Глава 13 Экология и учение о биосфере
Отличия растений от животных.
Как считают большинство биологов, примерно 1 млрд. лет назад произошло разделение живых существ на два царства — царство растений и царство животных. Различия между ними можно сгруппировать по трем признакам: по структуре клеток и их способности к росту, по способу питания и по способности к движению.
Отнесение живых существ к растениям и животным проводится не по каждому признаку, а по совокупности различий. Так, кораллы, моллюски, речная губка-бодяга всю жизнь остаются неподвижными и тем не менее по другим свойствам относятся к животным. Существуют насекомоядные растения, которые по способу питания считаются животными. Выделяют и переходные типы. Так, например, эвглена зеленая питается, как растение, а двигается, как животное. И все же три отмеченные группы различий являются основными в подавляющем большинстве случаев. Кристаллы растут, но не воспроизводятся; растения воспроизводятся, но не двигаются; животные двигаются и воспроизводятся. В то же время у растений некоторые клетки сохраняют способность к активному росту на протяжении всей жизни организма. В пластидах — белковых телах клеток растений — заключен хлорофилл, придающий растениям зеленую окраску. Его наличие связано с основной космической функцией растений — улавливанием и превращением солнечной энергии. Эта функция определяет строение растений. «Свет лепит формы растений, как из пластического материала», — говорил австрийский ботаник И. Визнер. По словам В.И. Вернадского, «в биосфере видна неразрывная связь между освещающим ее световым солнечным излучением и находящимся в ней зеленым живым миром организованных существ»[97].
У животных клеток есть центриоли, но нет хлорофилла и клеточной стенки, мешающей изменению формы. Что же касается различий в способе питания, то большинство растений необходимые для жизни вещества получает в результате поглощения минеральных соединений, а животные питаются готовыми органическими соединениями, которые создают растения в процессе фотосинтеза.
В ходе развития животного мира происходила дифференциация органов по функциям, которые они выполняют. Так возникли двигательная, пищеварительная, дыхательная, кровеносная, нервная системы и органы чувств.
В XVIII–XIX вв. ученые потратили много усилий для систематизации всего многообразия растительного и животного мира. Появилось новое направление в биологии — систематика. Были созданы классификации растений и животных в соответствии с их отличительными признаками. Основной структурной единицей был признан вид, а более высокие уровни составили последовательно род, отряд, класс.
На Земле существует 500 000 видов растений и 1,5 млн. видов животных, в том числе позвоночных — 70 000, птиц — 16 000, млекопитающих — 12 540 видов. Подробная систематизация различных форм жизни создала предпосылки для изучения живого вещества как целого, что впервые осуществил выдающийся русский ученый В.И. Вернадский в учении о биосфере.
Учение В.И. Вернадского о биосфере.
В развитие биологии в XX в. большой вклад внесли русские ученые. Мы говорили о первой научной модели происхождения жизни, созданной А.И. Опариным.
Русская биологическая школа имеет давние традиции. В.И. Вернадский был учеником выдающегося почвоведа В.В. Докучаева, который создал учение о почве как своеобразной оболочке Земли, являющейся единым целым, включающим в себя живые и неживые тела. По существу, учение о биосфере было продолжением и распространением идей В.В. Докучаева на более широкую сферу реальности. В дальнейшем развитие биологии в этом направлении привело к созданию одной из основных наук второй половины XX в. — экологии.
Существуют два основных определения понятия «биосфера». Первоначально биосфера понималась как совокупность всех живых организмов на Земле. В.И. Вернадский, изучавший взаимодействие живых и неживых систем, выдвинул принцип неразрывной связи живого и неживого, переосмыслив понятие биосферы. В его понимании биосфера — это единство живого и неживого.
