Глава 11 Эволюционная биология

Отличие живого от неживого.

Одним из наиболее трудных и в то же время интересных в современном естествознании является вопрос о происхождении жизни. Он труден потому, что когда наука подходит к проблемам развития как создания качественно нового, она оказывается у предела своих возможностей как отрасли культуры, основанной на доказательстве и экспериментальной проверке утверждений.

Ученые сегодня не в состоянии воспроизвести процесс возникновения жизни. Даже наиболее тщательно поставленный опыт будет лишь модельным экспериментом, лишенным ряда факторов, сопровождавших появление живого на Земле. Методологическая трудность заключается в невозможности проведения прямого эксперимента по возникновению жизни, так как уникальность этого процесса препятствует использованию основного научного метода.

Вопрос о происхождении жизни интересен не только сам по себе, но и тесной связью с проблемой отличия живого от неживого, а также с проблемой эволюции жизни. В чем сущность живого? Как механизмы эволюции действовали при зарождении жизни?

Итак, что такое живое и чем оно отличается от неживого? Есть несколько фундаментальных различий в вещественном, структурном и функциональном планах. В вещественном плане в состав живого обязательно входят высокоупорядоченные макромолекулярные органические соединения, называемые биополимерами, — белки и нуклеиновые кислоты (ДНК и РНК). В структурном плане живое отличается от неживого клеточным строением. В функциональном плане для живых тел характерно воспроизводство самих себя. Устойчивость и воспроизведение есть и в неживых системах, но в живых телах имеет место процесс самовоспроизведения. Не что-то воспроизводит их, а они сами воспроизводят себя. Это принципиально новый момент.

Живые тела отличаются от неживых также наличием обмена веществ, способностью к росту и развитию, активной регуляцией своих состава и функций, способностью к движению, раздражимостью, приспособленностью к среде и т. д. Неотъемлемым свойством живого является деятельность, активность. Все живые существа должны действовать, в противном случае они погибают.

Однако строго научное разграничение живого и неживого встречает определенные трудности. Имеются переходные формы от нежизни к жизни. Так, например, вирусы, находящиеся вне клеток другого организма, не обладают ни одним из атрибутов живого. У них есть наследственный аппарат, но отсутствуют основные, необходимые для обмена веществ, ферменты, и поэтому они могут расти и размножаться лишь проникая в клетки организма-хозяина и используя его ферментные системы. В зависимости от того, какой признак считают самым важным, вирусы относят или не относят к живым системам.

Концепции возникновения жизни.

Существует пять концепций возникновения жизни:

1) креационизм — божественное сотворение живого;

2) концепция многократного самопроизвольного зарождения жизни из неживого вещества (ее придерживался еще Аристотель, который считал, что живое может возникать и в результате разложения почвы);

3) концепция стационарного состояния, в соответствии с которой жизнь существовала всегда;

4) концепция панспермии — внеземного происхождения жизни;

5) концепция происхождения жизни на Земле в историческом прошлом в результате процессов, подчиняющихся физическим и химическим законам.

Первая концепция является религиозной и к науке прямого отношения не имеет. Вторую опроверг изучавший деятельность бактерий французский микробиолог XIX в. Л. Пастер, известный нам по названию его опытов, вошедших в современную технологию, — «пастеризация». Третья из-за своей умозрительности всегда имела немного сторонников.

К началу XX в. в науке господствовали две последние концепции. Концепция панспермии, согласно которой жизнь была занесена на Землю извне, опиралась на обнаружение при изучении метеоритов и комет «предшественников живого» — органических соединений, которые (возможно) и сыграли роль «семян».

У концепции появления жизни на Земле в историческом прошлом два варианта. Согласно одному происхождение жизни — результат случайного образования единичной «живой молекулы», в строении которой был заложен весь план дальнейшего развития живого.

По мнению французского биолога Ж. Моно, жизнь не следует из законов физики, но совместима с ними; жизнь — событие, исключительность которого необходимо сознавать. Согласно другой точке зрения, происхождение жизни — результат закономерной эволюции материи.

Вещественная основа жизни.

В XX в. появились первые научные модели происхождения жизни. В 1924 г. в книге А.И. Опарина «Происхождение жизни» была впервые сформулирована естественно-научная концепция, согласно которой возникновение жизни — результат длительной эволюции на Земле — сначала химической, а затем биохимической. Эта концепция получила наибольшее признание в научной среде.

