Глава 18 ТРОЙНОЙ ПРЫЖОК
Тройной прыжок… Одно из самых красивых легкоатлетических упражнений, в котором сочетаются сила, ловкость, изящество, точный расчет.
Вот прыгун разбегается по сорокаметровой дорожке. Толчок от деревянного бруска — и спортсмен уже в воздухе. Но это не просто прыжок в длину. Коснувшись земли, прыгун снова отталкивается от нее. Используя накопленную скорость, он как бы летит в воздухе, перебирая ногами, взмахивая руками, весь вытянувшись вперед, как птица. И снова, уже в третий раз, взвивается спортсмен в воздух. Третий, заключительный прыжок — рекорд поставлен!
Но какое все это имеет отношение к астронавтике? Уж не является ли тройной прыжок, чего доброго, лучшим видом спортивной тренировки для будущих астронавтов в соответствии с новейшими достижениями науки о межпланетном полете?
Нет, дело совсем в другом. Мысль о тройном прыжке действительно приходит в голову в связи с некоторыми последними достижениями астронавтики, но речь здесь идет совсем не о спортивной подготовке будущих экипажей межпланетных кораблей.
Выше уже не раз указывалось, что наиболее выгодный межпланетный полет — это полет ступенчатый, с пополнением запаса топлива в пути, для чего могут быть использованы естественные или искусственные спутники планет. Легко понять, почему это так. Ведь если сразу взять на корабль все необходимое топливо, то большую часть его придется израсходовать на само это топливо, на его разгон или торможение. Другое дело, если «лишнего» топлива на корабле не будет.
Выгодность такого ступенчатого метода полета можно оценить на примере полета все на тот же Марс.
Пусть сначала наш корабль, стартующий с Земли в далекий путь к Марсу, имеет на борту весь запас топлива, необходимый для осуществления этого полета. Примем, что идеальная скорость для полета с Земли на Марс, посадки на нем и возвращения на Землю составляет 45 километров в секунду. При скорости истечения газов из двигателя 4 километра в секунду, которую можно рассчитывать получить в течение ближайшего десятилетия, необходимое отношение масс корабля (взлетной массы к массе корабля после выработки всего топлива) должно равняться в соответствии с формулой Циолковского примерно 76 тысячам. Это значит, что на тонну веса самого корабля при взлете должно приходиться примерно 76 тысяч тонн топлива. Конечно, построить такой корабль нельзя. Максимально возможное значение отношения масс для многоступенчатого корабля можно принять, вероятно, не больше 150. Значит, такой полет на Марс неосуществим.
Облегчим теперь задачу, допустив, что на Марсе имеется поселение людей и организовано производство ракетного топлива. Это значит, что идеальная скорость корабля при взлете с Земли должна теперь быть примерно вдвое меньшей. При этом отношение масс корабля при взлете с Земли будет уже равным только 275, да при взлете с Марса в обратный путь на Землю столько же, то есть всего 550. Вместо 76 тысяч тонн топлива на тонну веса корабля — всего 550. Вот какой огромный скачок!
А теперь попробуем использовать для заправки топливом не только Землю и Марс, но и их спутники — Луну и Деймос. Наш корабль совершит при этом как бы тройной прыжок в мировое пространство — с Земли на Луну, потом на Деймос и только затем уже на Марс.
Можно принять для расчета следующие значения идеальной скорости: для полета с Земли на Луну и обратно — по 16 километров в секунду; для полета с Луны на Деймос и обратно — по 9 километров в секунду; для полета с Деймоса на Марс и обратно — по 6 километров в секунду. При все той же скорости истечения, равной 4 километрам в секунду, это потребует следующих значений отношения масс корабля: для полета с Земли на Луну — 55; для полета с Луны на Деймос — 9,5; для полета с Деймоса на Марс — 4,5; или всего на весь полет
2 ? 55 + 2 ? 9,5 + 2 ? 4,5= 138.
