КИРХГОФ

We use cookies. Read the Privacy and Cookie Policy

(1824—1887)

Густав Роберт Кирхгоф родился в Кенигсберге. Там же он учился в университете и после недолгой доцентуры в Берлине в 1850 г. стад профессором физики в Брес-лавле, где началось его многолетнее сотрудничество с Бунзеном. Вскоре Кирхгоф и Бунзен, который был замечательным экспериментатором, переехали в Гейдельберг, где в 1854 г. Кирхгоф получил кафедру физики в университете. Через 5 лет появилась серия работ Кирхгофа и Бунзена, приведших к созданию спектрального анализа. Вскоре ими были открыты цезий и рубидий и отождествлен ряд элементов в спектре Солнца. В 1875 г. Кирхгофа убедили принять кафедру математической физики в Берлине, где он затем и работал до конца своей жизни.

Кирхгофу принадлежит ряд результатов в области теоретической физики — правила Кирхгофа для цепей электрического тока, установление равенства иллучатель-ной и поглощательной способностей тела, решение волнового уравнения в форме запаздывающих потенциалов, которое сыграло важную роль в развитии электродинамики. Кирхгофом был написан 4-томный курс математической физики. Подход, развитый им в механике, был началом глубокой критики представлений классической физики, которую дальше можно проследить в работах Маха и Герца.

Мы приводим краткое предисловие к первому тому «Механики» из «Лекций по математической физике», опубликованных Кирхгофом в 1876 г.

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОЙ ФИЗИКЕ. МЕХАНИКА

Настоящие лекции посвящены главным образом изложению всей области чистой механики. Иными словами, они посвящены учению, в котором рассматриваются исключительно движения: движение материальных точек, твердых, жидких и упругих тел. Мы исходим из предположения, что вещество непрерывно заполняет пространство так, как это нам представляется, и мы не касаемся теорий, основанных на предположении о существовании молекул.

Исходный пункт изложенного мною представления отличается от общепринятого. Механику принято обычно определять как науку о силах к рассматривать силы как причину, стремящуюся вызвать и вызывающую движение. Наверное это определение было полезным при развитии механики, а также при изучении этой науки, когда можно обращаться к опыту повседневной жизни для пояснения примеров сил. Однако этим понятиям причины и стремления присуща неясность, от которой они не освобождены. Эта неясность проявляется, например, в различном подходе к тому, следует ли закон инерции и закон о параллелограмме сил рассматривать как результат опыта, или как аксиомы, или же как теоремы, которые логически могут и должны быть доказаны. Мне казалось желательным, что при строгости, с которой делаются выводы в механике, эту неясность можно устранить, даже если это возможно только при ограничении ее задач. На этом основании задачу механики можно видеть в том, чтобы описать происходящие в природе движения, а именно, описать полностью и простейшим образом. Этим я хочу сказать, что следует только установить: каковы эти явления, а не выяснять, в чем заключается их причина. Если исходить из этого и из представлений о пространстве, времени и материи, то путем чисто математических рассуждений мы получаем общие уравнения механики. На этом пути встречается понятие силы, однако мы не в состоянии дать ей сколько-нибудь полного определения. Неполнота такого определения не влечет за собой неясности, так как введение силы является лишь средством упростить формулировки, а именно кратко передать смысл уравнений, который без помощи этого термина только с большим трудом передается словами. Таким образом, для устранения неясности достаточно определить силу так, чтобы каждая теорема механики, где речь идет о силе, могла быть переведена на язык уравнений; и это может быть достигнуто предложенным нами путем.

При том большом количестве материала, который должен быть рассмотрен в сравнительно малом объеме, нельзя, разумеется, ожидать исчерпывающего изложения предмета; можно лишь надеяться, что сделанный отбор материала окажется целесообразным!

Берлин,

Январь 1876 г.