Такое толкование определило взгляд В.И. Вернадского на проблему происхождения жизни на Земле. Рассматривались следующие варианты: жизнь возникла до образования Земли и была занесена на нее; жизнь зародилась после образования Земли; жизнь зародилась вместе с формированием Земли. Вернадский придерживался последней из этих точек зрения и считал, что нет убедительных научных данных о том, что живое когда-либо не существовало на нашей планете. Иными словами, биосфера была на Земле всегда.
Под биосферой, таким образом, В.И. Вернадский понимал тонкую оболочку Земли, в которой все процессы протекают под непосредственным воздействием живых организмов. Биосфера располагается на стыке литосферы, гидросферы и атмосферы в диапазоне от 10 км в глубь Земли до 33 км над Землей. Занимаясь им же созданной биогеохимией, изучающей распределение химических элементов по поверхности планеты, В.И. Вернадский пришел к выводу, что нет практически ни одного элемента таблицы Менделеева, который не включался бы в живое вещество. Ученый подчеркивал также важное значение энергии и называл живые организмы механизмами превращения энергии.
Эмпирические обобщения В.И. Вернадского.
Результаты своих исследований В.И. Вернадский называл эмпирическими обобщениями. Их мы и рассмотрим в данном разделе.
Вывод 1. Первым выводом из учения о биосфере является принцип целостности биосферы. По мнению В.И. Вернадского, «можно говорить о всей жизни, о всем живом веществе как о едином целом в механизме биосферы»[98]. Строение Земли, по В.И. Вернадскому, есть согласованный в своих частях механизм. «Твари Земли являются созданием космического процесса, необходимой и закономерной частью стройного космического механизма»[99].
Эту мысль подтверждают узкие пределы существования жизни — физические постоянные, уровни радиации и т. п. Создается впечатление, будто кто-то создал такую среду, чтобы жизнь стала возможна. Так, существует гравитационная постоянная, или константа всемирного тяготения, определяющая размеры звезд, температуру и давление в них, влияющие на ход реакций. Если она будет чуть меньше, звезды станут недостаточно горячими для протекания в них ядерных реакций; если чуть больше — звезды превзойдут «критическую массу» и обратятся в «черные дыры», выпав тем самым из круговорота материи. Константа сильного взаимодействия определяет ядерный заряд в звездах. Если ее изменить, цепочки ядерных реакций не дойдут до углерода и азота. Постоянная электромагнитного взаимодействия определяет конфигурацию электронных оболочек и прочность химических связей; ее изменение делает Вселенную мертвой. Существует также и антропный принцип, в соответствии с которым мировые константы как бы подгоняются к возможности существования жизни.
Вывод 2. С принципом целостности биосферы и неразрывной связи в ней живых и косных компонентов соотносится и принцип гармонии и организованности биосферы. В биосфере, по В.И. Вернадскому, «все учитывается и все приспособляется с той же точностью, с той же механичностью и с тем же подчинением мере и гармонии, какую мы видим в стройных движениях небесных светил и начинаем видеть в системах атомов вещества и атомов энергии»[100].
Вывод 3. По мнению В.И. Вернадского, живое играет огромную роль в эволюции Земли. «На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем организмы, взятые в целом… Все минералы верхних частей земной коры — свободные алюмокремниевые кислоты (глины), карбонаты (известняки и доломиты), гидраты окиси Fe и Al (бурые железняки и бокситы) и многие сотни других непрерывно создаются в ней только под влиянием жизни»[101]. Лик Земли как небесного тела, заключает В.И. Вернадский, фактически сформирован жизнью.
Вывод 4. Биосфера играет космическую роль в трансформации энергии. «Можно рассматривать всю эту часть живой природы как дальнейшее развитие одного и того же процесса превращения солнечной световой энергии в действенную энергию Земли»[102].
Вывод 5. Растекание жизни есть проявление ее геохимической энергии. Живое вещество, подобно газу, растекается по земной поверхности в соответствии с правилом инерции. Мелкие организмы размножаются гораздо быстрее, чем крупные. Скорость передачи жизни зависит от плотности живого вещества.
