2.4. Цифровой автопилот лунного корабля
2.4. Цифровой автопилот лунного корабля
Цифровой автопилот лунного корабля обеспечивает управление на активных и пассивных участках траектории полета всех трех конфигураций: посадочной (рис. 23.1), взлетной (рис. 23.2) и всего корабля Apollo (рис. 23.3).
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Испытания лунного корабля «ЛЗ»
Испытания лунного корабля «ЛЗ» Своим ходом развивалась и программа отработки комплекса «ЛЗ». Перед полетом космонавтов была проделана огромная работа по наземным испытаниям всех агрегатов и систем. Кроме того, проводились генеральные репетиции работы лунного
3.6.2. Цифровой портативный и экономичный регистратор событий из шагомера
3.6.2. Цифровой портативный и экономичный регистратор событий из шагомера В такой ситуации, когда нужен портативный экономичный регистратор событий, работающий от датчика, да еще на ЖКИ, готовый к локальной установке и занимающий мало места, с неограниченной частотой
Цифровой компас
Цифровой компас В гл. 5 описаны схемы цифровых компасов, которые могут оказаться полезными в конструкции робота Голем. Компас может быть установлен двумя различными способами. В первом способе индикаторные светодиоды компаса помещены в поле зрения видеокамеры. Быстро
Взлетающий с корабля
Взлетающий с корабля Анатолий АРТЕМЬЕВСамолет Як-36М — одноместный легкий штурмовик вертикального взлета и посадки с комбинированной силовой установкой, состоящей из трех двигателей — двух подъемных (ПД) и одного подъемно-маршевого (ПМД). Среднеплан нормальной
Усовершенствование корабля Apollo
Усовершенствование корабля Apollo После аварии с космическим кораблем Apollo-13 NASA провел усовершенствование служебного отсека, заключавшееся в следующем.1. Установлен дополнительный кислородный бак в секции № 1 служебного отсека. Это позволит астронавтам в случае аварии,
Реактивная система управления лунного корабля
Реактивная система управления лунного корабля РСУ лунного корабля выполняет следующие функции.1. Осуществляет отделение лунного корабля от основного блока.2. Управляет ориентацией лунного корабля на активных и пассивных участках траектории полета.3. Осуществляет
ЖРД реактивной системы управления служебного отсека и лунного корабля
ЖРД реактивной системы управления служебного отсека и лунного корабля ЖРД РСУ служебного отсека и лунного корабля с тягой 45,5 кг импульсного типа, радиационного охлаждения, работающие на монометилгидразине или 50% смеси гидразина и несимметричного диметилгидразина в
2.2. Цифровой автопилот космического корабля Apollo
2.2. Цифровой автопилот космического корабля Apollo Впервые в условиях пилотируемого космического полета цифровой автопилот (ЦАП) был применен на космическом корабле Apollo.Анализ результатов полетов кораблей Apollo с ЦАП показывает хорошее совпадение прогнозируемых и
Стабилизация корабля Apollo
Стабилизация корабля Apollo Необходимость стабилизации корабля при возникновении изгибных колебаний или плескания жидкости является одним из основных требований, предъявляемых к ЦАП.Для стабилизации корабля как твердого тела в ЦАП были приняты следующие значения
Режим работы цифрового автопилота лунного корабля
Режим работы цифрового автопилота лунного корабля Режимы работы ЦАП лунного корабля определяются необходимостью обеспечить все этапы полета лунного корабля no программе полета Apollo с посадкой на Луне. Режимы полета включают: маневры ориентации относительно центра масс
2.5. Бесплатформенная аварийная система управления лунного корабля
2.5. Бесплатформенная аварийная система управления лунного корабля Наряду с основной системой управления и навигации, в которой используется гиростабилизированная платформа, лунный корабль имеет бесплатформенную аварийную систему управления и навигации.Основное
Стабилизация корабля
Стабилизация корабля Сохранение заданной ориентации – стабилизация корабля – осуществляется ЦАП с помощью управления соленоидными топливными клапанами ЖРД РСУ непосредственно по информации об ошибках ориентации и угловой скорости ориентации. Сигналы ошибок
4.14. Маневрирование вокруг корабля
4.14. Маневрирование вокруг корабля Разрешается обход корабля в двух направлениях: по часовой стрелке и против. В направлении по часовой стрелке шлюпка движется вблизи корабля, по кратчайшему пути. В направлении против часовой стрелки шлюпка движется на расстоянии от
4.17. Подход к трапу корабля
4.17. Подход к трапу корабля На одномачтовой шлюпке подход к трапу корабля можно выполнять со спуском и без спуска парусов. В обоих случаях старшина ведет шлюпку в полный бейдевинд, правя на нижнюю площадку трапа, а затем по мере приближения к трапу приводит шлюпку в крутой