V. ЭЛЛИПТИЧЕСКИЕ ОРБИТЫ

Наиболее важными для астронавтики являются эллиптические орбиты, по которым будут двигаться не только все новые искусственные спутники Земли, но чаще всего и космические корабли. Полет по гиперболической орбите — дело более отдаленного будущего (советская космическая ракета, запущенная 2 января 1959 года, летела в поле земного тяготения по гиперболе, а вокруг Солнца движется по эллипсу).

Формулы расчета эллиптических орбит могут быть получены из приведенного выше уравнения живых сил путем упрощений;

для движения вокруг Солнца:

где V — в км/сек,

L,a — в астрономических единицах (1 а. е. — расстояние от Земли до Солнца, равное примерно 150·106 км);

для движения вокруг Земли:

где V — в км/сек,

L, а — в радиусах земного шара.

Примеры использования формул

1. Какова должна быть скорость корабля при взлете с Земли для того, чтобы он смог совершить полет на Меркурий по наивыгоднейшей, то есть касательной, эллиптической орбите?

Траектория полета на Меркурий по касательной эллиптической орбите.

В этом случае

и

Так как круговая скорость Земли равна 29,8 км/сек, то, очевидно, кораблю при взлете нужно сообщить скорость против направления движения Земли по орбите, равную 29,8 — 22,3 = 7,5 км/сек.

2. Какова будет скорость корабля в упомянутой выше задаче на орбите Меркурия?

В этом случае L2=0,387 а. е., а = 0,6935 а. е., вследствие чего

Так как круговая скорость Меркурия равна 47,9 км/сек (это можно проверить и так — она равна круговой скорости Земли, деленной на ?0,387, то есть то корабль будет двигаться быстрее Меркурия на величину 57,5 — 47,9 = 9,6 км/сек.

Траектория полета ракеты с Земли на спутник.

3. Какова должна быть взлетная скорость ракеты, доставляющей о Земли груз на искусственный спутник, находящийся на суточной орбите (высота 35 800 км), если сопротивление воздуха не учитывать? Какова будет скорость этой ракеты на орбите спутника?

В этом случае

При взлете L1 = 1, поэтому

На орбите поэтому

Примечание. Для решения этой задачи можно воспользоваться соотношением, связывающим величины скоростей в апогее и перигее эллиптической орбиты:

Vап· Lап = Vпер. Lпер,

где Vап.Vпер. — соответственно скорости движения в апогее и перигее (в задаче V2V1);

LапLпер., — расстояния апогея и перигея от центра Земли (в задаче L2L1).

Это соотношение непосредственно вытекает из закона сохранения момента количества движения.

Так как Lап = L2 = 6,6; Lпер = 1 и Vпер.V1 = 10,4 км/сек, то

Точно так же в предыдущей задаче

4. Какова будет скорость советской искусственной планеты в ее движении вокруг Солнца?

По предварительным сведениям, опубликованным в советской печати, наибольшее расстояние новой планеты от Солнца будет равно 197,2 миллиона километров, а наименьшее — 146,4 миллиона километров. Следовательно, большая ось орбиты будет равна 343,6 миллиона километров.

Но тогда и максимальная скорость планеты (в перигелии):

а минимальная скорость (в афелии):