Работает супермаховик

We use cookies. Read the Privacy and Cookie Policy

Есть ли уже сегодня машины, на которых установлены «энергетические капсулы» – супермаховики? Да, есть. Может быть, эти машины и не выпускаются пока сериями, как «Жигули» или «Москвичи», но они существуют. Работают, ездят, удивляя всех, кто их видит.

Самым типичным автомобилем, питающимся энергией, накопленной в супермаховике, является, пожалуй, маленький двухместный махомобиль американского ученого-маховичника Дэвида Рабенхорста. Попробуем на его примере разобраться в устройстве махомобилей.

Супермаховик махомобиля соединен с валом разгонного электродвигателя, причем электродвигатель помещен в воздушной среде, чтобы он лучше охлаждался, а супермаховик – в вакууме, чтобы не было лишних потерь энергии. Вал уплотнен при выходе его из вакуумной камеры магнитным уплотнением. В принципе можно даже разрезать вал и вывести вращение специальными магнитными муфтами.

Другой конец вала супермаховика соединен с гидронасосом обратимого типа, который может переходить и на режим работы гидродвигателя; о таких гидромашинах я уже говорил. Жидкость – масло от гидронасоса через распределитель, или, что одно и то же, через механизм управления махомобилем, подается в четыре маленькие гидромашины, встроенные в колеса махомобиля. Таким образом, все колеса махомобиля ведущие, и это очень хорошо – махомобиль быстро разгоняется, движется устойчиво, без заносов.

Легковой махомобиль Рабенхорста: 1 - гидродвигатель колес; 2 - электродвигатель-генератор; 3 - супермаховик.

В махомобиле нет таких привычных автомобильных частей, как сцепление, коробка передач, карданный вал, дифференциал, полуоси, электроаккумуляторы, стартер и генератор; отсутствуют топливный бак и вся топливная система, система охлаждения с вентилятором, глушитель и, наконец, сам двигатель внутреннего сгорания. Махомобиль бесшумен, он не выделяет никаких газов, приводится в движение практически мгновенно. Известно, что супермаховик может развивать громадные мощности, так необходимые автомобилям для быстрого разгона.

Зарядка энергией, или разгон супермаховика, производится включением разгонного электродвигателя в сеть. Время зарядки – 20...25 минут, это в десятки раз быстрее, чем тот же процесс у электромобилей. Для приведения махомобиля в движение повышают наклоном шайбы производительность насоса, и масло начинает поступать в гидродвигатели колес, разгоняя машину. Больше наклон шайбы – больше скорость.

Махомобиль рассчитан на крейсерскую, то есть постоянную скорость 90 километров в час, причем кратковременно эта скорость значительно повышается, например для обгонов. Он может развить скорость 100 километров в час с места за 15 секунд, что не под силу не только электромобилю, но и многим легковым автомобилям.

Путь пробега махомобиля с одной зарядки пока около 60 километров, но его планируется увеличить в три раза. Это при массе супермаховика 100 килограммов, скорости его вращения от 23 700 до 11 900 оборотов в минуту и запасе энергии 24 мегаджоуля. Удельная энергия супермаховика тогда составит 240 килоджоулей на килограмм массы. Правда, уже испытаны супермаховики с удельной энергией в 650 и даже 700 килоджоулей на килограмм, а это значит, что и путь пробега увеличится почти до 500 километров!

Гиротроллейбус: 1 - электродвигатель-генератор с маховиком; 2 - вакуум-насос; 3 - электроприборы управления.

У махомобиля рекордно малая по сравнению с электро- и. автомобилями стоимость пробега – 0,6 доллара, или около 40 копеек, на 100 километров пути. Я думаю, вряд ли какой водитель откажется от такой машины!

Посмотрим теперь, каковы мощности и массы махомобиля Рабенхорста. Разгонный электродвигатель мощностью 30...40 киловатт – 18,4 килограмма, гидронасос мощностью 37,5 киловатта – 11,4 килограмма, четыре гидродвигателя колес такой же общей мощностью – 10 килограммов, приборы управления – 9 килограммов, шасси – 175 килограммов, кузов – 270 килограммов, 2 пассажира – 150 килограммов. Вместе с супермаховиком, его корпусом и подвеской выходит чуть более 600 килограммов.