Вывод 6. Космическая энергия вызывает давление жизни, которое достигается размножением. Размножение организмов уменьшается по мере увеличения их количества.
Вывод 7. В.И. Вернадский предложил понятие автотрофности. Автотрофными называют организмы, которые берут все нужные им для жизни химические элементы в биосфере из окружающей их косной материи и не требуют для построения своего тела готовых соединений другого организма. Поле существования этих зеленых автотрофных организмов определяется прежде всего областью проникновения солнечных лучей.
Вывод 8. Формы нахождения химических элементов: горные породы и минералы; магмы; рассеянные элементы; живое вещество. В.И. Вернадский сформулировал закон бережливости в использовании живым веществом простых химических тел: раз вошедший элемент проходит длинный ряд состояний и организм вводит в себя только необходимое количество элементов.
Вывод 9. Жизнь целиком определяется полем устойчивости зеленой растительности. Пределы жизни определяются в конце концов физико-химическими свойствами соединений, строящих организм, их неразрушимостью в определенных условиях среды. Максимальное поле жизни определяется крайними пределами выживания организмов. Верхний предел жизни обусловливается лучистой энергией, присутствие которой исключает жизнь и от которой предохраняет озоновый щит. Нижний предел связан с повышением температуры. Интервал в 433 °C (от -252 °C до +180 °C) является предельным тепловым полем.
Вывод 10. Биосфера в основных своих чертах представляет один и тот же химический аппарат с самых древних геологических периодов. Жизнь оставалась в течение геологического времени постоянной, менялась только ее форма. Само живое вещество не является случайным созданием.
Вывод 11. Повсеместное распространение жизни в биосфере. Жизнь постепенно, медленно приспосабливаясь, захватила биосферу и захват этот не закончился. Поле устойчивости жизни есть результат приспособленности в ходе времени.
Вывод 12. Постоянство количества живого вещества в биосфере. Количество свободного кислорода в атмосфере того же порядка, что и количество свободного живого вещества (1,5 ? 1021 г и 1020 — 1021 г). Скорость передачи жизни не может перейти пределы, нарушающие свойства газов. Идет борьба за нужный газ.
Вывод 13. Всякая система достигает устойчивого равновесия, когда ее свободная энергия равняется или приближается к нулю, т. е. когда вся возможная в условиях системы работа произведена. Понятие устойчивого равновесия является исключительно важным. Мы к нему вернемся позже.
Основные понятия экологии.
В буквальном смысле слово «экология» (от греч. oikos — жилище, местообитание) переводится как наука о «доме». Экология — наука о местообитании живых существ, их взаимоотношении с окружающей средой. Она изучает организацию и функционирование надорганизменных систем различных уровней: популяций, сообществ, экосистем. Термин «экология» был предложен немецким зоологом Э. Геккелем в 1866 г., но подлинного расцвета эта наука достигла в XX в., и ее развитие далеко не закончено.
Если учение о биосфере исследует целостности высшего порядка, то экология изучает различные уровни целостности, промежуточные между организменным и глобальным. Выделяют аутоэкологию, которая исследует взаимодействие отдельных организмов и видов со средой, и синэкологию, которая изучает сообщества. Сообществом, или биоценозом, называют совокупность растений и животных, населяющих участок среды обитания. Совокупность сообщества и среды носит название экологической системы, или биогеоценоза.
Основные понятия экологии — «популяция», «местообитание», «экологическая ниша». Популяцией называется группа организмов, относящихся к одному или близким видам и занимающая определенную область, называемую местообитанием. Совокупность условий, необходимых для существования популяции, носит название экологической ниши. Экологическая ниша определяет положение вида в цепях питания.
В зависимости от характера питания строится пирамида питания, состоящая из нескольких трофических уровней. Низший уровень занимают автотрофные организмы, питающиеся неорганическими соединениями, прежде всего растения. На более высоком уровне располагаются гетеротрофные организмы, использующие в пищу биомассу растений. Затем идут гетеротрофы второго порядка, питающиеся гетеротрофами первого порядка, т. е. травоядными животными, и т. д.
