ВЕРНАДСКИЙ

We use cookies. Read the Privacy and Cookie Policy

(1863—1945)

Владимир Иванович Вернадский родился в Петербурге в семье профессора экономики и статистики И. В. Вернадского. В 1885 г. Владимир Иванович окончил Петер-бурскпй университет, где преподавали тогда Менделеев, Сеченов, Докучаев, которого Вернадский считал своим учителем. Именно в почвоведении, науке, созданпой Докучаевым па стыке биологии, химии и минералогии почвы, следует видеть истоки научных интересов, ставших основными и в научной жизни Вернадского. В 1886 г. он стал хранителем Минералогического музея при университете. Магистерскую диссертацию Вернадский защитил в 1891 г., а через шесть лет получил степень доктора геогнозии. В 1898 г. Вернадский стал профессором минералогии и кристаллографии Московского университета; однако в 1911 г. вместе со ста крупнейшими учеными и преподавателями университета оп подает в отставку в знак протеста против реакционной политики министра просвещения Кассо. С 1914 г. Вернадский — директор Геологического и минералогического музея Академии наук, членом которой он стал еще в 1906 г. Во время первой мировой войны Вернадский явился одним из инициаторов создания Комиссии по изучению естественных .производительных сил России (КЕПС).

После Октябрьской революции роль Вернадского как организатора науки стала особенно велика. По его проекту была образована Украинская Академия паук, и он стал ее первым президентом. В 1922 г. он организовал Радиевый институт, директором которого был семнадцать лет. В 1923—1926 гг. Вернадский находился за границей, главным образом в Парпже и Праге. Вскоре после Октябрьской революции была восстановлена КЕПС, эту комиссию он возглавлял в течение многих лет. По его инициативе был образован ряд научных учреждений, комитетов и комиссий Академии наук СССР. Вернадский умер в Москве незадолго до окончания Великой Отечественной войны.

Вернадский наиболее известен своими минералогическими работами, и именно общие проблемы минералогии и геологии привели его к концепциям биогеохимии. Вернадский был одним из естествоиспыталей, чьи идеи и работы охватывали исключительно широкий круг вопросов в попытке построения синтетической картины мира. Оп раньше многих оценил значение открытий современной физики для наук о Земле и жизни. Ему принадлежат понятия биосферы и ноосферы — области действия жизни на Земле и разума человека. В современной проблеме взаимодействия человека и природы, в проблеме экологии в условиях индустриального развития, мы в первую очередь обращаемся к Вернадскому. Он предвидел огромное значение, которое приобретает наука в социалистическом обществе, и это привело ого к интересному анализу истории науки и философии естествознания.

Мы приводим предисловия Вернадского к «Биосфере» и ко второму изданию (1934) ого «Очерков геохимии», впервые опубликованных в 1926 г.

БИОСФЕРА

Среди огромной геологической литературы отсутствует связный очерк биосферы, рассматриваемый как единое целое, как закономерное проявление механизма планеты, ее верхней области — земной коры.

Сама закономерность ее существования обычно оставляется без внимания. Жизнь рассматривается как случайное явление на Земле, а в связи с этим исчезает из нашего научного кругозора на каждом шагу проявляющееся влияние живого на ход земных процессов, не случайное развитие жизни на Земле и не случайное образование на поверхности планеты, на ее границе с космической средой, особой охваченной жизнью оболочки — биосферы.

Такое состояние геологических знаний теснейшим образом связано с своеобразным, исторически сложившимся представлением о геологических явлениях как о совокупности проявления мелких причин, клубка случайностей. Из научного сознания исчезает представление о геологических явлениях как о явлениях планетных, свойственных в своих законностях пе только одной нашей Земле, и о строении Земли как о согласованном в своих частях механизме, изучение частностей которого должно идти в теснейшей связи с представлением о нем как о целом.

В общем: в геологии, в явлениях, связанных с жизнью., изучаются частности. Изучение отвечающего им механизма не ставится как задача научного исследования. И когда она не ставится и ее существование не создается, исследователь неизбежно проходит мимо ее проявлений, окружающих нас на каждом шагу.

