1.4. Дискретные и непрерывные системы
1.4. Дискретные и непрерывные системы
Состояние системы определяется через совокупность состояний всех ее подсистем, т. е. в конечном счете элементарных подсистем. Элементарные подсистемы бывают двух типов: с конечным и бесконечным числом возможных состояний. Подсистемы первого типа называют также подсистемами с дискретными состояниями, второго типа — с непрерывными состояниями. Примером подсистемы с дискретными состояниями может служить колесико арифмометра или счетчика в такси. Нормально это колесико находится в одном из десяти положений, соответствующих десяти цифрам от 0 до 9. Время от времени оно поворачивается и переходит из одного состояния в другое. Этот процесс поворота нас мало интересует. Правильная работа системы (арифмометра, счетчика) зависит только от того, как связаны между собой «нормальные» положения колесиков, а как происходит переход из одного положения (состояния) в другое — несущественно. Поэтому мы и можем рассматривать арифмометр как систему, элементарные подсистемы которой могут находиться только в дискретных состояниях. Современная быстродействующая цифровая вычислительная машина также состоит из подсистем (триггерных схем) с дискретными состояниями. Все, что мы знаем в настоящее время о нервной системе животных и человека, указывает на то, что решающую роль в ее работе играет взаимодействие подсистем (нейронов) с дискретными состояниями.
С другой стороны, человек, катящийся на велосипеде, или аналогичная вычислительная машина дают нам примеры систем, которые описываются как состоящие из подсистем с непрерывными состояниями. В случае велосипедиста таковыми являются все движущиеся друг относительно друга части велосипеда и человеческого тела: колеса, педали, руль, ноги, руки и т. д. Их состояния — это их положения в пространстве, описывающиеся координатами (числами), которые могут принимать непрерывные множества значений.
Если система состоит исключительно из подсистем с дискретными состояниями, то и сама она может находиться лишь в конечном числе состояний, т. е. является системой с дискретными состояниями. Такие системы мы будем называть просто дискретными системами, а системы с непрерывным множеством состояний — непрерывными. Дискретные системы во многих отношениях проще для анализа, чем непрерывные. В частности, пересчет числа возможных состояний системы, который играет важную роль в кибернетике, требует в дискретном случае лишь знания элементарной арифметики. Пусть дискретная система A состоит из двух подсистем a1 и a2, причем подсистема a1 может иметь n2, а подсистема a2 — n2 возможных состояний. Допуская, что каждое состояние системы a1 может сочетаться с каждым состоянием системы a2, мы находим, что число N возможных состояний системы A есть n1n2. Если система A состоит из m подсистем ai, где i = 1, 2, ..., m, то
N = n1n2...nm.
В дальнейшем мы будем рассматривать только дискретные системы. Кроме того прагматического соображения, что они принципиально проще, чем непрерывные системы, существует еще два довода в пользу целесообразности такого ограничения.
Во-первых, все непрерывные системы можно, в принципе, рассматривать как дискретные системы с чрезвычайно большим числом состояний. В свете тех знаний, которые дала нам квантовая физика, такой подход даже следует рассматривать как теоретически более правильный. Причина, по которой непрерывные системы все же не исчезают из кибернетики, — это наличие весьма совершенного аппарата — математического анализа и, в первую очередь, дифференциальных уравнений для рассмотрения таких систем.