Пирамида питания связана с круговоротом вещества в биосфере, который выглядит следующим образом:
Один из важнейших принципов экологии — принцип устойчивости. В соответствии с ним чем больше трофических уровней и чем они разнообразнее, тем более устойчива биосфера.
Экология показала также, что живой мир — не совокупность живых существ, а единая система, сцементированная множеством цепочек питания и иных взаимоотношений. Если даже небольшая часть живого мира погибнет, погибнет и все остальное. В то же время, как писал Н. Винер, «сообщество простирается лишь до того предела, до которого простирается действительная передача информации»[103].
К важным выводам экологии можно отнести следующие, отмечавшиеся еще В.И. Вернадским:
1) каждый организм может существовать только при условии постоянной тесной связи со средой, т. е. с другими организмами и неживой природой;
2) жизнь со всеми ее проявлениями произвела глубокие изменения на нашей планете. Совершенствуясь в процессе эволюции, живые организмы все шире распространялись на планете, стимулируя перераспределение энергии и веществ;
3) размеры популяции возрастают до тех пор, пока среда может выдерживать их дальнейшее увеличение, после чего достигается равновесие. Численность колеблется вблизи равновесного уровня.
Принцип равновесия играет в живой природе огромную роль. Равновесие существует между видами и смещение его в одну сторону, скажем, уничтожение хищников, может привести к исчезновению и их жертв, так как последним будет не хватать пищи. Естественное равновесие существует и между организмом и окружающей его неживой средой. Великое множество равновесий поддерживает общее равновесие в природе.
Равновесие в живой природе не статично, как равновесие кристалла, а динамично. Оно представляет собой движение вокруг точки устойчивости. Если эта точка не меняется, то такое состояние называется гомеостазом (от греч. h?moios — подобный, одинаковый и st?sis — неподвижное состояние). Гомеостаз — механизм, посредством которого живой организм поддерживает параметры своей внутренней среды, противодействуя внешним воздействиям, на таком постоянном уровне, который обеспечивает нормальную жизнь. Кровяное давление, частота пульса, температура тела — все это обусловлено гомеостатическими механизмами, которые работают настолько хорошо, что мы обычно их не замечаем. В пределах «гомеостатического плато» действует отрицательная обратная связь, а за его пределами — положительная обратная связь, приводящая к гибели системы.
В экосистемах необходим период эволюционного приспособления к условиям среды, который называется адаптацией. Только после него устанавливается надежный гомеостатический контроль. Адаптация организма может быть структурной, физиологической и поведенческой. К структурной адаптации относятся изменение окраски, строения тела, органов и т. д. (например, бабочки под влиянием фабричного дыма из светлых становятся темными). К физиологической адаптации относится, скажем, появление слуховой камеры у летучих мышей, позволяющее иметь идеальный слух. Пример поведенческой адаптации демонстрирует мотылек с полосатыми крыльями, садящийся на полосатые листья лилий так, чтобы его полоски были параллельны полоскам на листьях.
Механизм, ответственный за эволюцию живой природы, получил название гомеореза. Он дает возможность как бы перескакивать с одного устойчивого состояния на другое через неравновесные точки («с кочки на кочку»), тем самым проявляя такую отличительную особенность живых тел, как способность поддерживать устойчиво неравновесное состояние. По определению Э. Шрёдингера, «жизнь — это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время»[104]. Средством, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), является энергия, получаемая организмом из окружающей среды с продуктами питания.
Закономерности развития экосистем.
Одним из основных достижений экологии стало обнаружение того обстоятельства, что развиваются не только организмы и виды, но и экосистемы.
Развитие экосистем — сукцессия — это последовательность сообществ, сменяющих друг друга в данном районе.