В этих очерках автор пытается иначе посмотреть на геологическое значение явлений жизни.

Он не делает никаких гипотез. Он пытается стоять на прочной и незыблемой почве — на эмпирических обобщениях. Он, основываясь на точных и бесспорных фактах, пытается описать геологическое проявление жизни, дать картину совершающегося вокруг нас планетного процесса.

При этом, однако, он оставил в стороне три предвзятых идеи, исторически выясненное проникновение которых в геологическую мысль кажется ему противоречащим существующим в науке эмпирическим обобщениям, этим основным достижениям естествоиспытателя.

Одна из них — это указанная выше идея о геологических явлениях как о случайных совпадениях причин, или слепых по самому существу своему, или кажущихся такими по их сложности и множественности, не разложимых в данную эпоху научной мыслью.

Это обычное в науке предвзятое представление только отчасти связано с определенным философско-религиозным миропониманием; главным образом оно является следствием неполного логического анализа основ эмпирического значения.

Другие распространенные в геологической работе предвзятые идеи кажутся автору всецело связанными с чуждыми эмпирической основе науки, вошедшими в нее извне построениями. С одной стороны, принимается логически неизбежным существование начала жизни, ее возникновение в ту или в другую стадию геологического прошлого Земли. Эти идеи вошли в науку из религиозно-философских исканий. С другой стороны, считается логически непреложным отражение в геологических явлениях догеологических стадий развития планеты, имевшей облик, резко отличный от того, какой подлежит нашему научному исследованию. В частности, считается непреложным былое существование огненно-жидкой пли горячей газообразной стадии Земли. Эти представления вошли в геологию из области философских, в частности космогонических, интуиций и исканий.

Автор считает логическую обязательность следствий из этих идей иллюзией и принятие во внимание этих следствий и текущей геологической работы в данный момент развития геологии вредным, тормозящим и ограничивающим научную работу обстоятельством.

Не предрешая существования механизма планеты, согласованного в единое целое бытия ее частей, он пытается, однако, охватить с этой точки зрения имеющуюся эмпирически научно установленную совокупность фактов, и видит, что при таком охвате геологическое отражение жизни вцолне отвечает такому представлению. Ему кажется, что существование планетного механизма, в который входит как определенная составная часть жизни и, в частности, область ее проявления — биосфера, отвечает всему имеющемуся эмпирическому материалу, неизбежно вытекает из его научного анализа.

Не считая логически обязательным допущение начала жизни и отражения в геологических явлениях космических стадий планеты, в частности существования для нее когда-то огненно-жидкого или газообразного состояния, автор выбрасывает их из своего круга зрения. И он, не находя никакого следа их проявления в доступном изучению эмпирическом материале, полагает возможным поэтому считать эти представления ненужными надстройками, чуждыми имеющимся крупным и прочным эмпирическим обобщениям. В дальнейшем анализе этих обобщений и связанном с ними теоретическом синтезе следует оставить в стороне эти в них не находящие опоры философские и космогонические гипотезы. Надо искать новых.

Печатаемые два очерка — «Биосфера в космосе» и «Область жизни»—независимы друг от друга, но тесно связаны между собой указанной выше общей точкой зрения. Необходимость их обработки выявилась для автора во время работы над явлениями жизни в биосфере, которую он ведет неуклонно с 1917 г.

Прага, Февраль 1926.

ОЧЕРКИ ГЕОХИМИИ

Мы живем на повороте в удивительную эпоху истории человечества. События чрезвычайной важности и глубины совершаются в области человеческой мысли.

Основы наших взглядов на «Вселенную», на «Природу»— на то «Единое/ целое», о котором так много говорили в XVIII в. и в течение первой половины XIX столетия, преображаются на наших глазах с небывалой быстротой.

Не одни теории и научные гипотезы — эти мимолетные создания разума,— но и точно установленные новые эмпирические факты и обобщения исключительной ценности заставляют нас переделывать и перестраивать картину природы, которая оставалась нетронутой и почти неизменной в течение нескольких поколений ученых и мыслителей.

