V. ЭЛЛИПТИЧЕСКИЕ ОРБИТЫ
Наиболее важными для астронавтики являются эллиптические орбиты, по которым будут двигаться не только все новые искусственные спутники Земли, но чаще всего и космические корабли. Полет по гиперболической орбите — дело более отдаленного будущего (советская космическая ракета, запущенная 2 января 1959 года, летела в поле земного тяготения по гиперболе, а вокруг Солнца движется по эллипсу).
Формулы расчета эллиптических орбит могут быть получены из приведенного выше уравнения живых сил путем упрощений;
для движения вокруг Солнца:
где V — в км/сек,
L,a — в астрономических единицах (1 а. е. — расстояние от Земли до Солнца, равное примерно 150·106 км);
для движения вокруг Земли:
где V — в км/сек,
L, а — в радиусах земного шара.
Примеры использования формул
1. Какова должна быть скорость корабля при взлете с Земли для того, чтобы он смог совершить полет на Меркурий по наивыгоднейшей, то есть касательной, эллиптической орбите?
Траектория полета на Меркурий по касательной эллиптической орбите.
В этом случае
и
Так как круговая скорость Земли равна 29,8 км/сек, то, очевидно, кораблю при взлете нужно сообщить скорость против направления движения Земли по орбите, равную 29,8 — 22,3 = 7,5 км/сек.
2. Какова будет скорость корабля в упомянутой выше задаче на орбите Меркурия?
В этом случае L2=0,387 а. е., а = 0,6935 а. е., вследствие чего
Так как круговая скорость Меркурия равна 47,9 км/сек (это можно проверить и так — она равна круговой скорости Земли, деленной на ?0,387, то есть то корабль будет двигаться быстрее Меркурия на величину 57,5 — 47,9 = 9,6 км/сек.
Траектория полета ракеты с Земли на спутник.
3. Какова должна быть взлетная скорость ракеты, доставляющей о Земли груз на искусственный спутник, находящийся на суточной орбите (высота 35 800 км), если сопротивление воздуха не учитывать? Какова будет скорость этой ракеты на орбите спутника?
В этом случае
При взлете L1 = 1, поэтому
На орбите поэтому
Примечание. Для решения этой задачи можно воспользоваться соотношением, связывающим величины скоростей в апогее и перигее эллиптической орбиты:
Vап· Lап = Vпер. Lпер,
где Vап., Vпер. — соответственно скорости движения в апогее и перигее (в задаче V2, V1);
Lап, Lпер., — расстояния апогея и перигея от центра Земли (в задаче L2, L1).
Это соотношение непосредственно вытекает из закона сохранения момента количества движения.
Так как Lап = L2 = 6,6; Lпер = 1 и Vпер.= V1 = 10,4 км/сек, то
Точно так же в предыдущей задаче
4. Какова будет скорость советской искусственной планеты в ее движении вокруг Солнца?
По предварительным сведениям, опубликованным в советской печати, наибольшее расстояние новой планеты от Солнца будет равно 197,2 миллиона километров, а наименьшее — 146,4 миллиона километров. Следовательно, большая ось орбиты будет равна 343,6 миллиона километров.
Но тогда и максимальная скорость планеты (в перигелии):
а минимальная скорость (в афелии):