Можно выделить несколько этапов развития живых систем, начиная с самых простейших и затем следуя по пути постепенного усложнения. В вещественном плане для становления жизни нужен прежде всего углерод. Жизнь на Земле основана на этом элементе, хотя в принципе можно предположить существование жизни и на кремниевой основе. Возможно, где-то во Вселенной существует и «кремниевая цивилизация», но на Земле основой жизни является углерод.

Чем это обусловлено? Атомы углерода вырабатываются в недрах больших звезд в необходимом для образования жизни количестве. Углерод способен создавать несколько десятков миллионов подвижных, низкоэлектропроводных, студенистых, насыщенных водой, длинных, скрученных цепеобразных структур. Соединения углерода с водородом, кислородом, азотом, фосфором, серой и железом обладают замечательными каталитическими, строительными, энергетическими, информационными и иными свойствами.

Кислород, водород и азот наряду с углеродом можно отнести к «кирпичикам» живого. Клетка состоит на 70 % из кислорода, на 17 % — из углерода, на 10 % — из водорода и на 3 % — из азота. Все «кирпичики» живого принадлежат к наиболее устойчивым и распространенным во Вселенной химическим элементам. Они легко соединяются между собой, вступают в реакции и обладают малым атомным весом. Их соединения легко растворяются в воде.

По радиоастрономическим данным органические вещества существовали не только до появления жизни, но и до формирования нашей планеты. Следовательно, органические вещества абиогенного происхождения присутствовали на Земле уже при ее образовании.

При образовании Земли из космической пыли (частиц железа и силикатов — веществ, в состав которых входит кремний) и газа на внешних участках Солнечной системы газы могли конденсироваться. Органические соединения могли синтезироваться и на поверхности пылинок.

Химические и палеонтологические исследования древнейших докембрийских отложений и особенно многочисленные модельные эксперименты, воспроизводящие условия, которые господствовали на поверхности первобытной Земли, позволяют понять, как в этих условиях происходило образование все более сложных органических веществ.

Жизнь возможна только при определенных физических и химических условиях (при определенной температуре, наличии воды, солей и т. д.). Прекращение жизненных процессов, например при высушивании семян или глубоком замораживании мелких организмов, не ведет к потере жизнеспособности. Если структура организма сохраняется неповрежденной, при возвращении к нормальным условиям жизненные процессы восстанавливаются.

Также и для возникновения жизни необходимы определенные показатели температуры, влажности, давления, уровня радиации, определенная направленность развития Вселенной и определенное время. Взаимное удаление галактик приводит к тому, что их электромагнитное излучение доходит до Земли сильно ослабленным. Если бы галактики сближались, то плотность радиации во Вселенной была бы столь велика, что жизнь не могла бы существовать. Углерод синтезирован в звездах-гигантах несколько миллиардов лет назад. Если бы возраст Вселенной был меньше, то жизнь также не могла бы возникнуть. К тому же планеты должны иметь определенную массу для того, чтобы удержать атмосферу. Список этих условий может быть продолжен.

Земля в период возникновения жизни.

Наша планета — «золотая середина» в Солнечной системе. Она наиболее подходит для зарождения жизни. Возраст Земли — примерно 4–5 млрд. лет. Температура ее поверхности в начальный период составляла 4000–8000 °C. По мере того как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовывали земную кору.

Атмосфера раньше была совершенно иной. Легкие газы — водород, гелий, азот, кислород — уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Простые же соединения, содержащие эти элементы, удерживались.

Первичная атмосфера содержала водород и соединения углерода (метан) и азота (аммиак). Отсутствие в атмосфере кислорода было, вероятно, необходимым условием возникновения жизни: лабораторные опыты показывают, что органические вещества гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом. О том, что атмосфера была именно такой, свидетельствуют самые древние горные породы на Земле.

Существуют разные точки зрения на время возникновения жизни на Земле. По мнению В.И. Вернадского, жизнь появилась одновременно с образованием Земли. А.И. Опарин считал, что периоду развития жизни предшествовал длительный период химической эволюции Земли, во время которого образовались сложные органические вещества и протоклетки. Возникновение последних положило начало биохимической эволюции.