Новые взгляды на мир, в сущности углубленное обновление веками сложившихся старинных представлений об окружающей среде и о нас самих, захватывают нас с каждым днем все больше и больше. Они неуклонно проникают все дальше и глубже в область отдельных наук, в поле научной работы. Эти новые воззрения касаются не только окружающей нас косной природы; они захватывают так же глубоко и явления жизни, они глубоко изменяют наши представления в областях знания, которые нам наиболее близки и часто нам кажутся наиболее важными. Можно сказать, что никогда в истории человеческой мысли идея и чувство единого целого, причинной связи всех научно наблюдаемых явлений не имели той глубины, остроты и ясности, какой они достигли сейчас, в XX столетии. Изучение изменения, происшедшего и происходящего в идеях и в понятиях, заставляет нас думать, что мы еще очень далеки от конечного результата и едва различаем направление, по которому пошло новое научное творчество.

Это мы должны учитывать при оценке новых пониманий атома и химического элемента, проникающих в нашу современную науку. Они слагаются среди неустановившейся, изменяющейся, все еще мало нам известной картины космоса. Атомы и элементы — древние интуиции античной мысли — непрерывно меняют в этой новой, все еще полной противоречий, обстановке свой облик и приобретают новые формы.

Каждый химический элемент отвечает для нас особому атому или атомам, определенно точно отличным по своему строению от других атомов, соответствующих другим химическим элементам. Атом науки XX в. не есть атом древних мыслителей — эллинов и индусов — или мусульманских мистиков средних веков и ученых нашей цивилизации последних четырех столетий. Это совершенно новое представление, новое понятие. И если исторически корни современных понятий могут быть сведены к атомам и к элементам древней науки и философии, изменения, которые онп претерпевали, так велики, что от старого остались одни лишь названия. Все изменилось коренным образом.

Может быть, было бы правильнее дать «атому» XX в. новое название. Это можно было бы сделать без всякого ущерба для исторической правды.

Наш атом совершенно не похож на материю, которую он образует. Законы, к нему относящиеся, не тождественны с законами образованной им материи. В материи, в ее химических и физических свойствах мы наблюдаем лишь общие, статистические проявления больших совокупностей атомов, которые выявляют в смутной и сложной форме лишь часть, кажущуюся ничтожной, свойств самого атома и его внутреннего строения.

Глубока грань, разделяющая научное построение окружающего нас мира и нас самих в том их проявлении, которое обусловливается нашими органами чувств (макроскопический разрез космоса), от того научно построяемого космоса, где царит атом (микроскопический разрез космоса). Основные физические представления, как и методика научного мышления, претерпевают в этих проявлениях коренное изменение. Понятие физической причинности резко меняется, углубляется путем разрушения вековых о нем представлений, как только мы научно проникаем в мир атомов. Третий разрез космоса сейчас вырисовывается благодаря успехам астрономических наблюдений и исканий XX в.— мир пространства-времени в его научном охвате большими величинами, несоизмеримыми, как и атомный мир, с данными наших органов чувств.

Эти три представления о мире, о реальности, научно охватываемой,— три «неоднородных пласта реальности»— не согласованы. Все находится в подвижном созидании — научном и философском.

Атом и химический элемент, с ним связанный, проникают во все три формы миропредставления. Кажется очень правдоподобным, что при попытках дальнейшего обобщения получит большое значение то течение научного синтеза, которое выдвинул в середине XVIII в. великий сербо-хорватский мыслитель Руджиеро Боскович (1711—1787) и которое сейчас все больше обращает на себя внимание.

Но атом не есть бесформенный и бесструктурный «центр сил», в закономерной совокупности которых мыслил материю и мироздание Боскович.

История этого течения мысли, по-видимому, намечающего путь научной мысли будущего и им чреватого, еще не написана. Другой великий натуралист, современник Босковича, шотландец Джеймс Геттон (1726— 1797) одновременпо и независимо подходил к тому же миропредставлению, создавая основы современной геологии.

Единого целого научного миропредставления еще нет.