Во-вторых, самые сложные кибернетические системы, как возникшие естественным путем, так и созданные руками человека, неизменно оказываются дискретными. Особенно наглядно это видно на примере животных. Относительно простые биохимические механизмы, регулирующие температуру тела, содержание в крови различных веществ и т.п., являются непрерывными, но нервная система устроена по дискретному принципу.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Системы возбуждения
Системы возбуждения Вопрос. Что называется системой возбуждения?Ответ. Называется совокупность оборудования, аппаратов и устройств, объединенных соответствующими цепями, которая обеспечивает необходимое возбуждение автоматически регулируемым постоянным током
Трубопроводные системы
Трубопроводные системы Кран на кухне вышел из строя, лопнула труба центрального отопления, на дачном участке возникла необходимость проложить водопроводную систему орошения… Ремонт и замена элементов различных действующих трубопроводных систем, а тем более
7.8. Две системы
7.8. Две системы Мы имеем перед собой две кибернетические системы. Первая система — человеческий мозг. Ее функционирование — индивидуальное человеческое мышление. Ее задача — координация действий отдельных частей организма в целях сохранения его существования. Эта
Подструктура системы
Подструктура системы Мы будем конструировать нашего робота на основе модели радиоуправляемого автомобиля. В идеальном случае модель должна иметь систему пропорционального управления ходом и поворотами автомобиля. В нашем прототипе используется именно такая модель
9.3. Системы отопления
9.3. Системы отопления Технические требования Вопрос 336. Какие устройства должны иметь отопительные приборы?Ответ. Должны иметь устройства для регулирования теплоотдачи. В жилых и общественных зданиях отопительные приборы, как правило, оборудуются автоматическими
4.3.2. Системы сертификации
4.3.2. Системы сертификации В соответствии с действующими положениями в промышленности и в Авиарегистре (последние обязательны для промышленности и гражданской авиации) система сертификации предусматривает постоянный (непрерывный) и поэтапный контроль соответствия
Рабы Системы
Рабы Системы Продолжение. Начало см. «Мир Авиации» № 4,1993 г., № 1, 1994 г.Памяти заключенных спецтюрьмы ЦКБ-29 НКВДМаксимилиан САУККЕ МоскваВетер перемен 1985 г. позволил слегка приоткрыть завесу секретности над истиной. Центральный архив КГБ разрешил знакомиться с делами
Рабы системы
Рабы системы Максимилиан САУККЕМоскваПамяти заключенных спецтюрьмы ЦКБ-29 НКВДЖурнальный вариант главы из рукописи "Неизвестный Туполев"Шла вторая половина 1937 г. Главный инженер ГУАП и руководитель ведущего ОКБ по самолетостроению Андрей Николаевич Туполев был полон
8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ
8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ Электроэнергетические системы (ЭЭС) современных гражданских судов и военных кораблей являются сложными комплексными системами, в которых нашли применение новейшие достижения практически во всех областях науки и техники
8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ
8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ Низковольтная магнитоэлектрическая машина, названная впоследствии «магнето низкого напряжения», была впервые применена для зажигания двигателей внутреннего сгорания (ДВС) в 1875 г. От магнето осуществлялось зажигание на отрыв — внутри цилиндра ДВС
8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ
8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ Тип системы электроснабжения в значительной мере зависит от наличия на подвижном объекте аккумуляторной батареи, т.е. в конечном итоге от наличия электростартерного пуска.Если электропуск отсутствует, то используется система
8.3.3. СИСТЕМЫ ПУСКА
8.3.3. СИСТЕМЫ ПУСКА В систему пуска традиционно включают аккумуляторную батарею, электростартер, аппаратуру управления пуском и устройства, облегчающие пуск ДВС.Применение аккумуляторной батареи на автомобиле в широких масштабах началось после 1911 г. с введением
ЭВМ системы связи
ЭВМ системы связи В части секундных интервалов процесса связи с Центром пилотируемых полетов NASA ведется «разговор» с одним или двумя космическими кораблями одновременно. Скоростные ЭВМ на базах связи передают команды или принимают данные о давлении в кабине, команды
22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением
22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением Полная взаимная растворимость в твердом состоянии возможна
5.4 Проектирование системы
5.4 Проектирование системы Разработчик должен принимать участие в проектировании системы. Если систему разрабатывают для нескольких различных построений, то ее проект не может быть полностью определен до завершения всех построений. Разработчик должен идентифицировать