Известны три способа синтеза природных органических веществ. Во-первых, углерод и азот вещества могли возникать в расплавленных глубинах Земли и выноситься на поверхность при вулканической деятельности, попадая далее в океан.

Во-вторых, как полагал А.И. Опарин, органические вещества могли создаваться и в океане из более простых соединений. Энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), попадавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. Разнообразие находящихся в океанах простых соединений, огромная площадь поверхности Земли, доступность энергии и значительные временные масштабы позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот «первичный бульон», в котором могла возникнуть жизнь.

Наконец, органические соединения могли образоваться во Вселенной из неорганического космического «сырья».

Для построения любого сложного органического соединения, входящего в состав живых тел, необходим определенный набор блоков-мономеров (низкомолекулярных соединений): 29 мономеров (из них 20 аминокислот, 5 азотистых оснований) определяют биохимическое строение любого живого организма. Организм состоит из аминокислот, из которых построены все белки, азотистых соединений — составных частей нуклеиновых кислот, глюкозы — источника энергии, жиров — структурного материала, идущего на построение в клетке мембран и запасающего энергию.

После того как углеродистые соединения образовали «первичный бульон», могли уже организоваться биополимеры — белки и нуклеиновые кислоты, обладающие свойством самовоспроизводства себе подобных. Необходимая концентрация веществ для образования биополимеров могла возникнуть в результате осаждения органических соединений на минеральных частицах, например, на глине или гидроокиси железа, входящих в состав ила прогреваемого Солнцем мелководья. Кроме того, органические вещества могли образовать на поверхности океана тонкую пленку, которую ветер и волны гнали к берегу, где она собиралась в толстые слои. В химии известен аналогичный процесс объединения родственных молекул в разбавленных растворах.

В начальный период формирования Земли в?ды, пропитывающие земной грунт, непрерывно перемещали растворенные в них вещества из мест их образования в места накопления. Там формировались пробионты — системы органических веществ, способных взаимодействовать с окружающей средой, т. е. расти и развиваться за счет поглощения из окружающей среды разнообразных богатых энергией веществ.

В этом случае можно говорить о примитивном отборе, ведущем к постепенному усложнению и упорядоченности как обеспечивающих преимущество в выживании. Механизм отбора действовал на самых ранних стадиях зарождения органических веществ: из множества образующихся веществ сохранялись устойчивые к дальнейшему усложнению.

Затем образовались микросферы — шаровидные тела, возникающие при растворении и конденсации абиогенно полученных белковоподобных веществ.

В подтверждение возможности абиогенного синтеза были проведены следующие опыты. Воздействуя на смесь газов электрическими зарядами, имитирующими молнию, и ультрафиолетовым излучением, ученые получали сложные органические вещества, входящие в состав живых белков. Органические соединения, играющие большую роль в обмене веществ, были искусственно получены при облучении водных растворов углекислоты. Американский ученый С. Миллер в 1953 г. синтезировал ряд аминокислот при пропускании электрического заряда через смесь газов, предположительно составлявших первичную земную атмосферу. Были синтезированы и простые нуклеиновые кислоты. Этими экспериментами было показано, что абиогенное образование органических соединений во Вселенной могло происходить в результате воздействия тепловой энергии, ионизирующего и ультрафиолетового излучений и электрических разрядов. Первичным источником этих форм энергии служат термоядерные процессы, протекающие в недрах Земли.

Как показывает синергетика, энергия имела для возникновения жизни не меньшее значение, чем вещество. По мнению И. Пригожина, некоторые из первых стадий эволюции жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно-неравновесные условия.

Неравновесные структуры — это лишь переход к живому, так как воспроизводства в них еще нет. Итак, в образовании органических соединений большую роль играло не только вещество космического пространства, но и энергия звезд.

Начало жизни на Земле.

Начало жизни на Земле связано с появлением нуклеиновых кислот, способных к воспроизводству белков. Теория биохимической эволюции предлагает лишь общую схему перехода от сложных органических веществ к простым живым организмам. В соответствии с ней на границе между коацерватами — сгустками органических веществ — могли выстраиваться молекулы сложных углеводородов, что привело к образованию примитивной клеточной мембраны, обеспечивающей коацерватам стабильность. В результате включения в коацерват молекулы, способной к самовоспроизведению, могла возникнуть примитивная клетка, способная к росту.