Сукцессия в энергетическом смысле связана с фундаментальным сдвигом потока энергии в сторону увеличения количества энергии, направленной на поддержание системы. Сукцессия состоит из стадий роста, стабилизации и климакса. Их можно различать на основе критерия продуктивности системы: на первой стадии продукция растет до максимума, на второй остается постоянной, на третьей уменьшается до нуля по мере разрушения систем.
Различия между растущими и зрелыми системами представлены в таблице 3.
Таблица 3. Различия между растущими и зрелыми системами.
Обратите внимание на обратную связь зависимости между энтропией и информацией, а также на то, что развитие экосистем идет в направлении повышения их устойчивости, достигаемой за счет увеличения разнообразия. Распространив этот вывод на всю биосферу, мы получаем ответ на вопрос, зачем природе нужны 2 млн. видов. До возникновения экологии считалось, что эволюция ведет к замене одних менее сложных и приспособленных видов другими, вплоть до человека — венца природы. Менее сложные виды, дав дорогу более сложным, становятся ненужными. Экология разрушила этот удобный для человека миф. Теперь ясно, почему опасно уменьшать многообразие природы, как это делает современный человек.
К основным законам экологии относятся также:
— «закон минимума» Ю. Либиха — развитие ограничивают лишь те факторы, которые имеются в недостаточном количестве;
— «закон толерантности» — избыток какого-либо фактора (тепло, свет, вода) тоже может ограничивать распространение данного вида;
— принцип Олли — недонаселенность и перенаселенность могут оказывать лимитирующее влияние;
— закон конкурентного исключения — два вида, занимающие одну нишу, не могут сосуществовать в одном месте неограниченно долго. Кроме того, существуют следующие закономерности:
— чем больше трофических уровней, тем больше потери энергии в системе;
— развитие экосистем во многом аналогично развитию отдельного организма;
— принцип гетеротрофной утилизации продуктов автотрофного метаболизма (это свойство экосистем сейчас под угрозой в связи с хозяйственной деятельностью человека, ведущей к накоплению отходов, которые природа не в состоянии утилизировать).
Закон минимума был сформулирован Ю. Либихом в 1840 г., ученый установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в б?льших количествах, а теми, которых нужно немного, но которых мало и в почве. Закон Либиха гласил: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Впоследствии к питательным веществам добавился ряд других факторов, например, температура.
Действие данного закона ограничивают два принципа. Первый принцип заключается в том, что «закон минимума» строго применим только в условиях стационарного состояния. Более точная его формулировка такова: «При стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму». Второй принцип касается взаимодействия факторов. Высокая концентрация или доступность некоторого вещества могут изменять потребление минимального питательного вещества. Организм иногда заменяет одно дефицитное вещество другим, имеющимся в избытке.
«Закон толерантности» сформулирован в самой экологии и обобщает «закон минимума» следующим образом: «Отсутствие или невозможность развития экосистемы определяется не только недостатком, но также и избытком любого из факторов (тепло, свет, вода)». Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Закон толерантности был предложен в 1913 г. В. Шелфордом. Этот закон дополняют следующие положения:
— организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого;
— организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены;
— если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности к другим экологическим факторам может сузиться;
— в природе организмы очень часто оказываются в условиях, не соответствующих оптимальному значению того или иного фактора, определенного в лаборатории;
— период размножения обычно является критическим, в это время многие факторы среды часто оказываются лимитирующими.
Живые организмы изменяют условия среды, чтобы ослабить лимитирующее влияние физических факторов. Виды с широким географическим распространением образуют адаптированные к местным условиям популяции, которые называются экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям. В зависимости от того, закреплены ли экотипы генетически, можно говорить об образовании генетических рас или о простой физиологической акклимации.
В свете обобщающей концепции лимитирующих факторов наиболее важными факторами на суше являются свет, температура и вода (осадки), а в море — свет, температура и соленость. Эти физические условия существования могут быть лимитирующими и благоприятными. Все факторы среды зависят друг от друга и действуют согласованно.
