Быстрее крутить нельзя

We use cookies. Read the Privacy and Cookie Policy

Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в сто раз – дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.

Швейцарский гиробус проходил до остановки шесть километров. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не двадцать километров, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?

Чтобы пройти впятеро больший путь, гиробус должен запасать во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить число оборотов примерно в 2,24 раза. То есть нужно разогнать маховик гиробуса до шести-семи тысяч оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что нет.

Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.

До четырех-пяти тысяч оборотов в минуту маховик внешне ничем не меняется – если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при оборотах, близких к пяти тысячам в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?

Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать» маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.

Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может быть достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика массой по полтонны (а маховики почему-то чаще всего разрываются на три части) способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел вверх, а уже падая вниз, еще раз пробил крышу.

Стенд для испытания маховиков на разрыв: 1 - пульт управления; 2 - бетонная броня; 3 - свинцовая броня; 4 - люк; 5 - турбина; 6 - гибкий валик; 7 - подшипник с уплотнением; 8 - камера вращения; 9 - маховик; 10 - сжатый воздух; 11 - отсос воздуха из камеры вращения.

Маховик гиробуса в момент разрыва обладал бы энергией, которой хватило бы для пробега машины километров на двенадцать – восемнадцать. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на одну треть, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые четыре – шесть километров, о которых упоминалось выше.

Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее его разрыв, если он приключится, и тем больший запас прочности понадобится, чтобы уберечь маховик от разрыва.

«А что, если изменить форму маховика? – подумал я. – Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»

Оказывается, специалисты уже пытались это сделать. По сравнению с кругом древнего гончара и впрямь получалось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, – диски «равной прочности». Как это ни удивительно, но энергии они могли накопить раза в два больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.

Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и от прочности! Математическое доказательство этого я дал позже, когда уже окончил институт, а пока по мере своих возможностей высчитал, что если с изменением формы с самой худшей на самую лучшую прибавка энергии незначительна, максимум в три раза, то, повышая прочность, можно во столько же раз увеличивать плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.

Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому и вынуждены были маховики играть вторую, если не третью, роль среди накопителей энергии...