Махомобиль не боится длительных стоянок – маховик может вращаться до 40 суток, или почти полтора месяца, без остановки. Это тоже не предел, потому что так называемые кольцевые супермаховики, о которых речь будет еще впереди, рассчитываются на более чем годичный выбег, а американский 45-килограммовый маховик в магнитном подвесе имеет столь малые потери, что способен крутиться до остановки свыше 10 лет!

Подвеска супермаховика в махомобиле тоже магнитная, только она практичнее, чем «абсолютный» магнитный подвес, здесь есть и подшипники, воспринимающие усилия при тряске или гироскопическую нагрузку при повороте оси супермаховика.

Маховичный двигатель, установленный на карте.

На сегодняшний день в разных странах уже построено много супермаховичных автомобилей и автобусов. Некоторые из них, как и швейцарский гиробус, оснащены штангами и могут двигаться, как троллейбус. Но при этом раскручивается и супермаховик, который потом питает током тяговые электродвигатели. Такие машины, названные гиротроллейбусами, не тратят время, подобно гиробусу, на раскрутку супермаховика, так как «зарядка» идет на ходу. Затем, после разгона супермаховика, гиротроллейбусы едут на накопленной энергии до конечной остановки через весь город.

Оставим наземный транспорт и спустимся под землю – в метро. И там маховик нашел себе применение. Поезда метро ходят очень быстро, развивая скорость до 80...90 километров в час. А останавливаться им приходится часто. Вот и получается, что не успеет поезд накопить в себе достаточную кинетическую энергию, как ее тут же надо «гасить» в тормозах.

Пробовали отдавать эту энергию в сеть в виде электроэнергии, но выходило не очень хорошо – скачки тока в сети мешали нормально работать остальным поездам. Тогда инженеры решили накапливать кинетическую энергию поезда при торможении в маховиках, близких по своим показателям к супермаховикам, а затем использовать ее при разгоне. Выяснилось, что два маховика массой по 250 килограммов каждый могут накопить при торможении кинетическую энергию одного вагона метро, а потом разогнать такой же вагон почти до первоначальной скорости или, в случае аварии сети, «тянуть» на себе целых два вагона до следующей станции. Маховичный метропоезд испытали в Нью-Йорке, где он экономил около 30 процентов всей затрачиваемой обычно на движение поезда электроэнергии.

Маховичный накопитель для метропоезда: 1 - маховик; 2 - защитное кольцо; 3 - электродвигатель-генератор.

Существуют проекты использования супермаховиков в авиации. В одном из них для взлета сверхзвуковых самолетов предлагают применять маховичную катапульту. Если разогнать крупный маховик электродвигателем, а затем подключить его к лебедке, соединенной тросом с самолетом, то маховик за несколько секунд разовьет гигантскую мощность, в десятки раз превышающую мощность электродвигателя. За считанные секунды самолет разгонится до 400 километров в час и взлетит. При этом путь разгона будет не более 100...150 метров. Такой запуск очень надежен и экономичен.

Двойную пользу можно получить от установки супермаховиков на легких тихоходных самолетах, у которых собственный двигатель развивает мощность не более 90 – 120 киловатт. Супермаховик массой всего 13 килограммов выдаст мощность 115 киловатт в течение 20 секунд, а массой 57 килограммов – 225 киловатт в течение 60 секунд – время, вполне достаточное для взлета. Кроме того, раскрученный супермаховик обеспечит безопасность экипажа в случае остановки мотора самолета. Энергии, накопленной в супермаховике, хватит для трехминутного полета самолета без мотора. Летчики успеют выбрать пригодную для посадки площадку и приземлиться.

Еще в 30-х годах в Шотландии был построен беспилотный маховичный вертолет. Разгоняли маховик на земле вместе с воздушным винтом, лопастям которого задавали нулевой угол атаки, чтобы разгон шел легче. Затем, раскрутив маховик, лопасти устанавливали под нужным углом, и машина взмывала в небо. Когда энергии в маховике оставалось уже мало, вертолет плавно опускался. Не правда ли, очень похоже на игрушечный вертолет, где разгон лопастей-маховиков производится пусковым шнурком?