Из других лимитирующих факторов можно отметить атмосферные газы (углекислый газ, кислород) и биогенные соли. Формулируя «закон минимума», Либих и имел в виду лимитирующее воздействие жизненно важных химических элементов — микроэлементов, присутствующих в среде в небольших и непостоянных количествах. К микроэлементам относятся железо, медь, цинк, бор, кремний, молибден, хлор, ванадий, кобальт, йод и натрий. Многие микроэлементы, подобно витаминам, действуют как катализаторы. Фосфор, калий, кальций, сера, магний, требующиеся организмам в сравнительно больших количествах, называются макроэлементами.
Важным лимитирующим фактором в современных условиях является загрязнение природной среды. Оно происходит в результате внесения в среду веществ, которых в ней либо не было (металлы, новые синтезированные химические вещества) и которые не разлагаются вовсе, либо которые существуют в биосфере (например, углекислый газ), но вносятся в чрезмерно больших количествах, не дающих возможности их переработать естественным способом. Образно говоря, загрязняющие вещества — это ресурсы, находящиеся не на своем месте. Загрязнение приводит к нежелательному изменению физических, химических и биологических характеристик среды, которое оказывает неблагоприятное влияние на экосистемы и человека. Цена загрязнения — здоровье людей. Загрязнение увеличивается как в результате роста населения и его потребностей, так и в результате использования новых технологий, обслуживающих эти потребности. Оно бывает химическим, тепловым и шумовым.
Главный лимитирующий фактор, по Ю. Одуму, — размеры и качество «ойкоса», или нашей «природной обители», а не просто «число калорий», которые можно выжать из земли. Ландшафт — это не только склад запасов, но и дом, в котором мы живем. «Следует стремиться к тому, чтобы сохранить, по меньшей мере, треть всей суши в качестве охраняемого открытого пространства. Это означает, что треть всей нашей среды обитания должны составлять национальные или местные парки, заповедники, зеленые зоны, участки дикой природы и т. п.»[105]. Ограничение использования земли является аналогом природного регулирующего механизма, называемого «территориальным поведением». При помощи этого механизма многие виды животных избегают скученности и вызываемого ею стресса.
К лимитирующим факторам относится и численность популяции. Это обобщается в принципе Олли: «Степень агрегации (так же, как и общая плотность), при которой наблюдается оптимальный рост и выживание популяции, варьирует в зависимости от вида и условий, поэтому как „недонаселенность“ (или отсутствие агрегации), так и перенаселенность могут оказывать лимитирующее влияние». Некоторые экологи считают, что принцип Олли приложим и к человеку. Если это так, то отсюда возникает потребность в определении максимальной величины городов, стремительно растущих в настоящее время.
Закон конкурентного исключения формулируется следующим образом: «Два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте неограниченно долго». То, какой вид побеждает, зависит от внешних условий. В сходных условиях победить может каждый. Важным для победы обстоятельством является скорость роста популяции. Неспособность вида к биотической конкуренции ведет к его оттеснению и необходимости приспособления к более трудным условиям и факторам.
Первыми экосистемами, которые стали изучать с помощью количественных методов, были системы «хищник-жертва». Американец А. Лотка в 1925 г. и итальянец В. Вольтерра в 1926 г. создали математические модели роста отдельной популяции и динамики популяций, связанных отношениями конкуренции и хищничества. Исследование системы «хищник-жертва» показало, что для популяции жертв типичным способом эволюции является увеличение рождаемости, а для популяции хищников — совершенствование способов ловли жертвы.
К интересным результатам привело изучение системы «паразит-хозяин». Казалось бы, отбор должен вести к уменьшению вредности паразита для хозяина, но это не так. И в этой паре идет конкурентная борьба, в результате которой усложняются и те, и другие. Гибель одного ведет к гибели другого, а сосуществование увеличивает сложность всей системы.
На изучении эволюции системы «паразит-жертва» основана гипотеза, объясняющая значение полового диморфизма. Бесполое размножение, с точки зрения теории Ч. Дарвина, — значительно более эффективный процесс. Двойная стоимость полового размножения (учитывая, что мужские особи не включаются в создание и выращивание потомства так, как женские) вызывала трудности в объяснении этого феномена. Системное изучение биологических процессов предлагает следующее объяснение: половые различия дают хозяевам уникальные преимущества, поскольку позволяют обмениваться частями генетического кода между особями. Рекомбинация больших блоков генетической информации в результате полового размножения позволяет изменять признаки в потомстве быстрее, чем при мутациях. Поэтому потомки в этом случае могут быть более резистентными к паразитам, чем их родители. Паразиты же вследствие краткости периода воспроизводства и быстрого хода эволюционных изменений меньше нуждаются в наличии полов и обычно бесполы. И здесь конкурентная борьба является фактором естественного отбора.
В науке Нового времени преобладал редукционизм, т. е. объяснение функционирования высших структурных уровней с помощью низших. Развитие биологии в XX в. как будто укрепило позиции редукционизма. Молекулярная биология выяснила, что все многообразие форм жизни и жизненных процессов, повадок и инстинктов зависит от особенностей чередования четырех нуклеотидов в цепочке ДНК.
С другой стороны, экология показала наличие системных закономерностей. «Вся совокупность современных биохимических данных показывает, что отдельные, индивидуальные реакции, протекающие в живых телах, сравнительно просты и однообразны. Это хорошо известные и легко воспроизводимые в пробирке и колбе химика реакции окисления, восстановления, гидролиза… Ни в одной из них нет ничего специфически жизненного. Специфическим для живых тел является то, что в них эти отдельные реакции определенным образом организованы во времени, сочетаются в единую целостную систему наподобие того, как отдельные звуки сочетаются в какое-либо музыкальное произведение, например симфонию. Стоит только нарушить последовательность звуков — получится дисгармония, хаос. Аналогичным образом и для организации живых тел важно то, что в них эти отдельные реакции протекают не случайно, не хаотически, а в строго определенном гармоничном порядке… весь этот порядок закономерно обусловливает самосохранение и самовоспроизведение всей жизненной системы в целом в данных условиях внешней среды, в поражающем соответствии с этими условиями»[106].
Необходимость системного подхода в исследовании живого в противоположность редукционизму вложена в уста Мефистофеля из «Фауста» Гёте:
Иль вот: живой предмет желая изучить,
Чтоб ясное о нем познанье получить, —
Ученый прежде душу изгоняет,
Затем предмет на части расчленяет
И видит их, да жаль: духовная их связь
Тем временем исчезла, унеслась!
Концепция коэволюции.
Критика дарвинизма велась со дня его возникновения. Ряду ученых не нравилось, что изменения, по Ч. Дарвину, могут идти во всех возможных направлениях и случайным образом. Концепция номогенеза утверждала, что изменения происходят не беспорядочно и случайно, а по законам форм. Русский ученый и революционер П.А. Кропоткин придерживался точки зрения, в соответствии с которой взаимопомощь является более важным фактором эволюции, чем борьба.
Эти возражения не могли поколебать общей теории эволюции. Появившаяся под влиянием экологических исследований концепция коэволюции помогла объяснить возникновение полов и другие феномены. Как химическая эволюция — результат взаимодействия химических элементов, так, по аналогии, и биологическая эволюция — результат взаимодействия организмов. Случайно образовавшиеся более сложные формы увеличивают разнообразие и, стало быть, устойчивость экосистем. Удивительная согласованность всех видов жизни есть следствие коэволюции.