Но бесчисленные новые факты, проявляющие строение реальности, природы, во всех ее разрезах, неуклопно сводят нашу мысль в ее наибольшем углублении к миру атомов и еще дальше — к строящим атомы мельчайшим индивидам, реальным едпппцам пространства-времени.

Факты вызвали создание новых научных дисциплин, отличных от прежних, изучавших материю — совокупность бесчисленных атомов — под статистическим углом зрения.

И мы в XX столетни являемся свидетелями расцвета этого рода новых наук— наук об индивидуальных атомах — физики атомов, радиологии, радиохимии и последней выявившейся — геохимии, небольшой части астрофизики.

Геохимия научно изучает химическпе элементы, т.е. атомы земной коры и насколько возможно — всей планеты. Она изучает их историю, их распределение и движение в пространстве-времени, их генетические на нашей планете соотношения. Она резко отличается от минералогии, изучающей в том же пространстве и в том же времени историю Земли лишь историю соединений атомов — молекул и кристаллов. В этой строго ограниченной земной планетной области геохимия открывает те же явления и законы, существование которых мы могли до сих пор только предчувствовать в безграничных областях небесных пространств. Для цр.с в настоящее время очевидно, что химические элементы не распределены в беспорядке в сгущениях материи этих пространств, в туманностях], звездах, планетах, атомных облаках, космической пыли. Их распределение зависит от строения их атомов.

Есть атомная геометрия пространства-времени, выражаемая в истории и распределении атомов — на всем протяжении и на всем делении космоса — в крупном и в мелком — в строении космической туманности или мельчайшего организма.

Одни и те же законы господствуют как в великих небесных светилах и в планетных системах, так и в мельчайших молекулах, быть может, даже в еще более ограниченном пространстве отдельных атомов.

Более двух с половиной веков назад один из крупнейших ученых, голландец X. Гюйгенс (1629—1695) выяснил неизбежность тождественности материи и сил Вселенной и проявлений жизни на всем ее протяжении. Тождественность материи и сил вытекала из законов тяготения его современника И. Ньютона. Она охватывала и картезианскую философию, которая господствовала в умах физиков и на десятки лет — до 1730—1740 гг.— задержала понимание научных открытий и научных обобщений Ньютона (1676). XVII век внес окончательно в научнофилософское понимание вселенной от времени до времени проявлявшееся в течение столетий представление о единстве, выражаясь современным языком, материи и энергии на всем протяжении космоса, пространства-времени. Но Гюйгенс был одним из немногих, который ясно выразил и неизбежное отсюда следствие единства в космическом аспекте изучаемой нами в биосфере жизни.

Через* 150 лет после Гюйгенса англичанин В. Гюггинс установил путем научного опыта и наблюдения спектральным анализом тождественность химических элементов, т.е. атомов, для звездных миров с их земным проявлением. Творческий взрыв идей, который мы переживаем, не расшатал этого основного положения. Он выразил его в новом понятии о тождественности основных элементов, электронов, нейтронов и протонов, выявляющихся сейчас положительных электронов (позитронов), из которых построены атомы, т.е. химические элементы, и о генетической — хотя и сложной — связи, существующей между атомами различного строения.

Изучая законы и правильности истории элементов нашей планеты, изучая строения земных атомов, мы изучаем тем самым законности мельчайших пространств и мельчайших мгновений, неразрывно связанных с великим целым космоса. Между ними существуют глубокие аналогии и даже нечто большее, чем аналогии.

Протоны, электроны, нейтроны, позитроны, фотоны, кванты охватывают все пространство-время, все три разреза космоса. Они же строят и охватывают атомы. Но химические проявления атомов, изучаемые в геохимии, являются только небольшой частью связанных с этими основными элементами космоса явлений.

Химия космоса и геохимия — атомная химия планеты в пространстве-времени космоса — являются небольшой, хотя и важной чертой в изучаемой наукой реальности.

Но надо помнить и сейчас же отметить, что не химические явления и не химические свойства атомов (химические элементы) определяют материальный субстрат пространства-времени, составляют преобладающую массу, выявляемую при изучении реальности.