Маховичная катапульта: 1 - двигатель; 2 - маховик; 3 - муфта включения; 4 - лебедка.

А недавно создали такой же беспилотный вертолет, но с супермаховиками. Два легких кольцевых супермаховика диаметром 1,4 метра, вращающиеся в разные стороны, раскручивают воздушные винты, расположенные внутри колец супермаховиков. Кольца разгоняют до 4 тысяч оборотов в минуту на специальном базовом автомобиле, с которого вертолет стартует. Вертолет быстро поднимается на 100-метровую высоту, зависает там и, имея на борту фото- и телеаппаратуру, производит съемки или телепередачи. Подобный вертолет удобно использовать и для пожарных работ – его двигатель не заглохнет от дыма, а баки с горючим не загорятся, так как на этом вертолете нет ни двигателя, ни баков.

Если нужно попасть на борт вертолета, зависшего высоко над землей, или на какую-нибудь площадку на высоте 100 и более метров, лучше всего воспользоваться для этого маховичным подъемником, который позволяет поднять девять человек подряд, причем в 5 раз быстрее обычных моторных подъемников. Маховик подъемника разгоняется маленьким электродвигателем мощностью 1,5 киловатта до 28 тысяч оборотов в минуту.

Осуществить экстренный спуск с того же вертолета или из окна горящего высотного здания поможет маховичный лифт, в разработке которого довелось участвовать и мне. При пожарах нередко требуется срочно эвакуировать людей с верхних этажей дома, но в это время ток от здания, как правило, отключается и никакие подъемные механизмы не работают. Вот и придумали особое устройство для таких случаев.

Человек надевает специальный пояс с прикрепленной к нему лентой и прыгает вниз. Лента намотана на валу небольшого маховика или супермаховика, как в ленточном вариаторе, о котором речь шла выше. Сматываясь с вала, она разгоняет маховик, сначала медленно, затем все сильнее и сильнее. А человек, наоборот, приближаясь к земле, все больше и больше теряет скорость. И наконец мягко приземляется. Пояс с лентой сам поднимается вверх, за счет энергии маховика, раскрученного спускавшимся человеком. Так маховичный лифт может доставлять на землю одного за другим сколько угодно людей.

Поистине безграничные возможности открываются перед супермаховиками в космосе. В космическом вакууме у супермаховиков совершенно нет потерь на трение о воздух, а невесомость устраняет нагрузки на подшипники. В этом случае подшипники могут быть простыми «сухосмазывающимися» втулками.

Маховичный беспилотный вертолет: 1 - кольцевые супермаховики; 2 - тяговая лопасть; 3 - лопасть управления; 4 - приборы и груз.

К середине 80-х годов на французских спутниках связи предполагается использовать супермаховичные накопители энергии. Дело в том, что спутники связи, транслирующие на большие расстояния телефонные разговоры, телепрограммы и радиопередачи, питаются обычно не только от солнечных батарей. Приходится ставить на них и аккумуляторы энергии, которые дают ток, пока спутник загорожен от Солнца Землей и находится в тени. Однако время жизни электрохимических аккумуляторов невелико, они быстро выходят из строя, а из-за них прекращает существование весь спутник, который мог бы служить еще долго. Вот и пал выбор на супермаховики, которые очень долговечны. Их намечено поместить в магнитную подвеску и вращать со скоростью 40 тысяч оборотов в минуту. Плотность энергии супермаховиков для спутников связи будет примерно 0,1 мегаджоуля на килограмм массы.

Видимо, не обойтись без супермаховиков и в космических станциях, которые отправятся к далеким планетам, где почти нет солнечного света, дающего энергию для питания электронного оборудования станций. По мнению ученых, кратковременных включений пиропатронов будет вполне достаточно, чтобы с помощью газовой турбины так разогнать супермаховик, что его энергии надолго хватит для бесперебойной работы всех приборов.

В космосе супермаховики необходимы и для более прозаических дел – например, для ремонта станций, приведения в движение механизированного инструмента.