Концепция коэволюции хорошо объясняет эволюцию в системе «хищник-жертва» — постоянное совершенствование и того, и другого компонента системы. В системе «паразит-хозяин» естественный отбор должен вроде бы способствовать выживанию менее вирулентных (опасных для хозяина) паразитов и более резистентных (устойчивых к паразитам) хозяев. Постепенно паразит становится комменсалом, т. е. безопасным для хозяина, а затем они могут стать мутуалами — организмами, которые способствуют взаимному процветанию, как грибы и фотосинтезирующие бактерии, вместе образующие лишайники. Но так происходит не всегда. Паразиты являются неизбежной, обязательной частью каждой экосистемы. Они препятствуют уничтожению хозяевами других видов. Коэволюционная «гонка вооружений» способствует большему разнообразию экосистем.
Совместная эволюция организмов хорошо видна на следующем примере. Простейшие жгутиковые, живущие в кишечнике термитов, выделяют фермент, без которого термиты не могли бы переваривать древесину и расщеплять ее до сахаров. Встречая в природе симбиоз, можно предполагать, что его конечной стадией является образование более сложного организма. Травоядные животные могли развиться из симбиоза животных и микроскопических паразитов растений. Паразит производит ферменты для переваривания веществ, имевшихся в организме его хозяина — растения, животное же делится с паразитом питательными веществами из растительной массы.
Концепция коэволюции объясняет и факты альтруизма у животных: заботу о детях, устранение агрессивности путем демонстрации «умиротворяющих поз», повиновение вожакам, взаимопомощь в трудных ситуациях и т. п.
Вопросы для повторения.
1. В чем сходство и различие растений и животных?
2. Каковы основные выводы учения В.И. Вернадского о биосфере?
3. Что изучает экология?
4. Что такое сукцессия?
5. Каковы сравнительные характеристики развивающейся и зрелой экосистем?
6. Каковы основные закономерности, сформулированные в экологии?
7. Какие выводы получены в результате изучения систем «хищник-жертва» и «паразит-хозяин»?
8. Каково экологическое значение науки.
9. Что такое концепция коэволюции?
Задания к семинару.
I. Ответьте на вопросы.
1. Почему именно русский ученый создал учение о биосфере?
2. Как В.И. Вернадский понимал биосферу и почему он изменил это понятие?
3. Как учение о биосфере продолжило учение о почве?
4. Что такое популяция, сообщество, экосистема, экологическая ниша, сукцессия?
5. Каковы законы экологии?
6. Каковы закономерности развития экосистем?
7. Как формулируется основной закон экологии?
8. Зачем на Земле необходимо существование столь большого количества видов жизни?
9. В чем суть концепции коэволюции и как она возникла?
10. Как концепция коэволюции примирила взгляды Ч. Дарвина и П.А. Кропоткина?
11. Как происходила эволюция с точки зрения концепции коэволюции?
II. Прокомментируйте высказывания.
«Земная оболочка биосферы, обнимающая весь земной шар, имеет резко обособленные размеры; в значительной мере она обусловливается существованием в ней живого вещества — им заселена. Между ее косной безжизненной частью, ее косными природными телами и живыми веществами, ее населяющими, идет непрерывный материальный и энергетический обмен, материально выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием. Оно пронизывает всю биосферу, и этот биогенный ток атомов в значительной степени ее создает. Так неотделимо и неразрывно биосфера на всем протяжении геологического времени связана с живым заселяющим ее веществом. В этом биогенном токе атомов и связанной с ним энергии проявляется резко планетное, космическое значение живого вещества. Ибо биосфера является той единственной земной оболочкой, в которую непрерывно проникают космическая энергия, космические излучения и прежде всего лучеиспускание Солнца, поддерживающее динамическое равновесие, организованность: биосфера ? живое вещество» (В.И. Вернадский).
Литература.
Вернадский В.И. Биосфера // Избр. соч. — М., 1960. — т. 5.
Одум Ю. Экология. — М., 1975.
Реймерс Н.Ф. Экология. — М., 1994.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК