны быть массивными для увеличения их жесткости, для уменьшения деформаций под действием собственного веса. На спутнике может быть собрано из частей, доставленных с Земли, а затем посеребрено и отполировано зеркало гораздо больших размеров, чем на Земле; телескоп с таким зеркалом может весить гораздо меньше, чем даже небольшие телескопы на Земле.

При сооружении спутника будут использованы не только многие технологические приемы, уже применяющиеся с успехом в обычном «земном» строительстве, но и такие производственные методы, которые возможны лишь в условиях мирового пространства.

Так, для осуществления сварки, которая, несомненно, будет широко использована в конструкции спутника, с успехом могут быть применены высокопроизводительные сварочные автоматы, созданные советскими учеными. Эти автоматы намного облегчат труд строителей «Заатмосферстроя».

Но они смогут использовать и такие сварочные аппараты, которые совсем неизвестны земным строителям и монтажникам. Это будут гелиосварочные аппараты, аппараты солнечной сварки. Ведь сфокусированные этими аппаратами солнечные лучи, не ослабленные земной атмосферой, могут нагреть свариваемые детали почти до температуры Солнца, равной примерно 6000°, — выше, чем при любом другом виде сварки. Даже самые тугоплавкие материалы будут стремительно плавиться и испаряться при такой температуре. Так это и происходит в экспериментальных гелиоустановках, например в установке для сварки металлов, созданной в Академии наук СССР.

Но сварка, являющаяся наиболее прогрессивным методом монтажа строительных конструкций у нас на Земле, при сооружении спутника в Космосе будет, вероятно, все же оттеснена на второй план. Можно думать, что ее победит… клей. Конечно, это будет не обычный канцелярский гуммиарабик, а те замечательные склеивающие вещества, которые могут намертво соединять между собой самые различные материалы — сталь и стекло, пластмассу и алюминий, дерево и резину. Многие из этих чудоклеев уже созданы учеными и инженерами и широко используются в технике, но еще больше возможности их совершенствования. Немало может дать в этом отношении и удачное использование необычных условий Космоса, в котором будет происходить стройка. Ведь часто для прочного схватывания шва, требующего на Земле иной раз весьма сложных ухищрений, достаточно будет переместить склеиваемые детали из тени под палящие лучи Солнца или же, наоборот, спрятать их в тень. Такое перемещение может изменить температуру деталей на сотни градусов! Особенно важной эта технология может оказаться для сборки пластмассовых деталей, а их, возможно, будет большинство на межпланетной станции.

Обитаемый искусственный спутник Земли предлагается создавать с помощью флота таких грузовых трехступенчатых ракет. Каждая ракета весит при взлете 7000 тонн, из которых 90 процентов — топливо. Последняя ступень снабжена крыльями для посадки па Землю и на ней находится полезный груз весом 35 тонн — части сооружаемого спутника (по проекту Брауна).

Одной из наиболее серьезных проблем будет снабжение спутника энергией, необходимой для работы многочисленных исследовательских установок и удовлетворения бытовых нужд его обитателей. Очевидно, обычные теплосиловые установки, используемые на Земле, для этого не годятся, ибо они нуждаются для своей работы в воздухе.

Двигатели, которые будут использоваться на спутнике, например для привода во вращение электрического генератора, питающего многочисленные электродвигатели, должны работать на топливе, сгорающем без воздуха, то есть таком же, на котором работают и двигатели космических ракет. Вполне возможно применение газотурбинных двигателей, работающих на продуктах сгорания подобных топлив. Однако и такие двигатели полностью проблемы, конечно, не решают; ведь топливо, необходимое для их непрерывной работы, достается уж очень дорогой ценой — оно должно доставляться с Земли.

Конечно, наиболее разумным решением было бы создание на спутнике силовой установки, не нуждающейся ни в каком топливе.

Существует несколько способов решения этой задачи. Можно использовать, например, атомную установку, так как она расходует ничтожно малое количество топлива.