Допустим, космонавту нужно просверлить отверстие или завернуть гайку. Если он применит обыкновенные дрель и гайковерт, то реактивный момент, действующий на корпус ручного инструмента, закрутит в первую очередь самого космонавта. На Земле такое не случается благодаря силе тяжести и силе трения, а в условиях невесомости – закономерное явление.

Теперь проделаем следующий опыт. Возьмем самый простой детский волчок – юлу, укрепим на ее кончике сверло и, разогнав юлу, уберем руку. На первый взгляд как будто ничего удивительного – юла стоит на сверле и сама сверлит подставку. А ведь ни с какой из обычных дрелей подобный опыт не получится никогда. Даже у электрической дрели корпус тотчас завертится в противоположную сторону и порвет все провода.

Дело в том, что маховики и супермаховики обладают свойством «безреактивности», то есть при вращении они не оказывают реактивного воздействия на корпус и другие части устройства. Маховик связан с корпусом только подшипниками, которые, свободно проворачиваясь, не передают вращательных усилий.

Изготовленная мною маховичная дрель успешно сверлила любые доски, на которые я ее ставил. При этом она прекрасно выдерживала вертикальное направление благодаря еще одному свойству маховика, о котором уже упоминалось, – сохранять положение своей оси в пространстве.

Маховичный лифт: 1 - маховик; 2 - вал; 3 - втулка; 4 - корпус; 5 - лента; 6 - крепление.

Чтобы прочувствовать это свойство самому, лучше всего снять велосипедное колесо с вилки, взяться за концы оси и, держа колесо на вытянутых руках, попросить товарища раскрутить его. Если колесо раскручено как следует, никакие попытки повернуть ось ни к чему не приведут, несмотря даже на большие усилия. Колесо будет сопротивляться совсем как живое, стараясь вырваться из рук. Суть происходящего состоит в том, что ось вращающего маховика всякий раз стремится повернуться не туда, куда мы хотим, а под прямым углом к этому направлению.

Существует много способов узнать, куда будет поворачиваться ось маховика, но все они трудны и рассчитаны на специалистов. Поэтому я придумал для себя способ попроще, который назвал правилом колеса. Запомнить его ничего не стоит, достаточно иметь в кармане хотя бы одну монетку или колесико. Пустим монетку катиться по столу. Скоро она начнет падать набок, но что для нас особенно важно – она и сворачивать будет в ту же сторону. Теперь представим себе, что монетка – это вращающийся маховик. Допустим, мы пытаемся повернуть ось маховика в ту сторону, куда падает монета. Направление поворота монеты позволит нам определить, куда на самом деле будет сворачивать ось маховика. Вот и все правило.

Маховичная «безреактивная» дрель: 1 - маховик; 2 - корпус; 3 - подшипник; 4 - сверло.

Если никто не воздействует на ось маховика, то она безупречно сохраняет свое положение в пространстве. И это делает маховик незаменимым в навигационных приборах, которые сейчас устанавливают на всех кораблях, самолетах, ракетах. Называют такие приборы гироскопическими. Об этих интереснейших приборах написано много книжек, и я не буду подробно останавливаться здесь на них. А вот об автомобиле, в котором был применен как раз гироскопический эффект вращающегося маховика, думаю, сказать надо. Построил этот «гирокар» в 1914 году русский инженер П. Шиловский. Гирокар демонстрировался в Лондоне, где вызвал огромный интерес. Еще бы, машина Шиловского имела всего два колеса, как велосипед, однако она поддерживалась без каких-либо упоров в устойчивом состоянии, если даже все пассажиры садились на один ее бок. «Держал» машину раскрученный маховик благодаря гироскопическому эффекту.

Гирокар Шиловского: 1 - маховик; 2 - приводное колесо; 3 - рулевое колесо; 4 - двигатель.

Такие автомобили строились и позже. Возможно, что будущий махомобиль с супермаховичной «энергетической капсулой» спроектируют тоже двухколесным, чтобы использовать сразу оба замечательных свойства супермаховика – накапливать энергию и стабилизировать свое положение в пространстве.