Это значит, что всего будет израсходовано на полет 137 тонн топлива на 1 тонну веса корабля, причем одновременно на корабле должно быть запасено не более 54 тонн из этих 137.
Такой полет осуществим, хотя он и не прост, причем если бы иметь вместо массивной Луны небольшой искусственный спутник Земли, то эффект был бы еще более разительным. Вот какое преимущество дает тройной прыжок в Космос! Но это еще не все.
Вся космическая трасса разбивается при таком полете на три участка: полет в поле тяготения Земли, полет в поле тяготения Марса и связывающий эти два участка полет в поле солнечного тяготения — основной по продолжительности и дальности.
Условия полета корабля на каждом из этих участков оказываются различными. И легко видеть из-за чего. Конечно, все дело в силе тяжести.
Корабль, летящий на обоих крайних участках трассы, то есть совершающий взлет или посадку на Земле или другой планете, вынужден преодолевать мощное притяжение к ней. Другое дело — корабль, летящий на основном, среднем участке трассы. На такой корабль действует только притяжение к Солнцу. Но вследствие большого расстояния от Солнца притяжение к нему гораздо меньше, чем притяжение к любой планете вблизи ее поверхности. Вблизи Земли, например, притяжение к Солнцу меньше, чем притяжение к Земле, в 1650 раз.
Однако кораблю далеко не безразлично, какую силу тяжести ему приходится преодолевать, — от этого зависит и то, какой двигатель должен быть установлен на корабле, и сама конструкция корабля, и даже его внешний вид. Корабль, летящий на крайних участках космической трассы, должен был бы сильно отличаться от корабля, совершающего полеты на среднем участке этой трассы.
Но возможно ли, чтобы межпланетный корабль в полете менял свой вид, становился совершенно другим?
Нет, конечно, сделать это вряд ли возможно. Зато можно заставить летать на разных участках трассы не один и тот же, а разные корабли. В этом случае межпланетные путешественники должны будут совершать в пути две пересадки, причем для них наиболее целесообразно использовать межпланетные станции — искусственные спутники Земли и планет, как это и предлагал Циолковский.
На одном корабле пассажиры взлетят с Земли, затем на спутнике пересядут на другой корабль, совершающий рейсы между этим спутником и спутником Марса, например, а оттуда уже третий корабль доставит их на самый Марс. Не правда ли, подобное путешествие будет еще более похоже на тройной прыжок, совершаемый межпланетными путешественниками в мировом пространстве?
Такой метод осуществления межпланетного полета открывает совершенно новые и замечательные возможности, помимо уже отмечавшихся выше преимуществ использования искусственных спутников. Эти возможности таятся в особенностях полета на среднем участке космической трассы, в поле одного только солнечного тяготения.
Если корабль, взлетающий с Земли, должен иметь мощный двигатель и быть очень прочным и, значит, тяжелым, то корабль, совершающий рейсы между искусственными спутниками, может быть легким и иметь двигатель, развивающий очень небольшую тягу.
Понятно, почему это так. Ведь двигатель корабля, взлетающего с Земли, должен развивать такую тягу, чтобы ускорение корабля по крайней мере в 3–4 раза превышало ускорение силы тяжести на Земле. Но это значит, что тяга двигателя должна по крайней мере настолько же превосходить вес корабля. Если корабль весит при взлете, например, 500 тонн, что для межпланетного корабля вовсе не так много, то его двигатель при взлете должен развивать тягу более 2000 тонн. Естественно, что двигатели такой огромной тяги должны иметь большие размеры и вес.
Чем больше и тяжелее двигатель, тем больше и тяжелее сам корабль. Но не только поэтому корабль, взлетающий с Земли, неизбежно получается очень тяжелым. Результатом огромных ускорений при взлете корабля с Земли являются большие силы инерции, действующие на корабль. Чтобы выдержать эти инерционные перегрузки, корабль должен быть прочным и, значит, массивным, тяжелым.