На небольших автоматических спутниках можно применить существующие уже в настоящее время атомные батарейки, использующие так называемый вольтэлектронный эффект, благодаря которому атомная энергия непосредственно преобразуется в электрическую. Основой такой батарейки служит какое-нибудь искусственное радиоактивное вещество, излучающее электроны, например получаемый в атомных котлах радиоизотоп стронция. Для этого тонкий слой стронция наносится на поверхность полупроводника — например германия или кремния, который служит усилителем. Проходя через пластинку такого полупроводника, каждый электрон, вылетевший из стронция, вызывает целый «ливень» из сотен тысяч электронов, находящихся в полупроводнике. В результате возникает электрический ток, правда, очень слабый: элемент размерами около 1 куб. сантиметра дает ток силой в 5 тысячных ампера при напряжении 0,2 вольта. Этот слабый ток может быть значительно усилен, если несколько подобных «атомных элементов» собрать в одну батарейку, как это и сделано в уже созданных устройствах для питания радиоприборов и других целей. Так как стронциевая атомная батарейка может работать непрерывно в течение десятков лет и имеет очень небольшие размеры и вес, то понятно, почему она представляет большой интерес для использования на автоматических спутниках. Конечно, на больших населенных спутниках должны быть применены мощные атомные установки другого типа. Уже сейчас созданы атомные установки огромной мощности, имеющие весьма небольшие размеры; они будут очень подходящими для использования на спутниках.

Весьма вероятным является к непосредственное использование солнечной энергии, которой так богато околосолнечное пространство. Этому способствует и то, что ночь на спутнике очень коротка. Ведь ночь на спутнике наступает тогда, когда спутник оказывается в тени, отбрасываемой Землей, для него ночь — это полное солнечное затмение.

Заманчиво было бы создать на спутнике силовую установку, в которой энергия, излучаемая Солнцем, прямо переходила бы в электрическую энергию. Наука знает, как это можно сделать, и даже не одним способом.

Так, например, можно воспользоваться для этой цели фотоэлементом, в котором световая энергия Солнца преобразуется непосредственно в электрическую. Уже созданы такие батареи с коэффициентом полезного действия 12 % и даже более. Как известно, на третьем советском спутнике, а также на одном из небольших американских спутников («Авангард») были установлены кремниевые полупроводниковые солнечные фотоэлементные батареи, надежно питавшие радиоаппаратуру спутников электроэнергией в течение многих месяцев их полета. Успешные результаты применения этих солнечных батарей имеют большое значение и для будущих обитаемых спутников и межпланетных кораблей.[60]

Можно воспользоваться также термоэлементом, в котором в электрическую переходит тепловая энергия. Известно, что если спай проволок двух разных специально подобранных металлов — например, железа и сплава константан, или платины и родия, или некоторых других металлов — подогревать, а другой спай этих же проволок сохранять при меньшей температуре, то в электрической цепи, составленной из таких проволок, потечет ток. Сила этого тока зависит от того, какая пара металлов применена и какова разница температур обоих спаев: горячего и холодного. Это свойство широко используется в настоящее время для измерения температур в машинах, печах, лабораторных установках (для этой цели создаются так называемые термопары).

Использование этого принципа для непосредственного преобразования тепловой энергии в электрическую очень заманчиво, потому что при этом во многих случаях сделались бы ненужными громоздкие и сложные тепловые двигатели. Но пока еще такой метод получения электричества на Земле применяется редко, так как он оказывается менее выгодным: удается использовать лишь небольшую часть тепла.

Другое дело в будущем, когда удастся полнее преобразовывать с помощью термоэлементов тепло в электричество.

Если один спай полупроводникового термоэлемента обогревать солнечными лучами, сконцентрированными отражающим зеркалом (оно может быть изготовлено из жести), а другой поместить в тень, то можно получить мощность порядка 100 ватт с 1 кв. метра поверхности зеркала или с 3 килограммов общего веса генератора. Примерно такую же мощность способен дать и фотоэлементный полупроводниковый электрогенератор.

Наиболее вероятным для больших межпланетных станций, а также для автоматических спутников большого размера будет использование солнечных теплосиловых установок, подобных тем, которые все шире начинают применяться и на Земле, в частности в южных районах нашей страны. В такой установке солнечные лучи собираются зеркалом и направляются на паровой котел, установленный в фокусе этого зеркала. Жидкость, текущая в трубках котла, например вода или ртуть, испаряется и направляется в паровую турбину, которая приводит в движение электрический генератор.

Модель населенного искусственного спутника Земли с полупроводниковой солнечной силовой установкой, показанная советскими учеными на Брюссельской выставке.

В конденсаторе отработанный пар снова превращается в жидкость, благодаря чему рабочая жидкость не расходуется, а все время циркулирует в замкнутом контуре. Расчеты показывают, что подобная установка в настоящее время будет более эффективной, чем любая другая, возможная на спутнике. Мощность установки может быть самой различной: от 1–2 киловатт для небольших автоматических спутников до тысяч киловатт для огромных межпланетных станций. К моменту сооружения первой такой мощной солнечной силовой установки для спутника уже будет накоплен большой опыт эксплуатации мощной солнечной энергостанции, сооружаемой у нас в стране, недалеко от столицы Армении — Еревана. Эта первая в мире солнечная электростанция промышленного значения будет иметь мощность 1200 киловатт. В центре огромного круга диаметром почти в километр будет сооружена башня высотой 40 метров с вращающимся паровым котлом. Большие зеркала (1293 штуки), расположенные на 23 кольцевых рельсовых путях, будут концентрировать солнечные лучи на этом котле, заставляя кипеть находящуюся в нем воду. Пар под давлением 30 атмосфер будет вращать турбину электростанции.

Солнечную силовую установку можно смонтировать непосредственно на спутнике, например в центре колеса, о котором шла речь выше. Однако в этом случае возникают некоторые трудности, связанные с вращением спутника: ведь зеркало должно «смотреть» все время на Солнце. На строящейся под Ереваном солнечной электростанции специальные автоматы будут всегда держать зеркала направленными к Солнцу, а другие автоматы, связанные с тележками поездов, на которых будут установлены зеркала, обеспечат такую установку плоской стенки котла, чтобы на нее всегда падали лучи, отраженные зеркалами.

Конечно, подобное устройство можно предусмотреть и на спутнике. Но как быть, если окажется необходимым вращение спутника для создания на нем искусственной тяжести? Можно думать, что в этом случае многие подсобные «предприятия» межпланетной станции будут размещены не на самом спутнике, а неподалеку от него. Тогда спутник со всем своим «населением» может вращаться сколько ему угодно — он будет лишь центром целого межпланетного поселка, небольшого архипелага островов.

Гелиоэлектростанция в Армении (проект).

Таким образом, спутник будет мчаться вокруг Земли в мировом пространстве, окруженный вспомогательными службами. Перечень этих служб может быть довольно большим. Здесь и энергостанция всего поселка — солнечная или атомная. И большое топливохранилище для межпланетных кораблей. И обсерватория. И громадное зеркало-прожектор, предназначенное для освещения Земли. И радиостанции для ретрансляции радио- и телепередач, для связи с Землей, межпланетными кораблями, планетами, а также для радиоастрономических и радиолокационных наблюдений. Эти подсобные сооружения могут быть либо неподвижными, либо вращаться по своим собственным законам — например, следя за Солнцем, звездами и т. д.

Обитатели спутника будут посещать эти службы либо с помощью небольших кораблей — своеобразных космических «побед» и «москвичей», либо «пешком», в соответствующих костюмах. Службы могут быть соединены между собой и со спутником электрокабелями для передачи энергии и другой связью. Широкие возможности открываются в этом случае для передачи энергии без проводов, так как в мировом пространстве передаваемая энергия не будет теряться и рассеиваться. Еще Циолковский предлагал использовать для этой цели потоки катодных лучей, то есть электронов. Успехи радиолокации могут позволить осуществление передачи высокочастотной электромагнитной энергии, генерируемой с помощью радиоламп, практически без потерь, причем передаваемая энергия может быть весьма значительной, вплоть до сотен и тысяч киловатт. Невидимые лучистые потоки передаваемой таким образом энергии могут быть использованы также для питания реактивных двигателей служебных кораблей и даже небольших двигателей, которыми может быть снабжен всякий «пловец» в мировом пространстве.

Не исключена возможность, что и межпланетные корабли смогут получать таким образом необходимую им энергию от плывущих по установленным орбитам мощных автоматических солнечных энергостанций; правда, расстояния должны быть для этого сравнительно небольшими.

Движущиеся по орбите межпланетные станции диаметром в несколько десятков метров можно будет видеть невооруженным глазом даже если они будут находиться на суточной орбите, то есть на высоте более 35 тысяч километров. В бинокль можно будет видеть и «свиту» главного спутника: мчащийся в небе межпланетный поселок, всю эту крупнейшую лабораторию ученых и станцию отправления межпланетных кораблей.

А какое красивое зрелище откроется земным жителям в праздничные дни, когда их далекие собратья на многочисленных искусственных светилах зажгут торжественные огни расцвечивания всего своего «флота мирового пространства»! Переливающиеся различными красками, сияющие то вспыхивающими, то вновь угасающими огнями разноцветных прожекторов, искусственные звезды будут во всех направлениях с различной скоростью пересекать вечернее небо. Будет казаться, что само загадочное мировое пространство, вся Вселенная салютует людям, победившим Космос.