Самое трудное для данной модели — объяснить способность живых систем к самовоспроизведению, т. е. переход от сложных неживых систем к простым живым организмам. Несомненно, в модель происхождения жизни будут включаться новые знания, и они будут все более обоснованными. Но повторимся, что чем более качественно новое отличается от старого, тем труднее объяснить его возникновение. Поэтому речь идет лишь о моделях и гипотезах, а не о теориях.

Так или иначе, следующим шагом в организации живого должно было быть образование мембран, отделяющих смеси органических веществ от окружающей среды. С их появлением можно говорить о клетке — «единице жизни», главном структурном отличии живого от неживого.

Все основные процессы, определяющие поведение живого организма, протекают в клетках. Тысячи химических реакций происходят одновременно для того, чтобы клетка могла получить необходимые питательные вещества, синтезировать специальные биомолекулы и удалять отходы. Огромное значение для биологических процессов в клетке имеют ферменты. Они обладают часто высокой специализированностью и могут влиять только на одну реакцию. Принцип их действия в том, что молекулы других веществ стремятся присоединиться к активным участкам молекулы фермента. Тем самым повышается вероятность их столкновения, а следовательно, и скорость химической реакции.

Синтез белка осуществляется в цитоплазме клетки. Почти в каждой клетке человека синтезируется свыше 10 тыс. разных белков. Величина клеток — от микрометра до более 1 м (у нервных клеток, имеющих отростки). Клетки могут быть дифференцированными (нервные, мышечные и т. д.). Большинство из них обладает способностью восстанавливаться, но некоторые, например нервные, — не восстанавливаются или почти не восстанавливаются.

Эволюция форм жизни.

Первые клетки не имели ядер. Клетки без ядра, но имеющие нити ДНК, напоминают существующие ныне бактерии и сине-зеленые водоросли.

Возраст этих самых древних организмов — около 3 млрд. лет. Они обладают различными свойствами, среди которых: подвижность; способность питаться и запасать пищу и энергию; защита от нежелательных воздействий; способность к размножению; раздражимость; приспособление к изменяющимся внешним условиям; способность к росту.

На следующем этапе (приблизительно 2 млрд. лет тому назад) в клетке появляется ядро. Одноклеточные организмы с ядром называются простейшими. Их 25–30 тыс. видов. Самые примитивные из них — амебы. Более сложные, инфузории, имеют еще и реснички. Ядро простейших окружено двухмембранной оболочкой с порами и содержит хромосомы и нуклеоли. Ископаемые простейшие — радиолярии и фораминиферы — являются основными частями осадочных горных пород. Многие простейшие обладают сложным двигательным аппаратом.

Примерно 1 млрд. лет тому назад появились первые многоклеточные организмы, и произошел выбор растительного или животного образа жизни. Первый важный результат растительной деятельности — фотосинтез. Фотосинтез — это появление органического вещества из углекислоты и воды при использовании солнечной энергии, улавливаемой хлорофиллом. Продукт фотосинтеза — кислород в атмосфере.

Возникновение и распространение растительности привело к коренному изменению состава атмосферы, первоначально имевшей очень мало свободного кислорода. Растения, ассимилирующие углерод из углекислого газа, создали атмосферу, содержащую свободный кислород, — не только активный химический агент, но и источник озона, преградившего путь коротким ультрафиолетовым лучам к поверхности Земли.

Веками накапливавшиеся остатки растений образовали в земной коре грандиозные энергетические запасы органических соединений (уголь, торф), а развитие жизни в Мировом океане привело к созданию осадочных горных пород, состоящих из скелетов и других останков морских организмов.