Иная судьба у корабля, совершающего хоть и длительные, но легкие «прогулки» между спутниками на среднем участке трассы. Солнце притягивает его с небольшой силой, и преодолеть ее не так уж трудно. Двигатель корабля может иметь поэтому небольшую тягу, а сам корабль, не нагруженный большими силами инерции, может быть очень легким. Форма такого корабля, не совершающего полет в земной атмосфере, может быть избрана любой. Это, в частности, значительно упростит задачу создания искусственной тяжести на корабле, которая, вероятно, окажется необходимой именно на среднем участке трассы, как самом продолжительном.
Но если двигатель корабля, совершающего рейсы между орбитами искусственных спутников, должен иметь очень небольшую тягу и работать в течение длительного времени (чтобы значительно увеличить скорость корабля при малом ускорении), то невольно напрашивается мысль, нельзя ли в этом случае применить какой-нибудь другой реактивный двигатель вместо жидкостного ракетного. Ведь жидкостный ракетный двигатель тем именно и характерен, что способен развивать огромную тягу в течение сравнительно короткого времени, что и делает его особенно подходящим для кораблей, совершающих полет вблизи планет. Здесь же условия совсем иные, поэтому и свойства двигателя должны быть другими.
Еще Циолковский рассматривал различные возможные двигатели для этой цели. Ряд предложений появился и после Циолковского, но обычно все они отвергались, так как подобные двигатели не годились для полета вблизи Земли. Тройной прыжок, как мы видим, открывает широкие возможности в этом направлении.
Прежде всего возникает мысль, нельзя ли использовать для полета межорбитного корабля силу давления солнечных лучей? Существование этого давления было экспериментально подтверждено русским физиком П. Н. Лебедевым еще в 1900 году. Для того чтобы установить наличие такого давления и измерить его величину, Лебедеву пришлось осуществить тончайший эксперимент, поразивший даже тех, кто знал выдающиеся способности Лебедева как блестящего экспериментатора. Тонкость этого эксперимента связана с очень малой силой светового давления. Солнечные лучи давят, например, на пластинку, поставленную поперек их распространения на таком расстоянии от Солнца, как и Земля, с силой, равной примерно полкилограмма на квадратный… километр! Это очень малая сила,[122] но все же она играет большую роль в природе. Световое давление отворачивает от Солнца хвосты комет; оно же, как предполагают, имеет важное значение в жизни звезд, в частности ограничивая их максимальный размер.
Тройной прыжок.
Расчеты, связанные с использованием давления солнечных лучей для передвижения межпланетных кораблей в поле солнечного тяготения, были произведены Цандером. Используя тончайшие пластинки металла, можно снабдить корабли зеркалами огромной поверхности, отражающими солнечные лучи. Толщина этих листов металла может составлять тысячные доли миллиметра. Зеркало из тончайших, допустим алюминиевых пластинок, укрепленных на проволочном каркасе, может быть очень легким. По расчетам Цандера, при поверхности в 0,1 квадратного километра вес зеркала составит примерно 300 килограммов. Однако такое зеркало создаст силу всего в 50 граммов. Под действием этой силы скорость корабля весом 50 тонн (на Земле) будет увеличиваться каждую секунду всего на одну сотую миллиметра в секунду. Нет, очевидно, давление солнечных лучей неспособно разогнать межпланетный корабль даже в поле одного только солнечного тяготения.
Но если солнечные лучи, падающие на корабль извне, неспособны решить эту задачу, то, может быть, ее можно решить, используя давление световых лучей, которые будет испускать сам корабль? Если установить, скажем, на корабле мощный прожектор, то пучок света, отбрасываемый им, создаст реакцию точно так же, как оказывает давление пучок солнечных лучей, падающий на зеркало. Однако и эта реакция слишком мала, чтобы можно было создать световую ракету. Чтобы увеличить силу реакции светового пучка, нужно нагреть поверхность, излучающую этот пучок, до температуры в миллионы градусов. А это, конечно, невозможно.
Правда, для излучения света не обязательно должна иметься нагретая поверхность, существуют и другие методы получения светового излучения. Известна, например, так называемая хемилюминесценция — явление излучения света, сопровождающее некоторые химические реакции. При этом в световую энергию преобразовывается непосредственно химическая энергия вещества, а не тепловая энергия, как при обычном тепловом излучении. Однако до настоящего времени неизвестны химические реакции, которые сопровождались бы излучением световой энергии нужной нам интенсивности.
Наука знает, правда, и метод получения светового излучения огромной интенсивности без участия тепловой энергии. Это световое излучение связано с некоторыми ядерными превращениями вещества. Известно, например, что работающий атомный котел является мощным источником так называемого гамма-излучения, которое представляет собой такое же электромагнитное излучение, как и свет, но только с гораздо меньшей длиной волны, то есть более жесткое. Другой пример связан с явлением так называемой «аннигиляции» (этот термин, означающий буквально «уничтожение», не очень удачен), происходящим, например, при столкновении обычного отрицательного электрона с положительным (позитроном). В результате такого столкновения обе эти элементарные частицы исчезают, излучая два кванта света — фотоны большой интенсивности. Принципиально возможен такой же процесс «аннигиляции» более массивных частиц, при котором интенсивность светового излучения будет соответственно большей. Можно представить себе пока еще не существующий ядерный реактор, в котором будет происходить упомянутый выше процесс «аннигиляции» массивных частиц с соответствующим излучением огромных световых потоков. Это, правда, только принципиальная схема, далекая от практического осуществления. Когда эти процессы будут открыты и осуществлены, появится реальная возможность создания ракетного двигателя, в котором тяговая сила будет создаваться мощным потоком излучаемых в одном направлении фотонов.
Такая, как ее называют, фотонная ракета представит идеальные возможности для осуществления сверхдальних космических полетов, полетов к звездам. Тяга, создаваемая фотонной ракетой, будет относительно небольшой, но для полетов в межзвездном пространстве, вдалеке от массивных небесных тел, большая тяга и не понадобится. Однако это пока еще весьма отдаленная перспектива астронавтики, дело довольно далекого будущего. Приходится признать, что для создания реактивной тяги, движущей межпланетный корабль, пока еще нужно обязательно отбрасывать вещество. Излучение обладает для этого слишком малой массой.
В обычном жидкостном ракетном двигателе, как мы знаем, отбрасываемым веществом являются молекулы газов, продуктов сгорания топлива. Чтобы газы вытекали с большой скоростью, в двигателе должно быть создано высокое давление. Количество газов, вытекающих каждую секунду, должно быть большим, иначе тяга будет невелика.
Но двигатель межорбитного корабля должен развивать, как мы видели, небольшую тягу. Это позволяет использовать такой двигатель, в котором происходит отброс гораздо меньшей массы, чем в жидкостном ракетном двигателе, но зато с гораздо большей скоростью. Чтобы заставить вытекать из двигателя вещество с большой скоростью, можно воспользоваться вместо силы давления электрическими силами.
Форма межпланетного корабля, совершающего полеты вне земной атмосферы, может быть и неудобообтекаемой.
Можно, повидимому, использовать так называемую атомную псевдоракету, то есть силу реакции продуктов атомного распада, вытекающих из двигателя. Понятно, что осколки атомных ядер, вылетающих из такого двигателя, будут обладать огромной скоростью.
Другим из возможных реактивных двигателей этого рода является электронный или ионный двигатель. В этом двигателе реактивная тяга создается в результате истечения из него частиц вещества, имеющих электрический заряд, — электронов или ионов. Эти частицы разгоняются до большой скорости с помощью действующих на них электрических и магнитных полей.
Такой разгон электрически заряженных частиц широко применяется в технике. Достаточно указать на обыкновенный электрический ток, текущий по проводникам. Иногда в специальных лабораторных установках (так называемых ускорителях, например, циклотронах и др.) удается разгонять электрически заряженные частицы до огромных скоростей — в десятки и даже сотни тысяч километров в секунду.
Принцип устройства фотонной ракеты.
Идея электрического ракетного двигателя не является новой, она принадлежит Константину Эдуардовичу Циолковскому и высказана им в 1911 году.
В своей работе «Исследование мировых пространств реактивными приборами», опубликованной в 1911 году в журнале «Вестник воздухоплавания», Константин Эдуардович писал:
«Может быть, с помощью электричества можно будет со временем придавать громадную скорость выбрасываемым из реактивного прибора частицам. И сейчас известно, что катодные лучи в трубке Крукса, как и лучи радия, сопровождаются потоком электронов, масса каждого из которых, как мы говорили, в 4000 раз меньше массы атома гелия, а скорость достигает 30 — 100 тысяч километров в секунду, то есть она в 6 — 20 тысяч раз больше скорости обыкновенных продуктов горения, вылетающих из нашей реактивной трубы».
Рассматривалась эта идея электрического ракетного двигателя позднее и в трудах других основоположников астронавтики — француза Эно Пельтри, румына Оберта и др.
В настоящее время устройство электрического (ионного) двигателя можно представить себе следующим образом. На межпланетном корабле устанавливается мощный генератор электрического тока — динамо-машина. Энергия, необходимая для привода этого генератора, может быть получена с помощью атомной силовой установки или же за счет улавливаемой энергии Солнца.
Электрический ток, вырабатываемый генератором, используется для зарядки пластин гигантского конденсатора, представляющих собой, например, плоские тонкие проволочные сетки. В результате этого между пластинами конденсатора создается разность электрических потенциалов, которая и разгоняет электрически заряженные частицы вещества — ионы.
Космопорт будущего.
В специальной ионизационной камере от обычных молекул отрываются электроны, и таким образом получаются положительно заряженные частицы — ионы. Предлагается, например, для получения ионов пропускать пары цезия или рубидия через раскаленную платиновую сетку (журнал «Флайт», март 1959 г., и др.). При этом атомы этих металлов будут превращаться в ионы. Затем образовавшиеся ионы пропускаются между пластинами конденсатора и вытекают наружу с большой скоростью, например, равной 100 километрам в секунду или даже более. При таком истечении и создается реактивная тяга, необходимая для полета корабля.
Можно представить себе ионный ракетный двигатель и в виде приспособленного для установки на ракете ускорителя заряженных частиц. Подобные ускорители давно уже поставлены на вооружение ядерной физики, с их помощью ученые разгадывают тайны строения атомных ядер.
В спиральном канале-трубопроводе такого ускорителя частицы будут разгоняться до огромных скоростей, а затем выпускаться через прямой участок трубы наружу. При этом будет возникать необходимая для полета корабля реактивная тяга. Недостатком подобного метода является, однако, малое число излучаемых частиц и, следовательно, малая величина тяги. Правда, развитие ионных двигателей такого рода могло бы в значительной мере устранить этот недостаток.
В частности, по одному из проектов ионный двигатель должен быть создан на принципе линейного ускорителя заряженных частиц, в котором эти частицы движутся только по прямым траекториям. В двигатель вводятся распыленные частицы рабочего вещества или же это вещество в виде газа. Под действием электронов, бомбардирующих частицы, они ионизируются, то есть превращаются в ионы. Те частицы, которые не стали ионами, отсасываются специальным вакуум-насосом, а ионы, имеющие положительный электрический заряд, проходят через ускоритель, где с помощью импульсов тока высокого напряжения разгоняются до больших скоростей. Вытекающий из двигателя поток ионов и создает реактивную тягу. Электроны, образовавшиеся при ионизации частиц, также выбрасываются из двигателя в том же направлении с помощью специальной «электронной пушки». Это необходимо для того, чтобы двигатель и ракета не заряжались в результате истечения ионов.
Схема устройства ионного реактивного двигателя.
Конечно, ионы в таком двигателе разгоняются до несравненно меньших скоростей, чем в ускорителях элементарных частиц, — здесь нет необходимости в подобных скоростях. Все же скорость истечения ионов может быть гораздо больше, чем из обычных жидкостных ракетных двигателей. В этом несомненное преимущество ионных межорбитных кораблей.
Но ни на минуту нельзя забывать и о недостатках ионных двигателей, связанных, главным образом, с требованиями, которые предъявляются к электрическим силовым установкам ионных ракет. Эти установки должны генерировать электрический ток очень большой силы, а их мощность при сколько-нибудь значительной тяге двигателя становится колоссальной. Так, если ионный двигатель рассчитан на такую тягу, какую развивают двигатели современных реактивных самолетов, то его мощность будет большей, чем самой крупной из существующих гигантских гидроэлектростанций! Вот почему ионные двигатели могут быть применены лишь в тех случаях, когда их тяга невелика, как, например, в случае межорбитных космических кораблей.
Вот как может выглядеть проект экспедиции на Марс, совершаемой по методу тройного прыжка с использованием ионных ракет. Вся экспедиция совершается на 10 ионных межпланетных кораблях, которые собираются на искусственных спутниках Земли из частей, доставляемых на грузовых ракетах с Земли. Для доставки этих частей и экипажа кораблей используется целый флот из 50 грузовых трехступенчатых ракет, которым придется совершить около 1000 полетов. Каждая ракета весит при взлете примерно 6500 тонн; две первые ступени каждой ракеты возвращаются на Землю на парашютах, третья — в планирующем полете, для чего она делается крылатой.
Вес каждого межорбитного ионного корабля, на котором астронавты достигнут орбиты Марса, будет больше 3500 тонн. На трех небольших кораблях, весом по 200 тонн, 50 человек смогут совершить посадку на Марс. Один из этих трех кораблей останется на Марсе, а на двух остальных счастливчики, побывавшие на Марсе, возвратятся ко всей межпланетной армаде, поджидающей их на орбите у Марса. Три межпланетных ионных корабля вместе с двумя посадочными останутся на орбите у Марса, превратившись в искусственных спутников Марса, а на семи остальных кораблях участники экспедиции возвратятся на орбиту искусственного спутника Земли, откуда с помощью ракет будут доставлены на Землю.
По расчетам, вся эта экспедиция продлится около трех лет и потребует, конечно, больших средств. Так, например, на операции по снабжению, то есть на полеты грузовых ракет, придется затратить около 5 миллионов тонн топлива, а на полет межпланетных ионных кораблей — примерно 40 тысяч тонн.
Межпланетный ионный корабль для полетов в слабом поле тяготения.
Этот же автор (проект принадлежит Брауну) предложил затем более простой план организации экспедиции на Марс, требующий значительно меньших затрат. По новому проекту экспедиция состоит уже только из 12 человек, из которых 9 человек совершают посадку на планету. На орбите у Земли, в Космосе, собираются два межпланетных ионных корабля, один — с пассажирами, другой — с грузом, в том числе с небольшим кораблем, на котором будет совершена посадка на Марс. Вес каждого из этих кораблей при отлете с земной орбиты — 1700 тонн. Для переброски всего необходимого на орбиту у Земли, на которой будут строиться и снаряжаться межпланетные корабли, на этот раз понадобится 335 полетов трехступенчатых ракет взлетным весом 1280 тонн, имеющих на борту 10 тонн полезной нагрузки. Общий расход топлива на эту «упрощенную» экспедицию составит 445 тысяч тонн. История уже знает воздушные операции, потребовавшие больших затрат топлива для самолетов.
Для того чтобы можно было организовать подобную экспедицию, нужны еще годы (если не десятилетия) настойчивых исследований, нужна совместная работа многих ученых, конструкторов, инженеров, рабочих, должны быть решены сложнейшие научно-технические задачи. Но зато как велико будет значение этой победы, одержанной людьми в борьбе с природой!