К важным свойствам живых систем относятся:

1) компактность. В 5 ? 10-15 г ДНК, содержащейся в оплодотворенной яйцеклетке кита, заключена информация для подавляющего большинства признаков животного, которое весит 5 ? 107 г (масса возрастает на 22 порядка);

2) способность создавать порядок из хаотического теплового движения молекул и тем самым противодействовать возрастанию энтропии. Живое потребляет отрицательную энтропию и работает против теплового равновесия, увеличивая, однако, энтропию окружающей среды. Чем более сложно устроено живое вещество, тем более в нем скрытой энергии и энтропии;

3) обмен с окружающей средой веществом, энергией и информацией — живое способно ассимилировать полученные извне вещества, т. е. перестраивать их, уподобляя собственным материальным структурам и за счет этого многократно воспроизводить их;

4) в метаболических функциях большую роль играют петли обратной связи, образующиеся при автокаталитических реакциях. «В то время как в неорганическом мире обратная связь между „следствиями“ (конечными продуктами) нелинейных реакций и породившими их „причинами“ встречается сравнительно редко, в живых системах обратная связь (как установлено молекулярной биологией), напротив, является, скорее, правилом, чем исключением»[87]. В живых системах имеют место автокатализ, кросс-катализ и автоингибиция — процесс, противоположный катализу (если присутствует данное вещество, оно не образуется в ходе реакции). Для создания новых структур нужна положительная обратная связь, а для устойчивого существования — отрицательная обратная связь;

5) жизнь качественно превосходит другие формы существования материи в плане многообразия и сложности химических компонентов и динамики протекающих в живом превращений. Живые системы характеризуются гораздо более высоким уровнем упорядоченности и асимметрии в пространстве и времени. Структурная компактность и энергетическая экономичность живого — результат высочайшей упорядоченности на молекулярном уровне;

6) в самоорганизации неживых систем молекулы просты, а механизмы реакций сложны; в самоорганизации живых систем, напротив, схемы реакций просты, а молекулы сложны;

7) у живых систем есть прошлое, у неживых его нет. «Целостные структуры атомной физики состоят из определенного числа элементарных ячеек, атомного ядра и электронов и не обнаруживают никакого изменения во времени, разве что испытывают нарушение извне. В случае такого внешнего нарушения они, правда, как-то реагируют на него, но если нарушение было не слишком большим, они по прекращению его снова возвращаются в исходное положение. Но организмы — не статические образования. Древнее сравнение живого существа с пламенем говорит о том, что живые организмы, подобно пламени, представляют собой такую форму, через которую материя в известном смысле проходит как поток»[88];

8) жизнь организма зависит от двух факторов — наследственности, определяемой генетическим аппаратом, и изменчивости, зависящей от условий окружающей среды и реакции на них индивида. Интересно, что сейчас жизнь на Земле не могла бы возникнуть из-за кислородной атмосферы и противодействия других организмов. Раз зародившись, жизнь находится в процессе постоянной эволюции;

9) способность к избыточному самовоспроизводству. Это ведет, по Ч. Дарвину, к усилению борьбы за жизнь и ее следственно-естественному отбору.

Вопросы для повторения.

1. Чем отличается живое от неживого?

2. Вирусы — это живые или неживые тела? Почему?

3. Каков механизм действия вируса?

4. Каковы концепции происхождения жизни?

5. Какова модель происхождения жизни А.И. Опарина?

6. Зачем нужен озоновый слой в атмосфере?

7. Как образовалась атмосфера на Земле?

8. Что такое фотосинтез?

9. Каковы основные фазы эволюции форм жизни?

10. Каковы важнейшие свойства живых систем?

Задания к семинару.

I. Ответьте на вопросы.

1. Почему проблема происхождения жизни — одна из самых трудных и интересных в науке?

2. Как Л. Пастер доказал, что жизнь не может возникнуть сама по себе? Как это связано с процессом пастеризации?

3. Что нужно, чтобы появилось и могло существовать живое вещество?

4. Каковы современные представления о происхождении жизни?

5. Каковы стадии происхождения жизни по А.И. Опарину?

6. Почему с точки зрения теории вероятностей вероятность возникновения жизни очень мала?

6. Почему деятельность живых систем сравнивают с работой фабрики и одновременно со звучанием симфонии?

7. В чем суть процесса метаболизма и что происходит с потребляемой пищей?

II. Прокомментируйте высказывания.

«Специфичность жизни, отличие живых систем от неорганического мира хорошо видны с точки зрения химии. В живых системах протекает множество отдельных химических реакций, например, в человеческом организме в одну секунду совершается примерно 15 миллиардов актов реакций, многие из которых давно и хорошо изучены. Для живого специфичен определенный порядок этих реакций, их последовательность и объединение в целостную систему» (Е.В. Дубровский).

«Вся совокупность современных биохимических данных показывает, что отдельные, индивидуальные реакции, протекающие в живых телах, сравнительно просты и однообразны. Это хорошо известные и легко воспроизводимые в пробирке и колбе химика реакции окисления, восстановления, гидролиза, фосфоролиза, альдольного уплотнения, переаминирования и т. д. Ни в одной из них нет ничего специфически жизненного. Специфическим для живых тел прежде всего является то, что в них эти отдельные реакции определенным образом организованы во времени, сочетаются в единую целостную систему наподобие того, как отдельные звуки сочетаются в какое-либо музыкальное произведение, например, симфонию. Стоит только нарушить последовательность звуков — получится дисгармония, хаос. Аналогичным образом и для организации живых тел важно то, что совершающиеся в них реакции протекают не случайно, не хаотически, а в строго определенном гармоничном порядке, который лежит в основе как восходящей, так и нисходящей ветви обмена веществ. Такие жизненные явления, как, например, брожение, дыхание, фотосинтез, синтез белков и т. д., — это длинные цепи реакций окисления, восстановления, альдольного уплотнения и т. д., сменяющих друг друга в совершенно точной последовательности, в строго определенном закономерном порядке. Но что особенно важно, что принципиально отличает живые организмы от всех систем неорганического мира — это присущая жизни общая направленность указанного выше порядка. Многие десятки и сотни тысяч химических реакций, совершающихся в живом теле, не только гармонично сочетаются в едином порядке, но и весь этот порядок закономерно обусловливает самосохранение и самовоспроизведение всей жизненной системы в целом и в данных условиях внешней среды, в поражающем соответствии с этими условиями» (А.И. Опарин, В.Г. Фесенков).

«На бесчисленном множестве небесных тел нет жизни, многие из этих тел никогда и не будут ею обладать в течение всего своего развития, так как оно здесь идет совершенно иными путями, чем это имеет место на нашей планете. Но из этого совершенно не следует, что только Земля является единственным обиталищем жизни. В нашей метагалактической системе имеются сотни миллионов галактик, и каждая отдельная галактика может состоять из миллиардов и сотен миллиардов звезд. Даже в нашей галактике, включающей примерно 150 миллиардов звезд, могут быть сотни тысяч планет, на которых возможно возникновение и развитие жизни. Во всей бесконечной Вселенной должно существовать также и бесконечное множество обитаемых планет» (А.И. Опарин, В.Г. Фесенков).

«Органический синтез осуществлялся в период, предшествовавший образованию Солнечной системы и во время ее образования; он имел место уже на том этапе, когда Земля еще окончательно не сформировалась. По-видимому, такой синтез происходил в атмосферах углеродных звезд, в солнечной туманности, в планетозималях и протопланетах» (Дж. Оро).

«Я полагаю, что обмен у первых организмов был направлен — а у первых синтетических организмов будет направлен — на синтез нуклеиновых кислот, способных служить матрицей в синтезе белка, а также на синтез одного или более белков, катализирующих образование нуклеиновых кислот и белков» (Дж. Холдейн).

«В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с одной стороны, они являются вместилищем многочисленных химических превращений, с другой — демонстрируют великолепную пространственно-временную организацию с весьма неравномерным распределением биохимического материала» (И. Пригожин, И. Стенгерс).

«Из множества возникавших при неспецифической полимеризации вариантов благодаря действию естественного отбора сохранялись только те, участие которых в метаболизме данной системы способствовало ее более длительному существованию, росту и размножению. Так происходило постепенное совершенствование как всей живой системы в целом, так и ее отдельных механизмов» (А.И. Опарин).

«Если бы в период первоначального синтеза таких молекул существовал свободный кислород, то они почти наверное в конце концов разрушились бы в результате окисления. Только в среде, лишенной свободного кислорода, эти предшественники живых систем могли накапливаться в концентрациях, способных обеспечить их частое взаимодействие друг с другом…, что было необходимо для возникновения первых метаболических систем» (П. Хочачка, Дж. Сомеро).

III. Прокомментируйте схему.

Происхождение и развитие жизни.

Литература.

Мир вокруг нас: Беседы о Мире и его законах: Сб. ст. / Сост. Е.В. Дубровский. — М., 1983.

Опарин А.И., Фесенков В.Г. Жизнь во Вселенной. — М., 1956.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК