Глава 11 ИСКУССТВЕННЫЙ СПУТНИК ЕСТЬ!

Ты слышал, быть может, что скоро Луна,

Которая по небу бродит одна,

Обзаведется сестрою,

Ей люди сестренку построят.

И эту игрушечную Луну

Как мячик с Земли зашвырнут в вышину:

Пускай днем и ночью с подругой

Гуляет по звездному кругу.

Джанни Родари, «Стихи о Луне».

Если при достаточно большой начальной скорости ракета способна облететь вокруг Земли с посадкой на месте старта, то при еще большей скорости она сможет, вероятно, облететь вокруг Земли дважды, трижды…

А нельзя ли заставить ее обращаться вокруг Земли бесконечно долго? Ведь обращаются же так Луна вокруг Земли и Земля вокруг Солнца? Вероятно, можно создать с помощью подобной ракеты и «искусственную Луну», искусственный спутник Земли?

Конечно. Однако для этого должны быть выполнены определенные условия.

Прежде всего, ракета должна летать вокруг Земли на очень большой высоте, чтобы сопротивление воздуха практически не сказывалось на скорости полета, не уменьшало ее. Ведь двигатель ракеты в таком полете работать не должен, за исключением начального периода разгона, в противном случае полет этот очень быстро закончится из-за выработки всего топлива, запасенного на ракете. Если бы Луна совершала свой полет вокруг Земли в атмосфере, то мы бы не только давно лишились очарования лунных ночей, но и сама Земля, вероятно, уже давно перестала бы существовать в результате катастрофы при неизбежном падении Луны на Землю.

Конечно, идеальным был бы полет в мировом пространстве, на расстоянии в тысячи и десятки тысяч километров от Земли. Однако необходимости в таком углублении в мировое пространство нет. Даже и на гораздо меньших высотах полет становится уже вполне возможным. Траектория полета в верхних слоях атмосферы будет, конечно, не круговой, а спиральной, с постепенным снижением, вызываемым сопротивлением воздуха, но снижение это будет небольшим — тем меньшим, чем больше высота полета.

Практически можно считать, что ракета, летящая вокруг Земли на высоте примерно 200 километров, будет описывать почти точный круг. Может быть, лишь время от времени — раз в 2–3 дня — придется включать на короткое время двигатель, чтобы восстановить высоту. Итак, первое условие — высота полета не меньше 200 километров.[35]

Второе очевидное условие — это достаточная скорость полета. Легко видеть, что скорость должна быть строго определенной: если она уменьшится, ракета начнет, терять высоту; если увеличится, ракета будет удаляться от Земли. Чему же равна так называемая круговая (иногда ее называют циркуляционной, или первой космической) скорость, при которой высота полета над Землей будет оставаться постоянной?

Оказывается, круговая скорость равна примерно 7,91 километра в секунду.[36] Вот с какой скоростью должна мчаться ракета, чтобы она бесконечно долго обращалась вокруг Земли с остановленным двигателем, превратившись в искусственного спутника Земли.

Искусственный спутник может обращаться вокруг Земли только в плоскости большого круга.

Итак, при скорости 7,91 километра в секунду ракета станет спутником Земли, а при скорости отрыва, равной 11,2 километра в секунду, навсегда покинет ее. Что же произойдет с ракетой, имеющей скорость больше круговой, но меньше скорости отрыва — например, 9 или 10 километров в секунду? При такой скорости она тоже станет спутником Земли и будет бесконечно обращаться вокруг нее. Но только обращаться она будет не по круговой орбите, а по эллиптической, тем более вытянутой, чем ближе скорость ракеты к скорости отрыва.

Наконец, существует еще одно — третье — условие для того, чтобы ракета стала спутником Земли. Свой полет вокруг Земли такая ракета должна совершать в плоскости большого круга, то есть в одной из плоскостей, проходящих через центр земного шара.

Понятно, что чем выше летит ракета над Землей, тем с меньшей круговой скоростью она должна лететь, ибо при этом она все медленнее падает на Землю. Если бы ракета летела на таком же расстоянии от Земли, на каком находится от нее Луна, то ее скорость равнялась бы скорости движения Луны вокруг Земли, то есть примерно 1 километру в секунду.[37]

Легко подсчитать, за сколько времени ракета, летящая с круговой скоростью, совершит один оборот вокруг Земли, то есть каков будет период обращения вокруг Земли этого нового спутника.

Так, например, при полете у самой Земли период его обращения будет равен примерно 5070 секундам, или 1 часу 24 минутам. Меньше чем за 1? часа вокруг света!

С увеличением высоты полета период обращения будет увеличиваться. На высоте, равной земному радиусу, то есть 6378 километрам, период обращения будет равен уже примерно 14 200 секундам, или почти 4 часам.

Очень интересной оказывается такая высота полета, на которой период обращения ракеты вокруг Земли будет в точности равен 24 часам, то есть периоду одного оборота Земли вокруг своей оси. Эту высоту легко определить — она равна 5,64 земного радиуса, или примерно 35 800 километрам.[38] Если ракета будет мчаться вокруг Земли в плоскости экватора в том же направлении, в котором вращается Земля, то есть с запада на восток, со скоростью, равной круговой скорости на этой высоте (примерно 3080 метров в секунду), то она будет как бы висеть неподвижно над одной и той же точкой земной поверхности. Ракета будет напоминать вертолет, парящий неподвижно над Землей, хотя вместе с тем она будет с головокружительной скоростью мчаться вокруг нее. Если бы высота не была столь большой, то с такого космического корабля можно было бы спуститься по веревочной лестнице с таким же успехом, с каким это сделал летчик, доставивший с вертолета, парившего над стадионом «Динамо» в Москве, букет цветов футбольной команде, выигравшей первенство СССР по футболу.

Своеобразной особенностью обладает и орбита, радиус которой на 58 тысяч километров меньше радиуса лунной орбиты, равного, как известно, примерно 380 тысячам километров. Спутник, вращающийся по такой орбите, может находиться все время на прямой, соединяющей центры Земли и Луны, — он будет неизменно виден на фоне лунного диска.

При этом спутник окажется в так называемой точке либрации. Существуют и другие точки либрации (всего их 5), характеризующиеся тем, что в каждой из них спутник будет неподвижным относительно Земли и Луны. Эти точки найдены французским ученым Лагранжем в результате исследования проблемы «трех тел».[39]

Точки либрации в задаче трех тел: Земля — Луна — искусственный спутник. Точки 2 и 3 соответствуют устойчивому равновесию (так называемые треугольные точки либрации, образующие с Землей и Луной равносторонние треугольники), точки 1, 4 к 5 — неустойчивому. Очевидно, что во всех точках либрации орбита спутника будет 27-дневной, как и орбита Луны.

Циолковский первый в мире понял (независимо от него позже эта идея была высказана зарубежными учеными Обертом в Германии и Годдардом в США), какое огромное значение могут иметь искусственные спутники Земли для решения проблемы межпланетного полета, да и для многих других научных целей. Теперь уже эта роль спутников является общепризнанной — именно с запуска спутников начинается космическая эра в истории человечества.

Вот почему с таким восторгом была воспринята всей мировой наукой весть о запуске первого искусственного спутника Земли в Советском Союзе 4 октября 1957 года. Впервые в истории человек разорвал путы земного тяготения и вырвался на просторы мирового пространства. Эта замечательная победа человеческого гения открыла путь в Космос.

На официальной эмблеме Международного геофизического года Земля опоясана орбитой искусственного спутника.

Первые советские искусственные спутники были созданы в связи с работами, выполнявшимися по программе Международного геофизического года, который начался 1 июля 1957 года и должен был закончиться 31 декабря 1958 года, но затем продлен еще на год — до 31 декабря 1959 года. Исследования, проводимые с помощью искусственных спутников, оказались, пожалуй, самым важным отличием этого геофизического года от двух предыдущих (они назывались полярными). Недаром даже официальной эмблемой геофизического года является изображение земного шара с мчащимся вокруг него искусственным спутником!

Общий вид трехступенчатой ракеты для запуска искусственного спутника «Авангард» (по журналу «Интеравиа», 1957 г.).

Конечно, запуск искусственного спутника — сложнейшее техническое мероприятие, задача, посильная лишь для стран с передовой индустрией, высокоразвитой наукой, мощной реактивной техникой. Неудивительно, что во время геофизического года только две страны включили в план своих научных исследований запуск искусственных спутников — Советский Союз и США. Решить же эту задачу первому удалось Советскому Союзу — стране победившего социализма, родине реактивной техники.

Главная трудность создания искусственного спутника Земли связана с тем, что спутник должен двигаться на огромной высоте с колоссальной скоростью. Как же можно этого достичь?

Для того чтобы ракета, стоящая на Земле, превратилась в искусственный спутник, необходимо затратить какую-то энергию. Эта энергия будет израсходована на то, чтобы поднять ракету на высоту ее орбиты, сообщить ей нужную круговую скорость по орбите, пробить «панцирь» атмосферы, то есть преодолеть сопротивление воздуха, возместить различные другие потери энергии, неизбежные в таком полете. Необходимая для всех этих целей энергия должна быть заключена в топливе, запасенном на ракете. Какова же должна быть величина этой энергии?

Если бы ракета летела в свободном пространстве, где нет ни воздуха, ни силы тяжести, то вся энергия топлива, запасенного на ракете, расходовалась бы только на разгон ракеты, на увеличение скорости ее полета. В таком случае конечная скорость ракеты была бы, очевидно, гораздо большей, чем скорость ракеты, взлетающей с Земли. Неудивительно, что эту скорость часто называют идеальной, чтобы показать, что в действительности достичь ее нельзя.

Обычно в астронавтике запас топлива на ракете, необходимый для совершения какого-нибудь межпланетного полета, оценивают именно величиной идеальной скорости.[40] Чем сложнее и труднее полет, чем больше энергии нужно затратить на его осуществление, тем больше топлива нужно запасти на ракете, и, значит, тем больше должна быть идеальная скорость ракеты.

Если ракета должна стать искусственным спутником Земли, то величина необходимой идеальной скорости ракеты будет зависеть главным образом от высоты ее орбиты над Землей. Расчеты показывают, что эта скорость растет от 8 до примерно 13 километров в секунду, когда высота орбиты растет от нуля до 35 тысяч километров.

Методы, которыми можно воспользоваться для достижения необходимой скорости, известны, они определяются формулой Циолковского, — это увеличение скорости истечения газов из двигателя и увеличение относительного запаса топлива на ракете.

Вспомните еще раз дальнюю ракету, описанную в главе 6. Отношение взлетной и конечной масс этой ракеты равно 3,25, а скорость истечения — примерно 2100 метрам в секунду. Формула Циолковского показывает, что ракета, которая могла бы стать спутником, обращающимся вокруг Земли на высоте до 500 километров, должна иметь при указанном отношении масс скорость истечения газов порядка 7000 метров в секунду, что недостижимо для современной реактивной техники. При сохранении величины скорости истечения, равной 2100 метрам в секунду, соотношение масс должно равняться примерно 60, что может быть, хоть и не без труда, осуществлено с помощью трех- или четырехступенчатой ракеты.

Если же учесть, что в настоящее время достигнуты и большие значения скорости истечения, и большие величины относительного запаса топлива, характеризующего конструктивное совершенство ракеты, то станет очевидно, что принципиально запуск искусственных спутников Земли вполне возможен при современном уровне развития ракетной техники. Для этого нужно воспользоваться «ракетным поездом» — ракетой, состоящей из ряда ступеней.

Но ведь такие многоступенчатые ракеты уже имеются, за чем же тогда дело стало?

Оказывается, наибольшим препятствием на пути создания искусственного спутника являются его размеры. С возрастанием размеров искусственного спутника трудности его запуска быстро увеличиваются. Эти трудности связаны с взлетным весом «ракетного поезда», то есть весом всей составной ракеты при взлете с Земли.

О том, каковы эти трудности, можно судить, например, по сообщениям американских ученых, сделанным ими, в частности, на Международном астронавтическом конгрессе в Риме в сентябре 1956 года, относительно разработанного в США проекта запуска искусственного спутника «Авангард». По этому проекту спутник должен представлять собой небольшой шар диаметром от трети метра до полуметра и весом около 10 килограммов. Запуск же такого спутника осуществляется с помощью трехступенчатой ракеты взлетным весом примерно 10 тонн. Это значит, что на 1 килограмм веса спутника приходится 1 тонна взлетного веса ракеты — в тысячу раз больше! А ведь эта ракета, длина которой равна примерно 22 метрам, а наибольший диаметр — 114 сантиметрам, весьма совершенна по своей конструкции: из общего ее веса 10 тонн на долю самой конструкции ракеты приходится не более 1,5 тонны.

Это отношение 1000: 1 выглядит весьма обескураживающим. Легко видеть, насколько важно добиваться его уменьшения, стремиться к лучшим весовым соотношениям. И, конечно, усилия ученых и конструкторов в этом направлении будут не только не ослабевать в связи с успешным запуском первых спутников, но непрерывно возрастать. Можно предполагать, что совершенствование конструкции ракет и двигателей, применение новых, более тепло-производительных топлив, развитие приборной техники и радиоэлектроники (в особенности здесь важно применение полупроводниковых приборов, сочетающих большую надежность и простоту с ничтожными по сравнению с обычными электронными лампами размерами и весом и расходующих несравненно меньше электроэнергии) позволят уменьшить это соотношение до 200, а может быть, даже до 100. Подобное соотношение было бы замечательной победой науки и техники, значительно расширило бы возможности научного использования искусственных спутников. Вместе с тем, конечно, оно облегчило бы и путь в мировое пространство, путь к далеким мирам…

Неудивительно, что при проектировании спутника борьба ведется в буквальном смысле за каждый грамм. Так, тот же американский спутник представляет собой магниевый шар со стенками толщиной всего 0,8 миллиметра; при общем весе спутника 10 килограммов вес этого шара равен всего 1,8 килограмма.

Несмотря на такую экономию в весе, этот спутник далеко не сразу удалось запустить из-за трудностей, возникших при создании ракеты.[41] В основном эти трудности связаны с двигателями, в особенности с двигателем первой ступени, который должен быть весьма мощным.

Тем более ошеломляющим для всей мировой науки было сообщение об успешном запуске первого советского искусственного спутника, также имеющего форму шара диаметром 58 сантиметров, но весящего 83,6 килограмма! По расчетам, опубликованным в иностранной печати, вес ракеты, с помощью которой был запущен этот спутник, должен составлять не менее 80-100 тонн.

Что же говорить о втором искусственном спутнике, запущенном в Советском Союзе 3 ноября 1957 года, и, в особенности, о третьем спутнике, запущенном 15 мая 1958 года? Ведь только вес научного оборудования, установленного на втором спутнике, равен 508,3 килограмма, а вес третьего спутника — 1327 килограммов! Если судить по лучшим зарубежным достижениям, взлетный вес ракеты, использованной для запуска этих спутников, должен составлять сотни тонн! Уменьшить этот вес можно только путем радикального усовершенствования конструкции ракет или же путем применения новых, улучшенных топлив.

Кстати сказать, запуск искусственных спутников стал возможен только после того, как у нас в стране была создана межконтинентальная баллистическая ракета, о которой говорилось в предыдущей главе как о вершине развития современной ракетной техники. Эта ракета и была использована для запуска спутников.

Несомненное превосходство советской ракетной техники, наглядно продемонстрированное перед всем миром запуском искусственных спутников, подчеркивается не только самим фактом запуска первых в мире искусственных спутников и во много раз большим весом этих спутников по сравнению со спутниками США. Об этом говорит также и сравнение орбит советских и американских спутников.

Действительно, как избрать орбиту искусственного спутника?

Прежде всего возникает вопрос о положении плоскости орбиты по отношению к плоскости экватора, а также о целесообразном месте запуска. При решении этого вопроса приходится учитывать два противоречивых требования.

Чтобы использовать скорость, которую Земля имеет в своем вращении вокруг оси, полет спутника по орбите должен осуществляться в том же направлении, что и вращение Земли, то есть с запада на восток. При таком запуске спутник «бесплатно», без затраты топлива, получает ту скорость, которой обладает точка запуска в своем вращении вокруг оси Земли, как приобретает скорость поезда выпрыгивающий из него на ходу пассажир. Максимальный выигрыш в скорости может быть при этом получен, очевидно, на экваторе — он равен 465 метрам в секунду. Чем больше географическая широта точки взлета ракеты, тем этот выигрыш меньше. Полет в противоположном направлении настолько же увеличивает необходимую идеальную скорость ракеты. При взлете с полюса направление полета, конечно, вообще не сказывается на величине идеальной скорости.

Таким образом, чтобы облегчить задачу запуска спутника, плоскость его орбиты должна быть расположена под возможно меньшим углом к экватору, а точка запуска — возможно ближе к нему.

Но при таком выборе орбиты спутника он будет пролетать над очень узкой полосой земной поверхности, расположенной у экватора. Следовательно, возможности наблюдений за спутником и со спутника будут сильно ограниченны, а ведь такие наблюдения весьма важны. Зато наилучшей в отношении наблюдений была бы полярная, или меридиональная, орбита, при которой спутник обращался бы вокруг Земли в плоскости, проходящей через полюсы, то есть по меридиану. Правда, при этом была бы полностью потеряна выгода, которую можно получить, используя окружную скорость Земли вокруг оси. Чем ближе плоскость орбиты спутника к полярной, тем больше возможности научных наблюдений с помощью спутника, но вместе с тем больше и необходимый запас топлива на ракете для достижения заданной высоты орбиты.

Плоскости орбит спутников, запущенных в США, расположены под небольшим углом к экватору, примерно 30–35°, орбиты же советских спутников расположены под углом 65° к экватору. Это значит, что запустить советские спутники было труднее, но зато больше и научное значение этих спутников.[42]

Но вот плоскость орбиты избрана. Как теперь установить форму самой орбиты? Должна быть орбита круговой или эллиптической? Если будет избран эллипс, то насколько вытянутый, с какой высотой перигея и апогея, то есть наименьшей и наибольшей высотой?

Конечно, наиболее просто было бы создать спутник, имеющий круговую орбиту на высоте, как уже говорилось, не менее 200 километров. Для запуска такого спутника потребовалось бы наименьшее возможное количество топлива. Но зато срок «жизни» такого спутника был бы также наименьшим — под действием воздушного сопротивления разреженной атмосферы первоначально круговая орбита превратится быстро в спиральную, спутник будет приближаться к Земле, терять высоту. В то же время он станет двигаться во все более плотной атмосфере, оказывающей ему все большее сопротивление, что еще сильнее снизит его скорость. Наконец все туже закручивающаяся спираль приведет спутник в столь плотную атмосферу, что, ворвавшись в нее с огромной, космической скоростью, спутник превратится в метеор — он вспыхнет, испарится. Так произойдет еще одна космическая катастрофа, на этот раз — с небесным телом, созданным рукой человека.

Чтобы удлинить срок жизни спутника, целесообразно увеличить его скорость при запуске выше круговой. Ниже, в главе 15, посвященной траекториям полета межпланетных кораблей, будет показано, что в этом случае орбита спутника будет уже не круговой, а эллиптической. Высота полета спутника над Землей будет при этом все время изменяться между перигеем и апогеем. Чем больше эта избыточная скорость при запуске спутника, тем более вытянутым окажется эллипс, тем больше будет высота апогея по сравнению с высотой перигея. Это и приведет к значительному увеличению срока жизни спутника. Теперь уже воздушное сопротивление, действие которого будет проявляться в моменты полета спутника у перигея, то есть на меньших высотах, будет постепенно снижать высоту апогея.[43] Эллипс, который описывает спутник вокруг Земли, постепенно начнет приближаться к кругу, его вытянутость — уменьшаться. Наконец спутник выйдет на круговую орбиту, а затем, как уже было сказано, перейдет на спиральный спуск.

Так ценой затраты дополнительного топлива при запуске спутника можно увеличить высоту апогея его орбиты и, тем самым, срок его жизни. Понятно, конечно, что необходимость в дополнительном топливе усложняет ракету и увеличивает ее взлетный вес.

Как известно, первый спутник, запущенный в Советском Союзе, имел начальную высоту апогея 947 километров, второй спутник — 1671 километр, а третий спутник — 1880 километров. Следовательно, наряду со все возрастающим весом спутников увеличивалась и высота их над Землей и, соответственно, срок жизни.[44]

Следует отметить, что большая вытянутость эллиптической орбиты, большая высота апогея дает и еще одно преимущество, помимо увеличения срока жизни. Совершая свои путешествия от перигея к апогею и наоборот, спутник пересекает различные слои земной атмосферы. Так, первый советский спутник в своем движении по орбите то входил в ионосферу, то выходил из нее, а второй и третий спутники, помимо этого, выходили практически вовсе за пределы земной атмосферы. Это чрезвычайно важно для некоторых исследований, о которых ниже будет сказано подробнее, в частности для исследований космических лучей.

На такой пусковой платформе устанавливается ракета «Авангард» перед запуском (по журналу «Миссайлз энд Рокетс», июль, 1958 г.).

Запуск советских искусственных спутников Земли был осуществлен с помощью составной многоступенчатой ракеты. Первый спутник, имевший шаровидную форму, был помещен в носовой части последней ступени ракеты и закрыт защитным носком-конусом, сбрасываемым в полете. Вторым спутником явилась сама последняя ступень ракеты, причем в этом случае также имелся сбрасываемый носок, защищавший при полете в плотной атмосфере научное оборудование спутника от воздействия давления встречного потока воздуха и перегрева. Таким же защитным носком был снабжен и третий спутник, который, как и первый спутник, при достижении орбиты отделился от последней ступени ракеты, так называемой ракеты-носителя, но, в отличие от него, имел не шаровидную, а конусообразную форму.

Примерное общее представление об устройстве ракет для запуска искусственных спутников Земли можно получить по американской ракете «Авангард», о которой были опубликованы подробные сведения. Одним из характерных отличий этой ракеты является отсутствие у нее стабилизаторов, что делает ракету похожей на простой карандаш или, еще лучше, на винтовочный патрон с пулей. Вместо стабилизаторов и рулей ракета управляется в полете путем изменения направления реактивной тяги двигателя, для чего весь двигатель должен поворачиваться на некоторый угол — до 4–5° от оси ракеты. Такая шарнирная подвеска двигателя для целей управления была в свое время предложена Циолковским и в 1931 году практически осуществлена в Советском Союзе. В ряде случаев она оказывается более выгодной по сравнению с обычными рулями, но обладает и некоторыми недостатками. В частности, отклонение двигателя от оси ракеты может быть лишь небольшим, так как иначе сильно усложняется подвод топлива к двигателю. Но из-за этого при запуске ракеты, когда она движется еще с малыми скоростями и потому неустойчива, управление ракетой может оказаться неудовлетворительным. Считается, что первые одна — две секунды после взлета могут оказаться роковыми для ракеты, если на нее подействует сильный порыв ветра.

Для запуска ракета устанавливается на специальной пусковой платформе высотой примерно 3,5 метра. В платформе имеется канал диаметром 2,5 метра для того, чтобы отвести газы, вытекающие из двигателя первой ступени ракеты при запуске. Так как газы имеют очень высокую температуру, то канал охлаждается водой. Для всех работ по монтажу ракеты и подготовке ее к запуску стенд имеет специальную высокую башню, которая перед запуском отводится в сторону по рельсовому пути.

Как же был осуществлен запуск советских искусственных спутников?

Конечно, во всех случаях, при запуске любых искусственных спутников, без ракет не обойтись. Но принципиально возможно несколько облегчить ракетам их задачу. Так, например, первоначальный подъем ракеты на некоторую высоту можно осуществить с помощью аэростата или самолета, а конечное, последнее, ускорение спутника на орбите — путем взрыва специального заряда на ракете. Подобные проекты предлагались. Однако все они рассчитаны на запуск небольших, скорее — миниатюрных спутников. Для спутников большого размера такие методы, вероятно, не годятся, их запуск с начала до конца должен осуществляться ракетами.

Полет ракеты для доставки спутника на его орбиту во многом похож на полет обычных высотных или дальних ракет, описанных выше, в главе 6. Но полет на орбиту — не только полет на гораздо большую высоту и с гораздо большей скоростью, — он имеет и одно принципиальное отличие. Если обычные ракеты разгоняются двигателем лишь при взлете, один-единственный раз, а весь остальной полет совершают с выключенным двигателем, то запустить спутник таким образом невозможно. Чтобы создать искусственный спутник Земли, двигатель его ракеты должен работать обязательно дважды — один раз при взлете с Земли, другой — уже на орбите спутника, чтобы разогнать его до нужной орбитальной скорости.

Траектория полета орбитальной ракеты.

При запуске советских искусственных спутников ракета стартовала вертикально, так же, как стартуют и высотные ракеты. На некоторой высоте ось ракеты стала отклоняться от вертикали под действием органов ее управления, работавших по определенной, заранее заданной программе. Ракета стала лететь под углом к горизонту, в общем направлении на северо-восток, причем двигатель ракеты разогнал ее до скорости, необходимой для достижения нужной орбитальной высоты. Вслед за тем ракета продолжала полет уже с неработающим двигателем; за счет накопленной при разгоне скорости она по-прежнему набирала высоту. Траекторией такого безмоторного полета, своеобразного «дрейфа» в мировом пространстве, был эллипс. Наконец на высоте в несколько сот километров ракета стала лететь почти горизонтально, параллельно земной поверхности, достигнув высоты заданной орбиты спутника. Вот теперь снова понадобилась помощь двигателя ракеты, чтобы разогнать ее до нужной орбитальной скорости; как уже указывалось выше, эта скорость несколько превышала круговую на данной высоте, она равнялась примерно 8 километрам в секунду.

К моменту, когда ракета, точнее — последняя ее ступень, достигла заданной высоты и скорости полета, все топливо на ней было выработано и двигатель снова прекратил работу, теперь уже навсегда, вслед за чем был сброшен защитный конус (носок) ракеты. При запуске второго спутника, которым служила последняя ступень ракеты, этим дело и ограничилось. Когда же запускался первый спутник, то после сбрасывания защитного конуса шаровидный спутник, находившийся в передней части ракеты, был вытолкнут из нее специальным устройством с небольшой скоростью. Примерно так же обстояло дело и при запуске третьего спутника, как это показано на рисунке.

Так как все перечисленные заключительные операции производились в то время, когда последняя ступень ракеты уже летела по орбите с нужной орбитальной скоростью, то Земля сразу получала по нескольку «спутников». В их числе были собственно спутник, ракета-носитель (при запуске первого и третьего спутников) и части защитного конуса. Однако дальнейшая судьба этих «спутников» оказалась различной.

Ракета, с помощью которой были запущены спутники, состояла, как указывалось выше, из нескольких ступеней. Они по очереди отделялись и падали на Землю по мере того, как на каждой ступени вырабатывалось все топливо.

В качестве примера, иллюстрирующего полет такой составной ракеты, можно привести опубликованные расчетные данные запуска трехступенчатой ракеты «Авангард», о которой выше уже упоминалось.

Первая ступень ракеты за 114 секунд работы жидкостного ракетного двигателя, развивающего тягу более 12 тонн, поднимает всю ракету на высоту 58 километров и сообщает ей скорость 1680 метров в секунду. Затем первая ступень (длина ее 13,5 метра при общей длине всей ракеты примерно 22 метра) отделяется и падает на Землю на расстоянии примерно 450 километров от места старта. В момент отделения запускается жидкостный ракетный двигатель второй ступени, имеющей длину примерно 9,5 метра и диаметр 81 сантиметр. Двигатель второй ступени увеличивает высоту полета ракеты до 210 километров и скорость до 4900 метров в секунду.

После остановки двигателя второй ступени из-за выработки всего запасенного на ней топлива ее тоже следовало бы отделить — ведь она теперь только мешает. Однако на самом деле вторая ступень не будет отделена, она будет продолжать полет вместе с третьей ступенью вплоть до достижения высоты орбиты. Это объясняется тем, что на второй ступени находятся все приборы управления полетом ракеты. Установить их на небольшой третьей ступени оказалось невозможным — слишком мала последняя ступень ракеты «Авангард». Конечно, на ракете больших размеров можно было бы все сделать иначе.

Схема отделения третьего советского спутника от ракеты-носителя.

Ракета с неработающим двигателем продолжает полет до высоты примерно 480 километров. Управление полетом ракеты на этом участке осуществляется с помощью небольших ракетных двигателей, струи газов из которых вытекают в боковом направлении. Одновременно третья ступень с установленным на ней спутником раскручивается вокруг своей оси с тем, чтобы потом, после отделения второй ступени, вращение третьей ступени обеспечивало устойчивость ее в полете.

Когда ракета достигает заданной высоты (480 километров), вторая ступень отделяется и падает (вероятно, в Атлантический океан). Включается пороховой ракетный двигатель последней, третьей ступени, который разгоняет эту ступень вместе с установленным на ней спутником до заданной круговой скорости. Защитный носок ракеты, закрывающий спутник, сбрасывается, и спутник выталкивается из ракеты-носителя.

После запуска спутник начинает неутомимо накручивать на старушку Землю бесконечные витки своих спиралеобразных орбит.

Но почему спиралеобразных? Ведь орбиты спутников — это гигантские эллипсы. При чем же здесь спираль?

Траектория запуска ракеты «Авангард».

Такие кривые выписывал первый советский спутник над земной поверхностью в течение суток.

Действительно, орбиты советских спутников очень близки к эллипсам и в первом приближении могут быть приняты за эти геометрические фигуры. Относительно звезд их эллиптические орбиты остаются почти неподвижными.[45] Но ведь сама Земля вращается вокруг своей оси, и, очевидно, над земной поверхностью спутники будут двигаться по какой-то сложной кривой. Если бы Земля не вращалась, то спутники проходили бы все время над одними и теми же географическими пунктами. Из-за вращения Земли советские спутники видны из самых различных мест на земной поверхности, лежащих между северным и южным полярными кругами. Если соединить на карте те города, над которыми проходили спутники в соответствии с их абсолютно безошибочными «расписаниями», публиковавшимися в советских газетах, то получатся какие-то странные зигзагообразные линии. Но в действительности трассы спутников на земной поверхности представляют собой очень плавные кривые, похожие на так называемые синусоиды. Вблизи экватора широта спутника над Землей меняется быстро, его трасса наклонена под большими углами к меридианам. Чем дальше от экватора, тем меньше этот угол, пока, наконец, кривая трассы не касается 65-й параллели и не поворачивает назад, снова к экватору.

Так как Земля совершает один оборот вокруг своей оси за 24 часа, а спутник один оборот вокруг Земли — примерно за 1? часа, то за сутки спутник успевает обежать вокруг Земли примерно 16 раз. Это значит, что он «прочертит» на земной поверхности 16 витков своей спиралеобразной трассы. Каждый следующий виток смещен на запад по отношению к предыдущему на 24° по долготе. Это составляет примерно 2500 километров в экваториальной области и примерно 1500 километров на широте Москвы. Вот на такое расстояние и должен был бы перенестись за полтора часа наблюдатель (как видно, тут потребовался бы реактивный самолет!), если бы он снова захотел оказаться как раз под спутником.

Конечно, эти расчеты приближенны. Чтобы точно установить, над каким местом земной поверхности будет проходить спутник в заданное время, нужно учесть и то, что скорость движения спутника по его орбите не остается постоянной, и то, что положение самой орбиты в пространстве, то есть по отношению к звездам, тоже не остается неизменным: плоскость орбиты, оказывается, медленно поворачивается вокруг полярной оси земного шара (так называемая прецессия орбиты). Все это и учитывается, когда составляется точное «расписание» движения спутников.

К сожалению, увидеть спутник, даже если он проходит над самой головой, можно далеко не всегда. Дело тут, конечно, вовсе не в одной только облачности. Даже когда небо абсолютно чистое, мы можем видеть быстро пересекающую его искусственную звездочку лишь в определенные моменты: утром — до восхода солнца и вечером — после его захода. Днем тоненький лучик, идущий к нашему глазу от искусственного спутника, затеряется в массе солнечных лучей — спутник будет невидим. Невидим он будет и ночью — ведь спутник сам не светится, он лишь отражает падающие на него солнечные лучи, а ночью спутник оказывается в огромном конусе тени, отбрасываемой земным шаром. Только утром и вечером, когда на небосводе солнца не видно, а мчащийся на высоте в сотни километров спутник освещен его горячими лучами, можно стать свидетелем незабываемого зрелища — увидеть искусственную звезду, мчащуюся среди мерцающих неподвижных звезд небосвода.[46]

Правда, первый советский спутник можно было видеть лишь с помощью сильного бинокля или подзорной трубы — это была слабая звездочка примерно пятой или шестой звездной величины. Зато ракеты-носители этого и третьего спутников, а также второй и третий спутники, имеющие гораздо большие размеры, были отчетливо видны как яркие желтоватые звезды, стремительно движущиеся по небу. На всех континентах, во всех странах люди следили за этими посланцами человечества в Космос, за этими «филиалами» Земли в небе.

Во многих случаях можно было видеть, как пролетавшая в небе искусственная звезда довольно резко меняла свой блеск, становилась более или менее яркой. Это было связано с тем, что ракета-носитель первого спутника, второй и третий спутники, которые имели несимметричную геометрическую форму, меняли свою освещенность в результате вращения вокруг центра тяжести. Значит, искусственные спутники обладали и этим движением, свойственным спутникам природным.

Научное значение первых искусственных спутников Земли поистине неоценимо. Не только астронавтика, но и многие «земные» науки сделают гигантский шаг вперед, опираясь на результаты наблюдений, произведенных с помощью спутников. Можно не сомневаться, что, несмотря на свои относительно небольшие размеры, спутники оправдают очень большие надежды ученых. Вот уж действительно — мал золотник, да дорог! Понятно, почему так велико научное значение первых спутников Земли. Ведь только они позволили ученым впервые перенести приборы с Земли на другое небесное тело. Это неизмеримо расширило возможности научных исследований, позволило осуществить научные наблюдения, принципиально не осуществимые с Земли.

И, пожалуй, самым первым по научному значению из всех приборов первого советского спутника следовало бы назвать прибор, который на этом спутнике вовсе не установлен! Ничего удивительного в этом нет, ибо речь идет о приборе, которым является… сам спутник, само это крошечное небесное тело, созданное советскими людьми.

Для науки чрезвычайно ценно уже одно только то, что в небе появились другие небесные тела, другие спутники Земли, помимо извечного ее спутника — Луны. Но еще более ценно то, что эти новые спутники во многом отличны от Луны, что они имеют несравненно меньшие размеры, чем Луна, обращаются вокруг Земли на несравненно меньших расстояниях и имеют соответственно меньший период обращения. Вследствие этих отличий на движении искусственных спутников, которое подчиняется, естественно, тем же законам, что и движение Луны, будут сильно сказываться многие факторы, практически не сказывающиеся на движении Луны. Будет сказываться, конечно, и то очень важное обстоятельство, что искусственные спутники движутся в иной плоскости вокруг Земли, чем плоскость движения Луны.

Вот почему искусственные спутники и являются очень ценными научными приборами. Изучая особенности их движения, можно сделать научные выводы большой важности. Так, например, неизмеримо сильнее, чем на движении Луны, будут сказываться на спутниках такие особенности Земли, как ее сплющенность, то есть отличие от правильной геометрической формы шара, (истинная форма земного шара — геоид — близка к эллипсоиду вращения), или же неоднородность ее строения, то есть неравномерное размещение масс внутри земной коры. Из-за этих особенностей Земли орбита искусственного спутника не будет точно круговой или эллиптической, она будет, как говорят, искажена. Кроме того, она не будет занимать фиксированного положения в пространстве (не будет перемещаться параллельно самой себе), а будет вращаться по сложным законам. Естественно, что по этим причинам будет изменяться и скорость движения спутника по орбите.

Значит, точно измеряя эти, как их называют, возмущения орбиты искусственного спутника, можно судить о вызывающих их причинах. Таким методом можно, например, определить точную форму или, как говорят, фигуру Земли, проверив заодно и другие, используемые в настоящее время методы. Этим будет оказана большая помощь геодезии — науке об измерении Земли и картографии — карты станут более точными. В частности, можно будет гораздо точнее, чем теперь, установить расстояние между земными материками и, наконец, выяснить, действительно ли перемещаются материки, как это предполагается некоторыми учеными, и если да, то как именно. Или, например, можно будет судить о неравномерностях строения земной коры, что может принести большую пользу геологии. В частности, с помощью таких гравиметрических наблюдений (то есть наблюдений за изменением силы тяжести в разных точках земной поверхности) могут быть обнаружены новые месторождения полезных ископаемых.

Наблюдая за орбитой искусственного спутника, можно сделать и еще один вывод, имеющий огромное значение для науки. Особенно важен этот вывод, в частности, потому, что никаким другим способом наука пока получить его не в состоянии. Речь идет об определении плотности воздуха в верхних слоях атмосферы, на границе ее с мировым пространством. Это конечно, имеет далеко не один только академический интерес. На такие огромные высоты уже забираются автоматические ракеты; за первыми спутниками появятся и другие, на разных высотах; недалеко то время, когда там будут летать и люди. А ведь впереди — межпланетный полет, при котором, конечно, корабль должен пересечь всю атмосферу, снизу доверху. И для всего этого совершенно необходимо точное знание плотности и других свойств атмосферы на всем ее протяжении — иначе нельзя точно рассчитать полет, а без такого расчета нельзя быть до конца уверенным в его успехе.

Но как же можно узнать с помощью спутника, какова плотность тех крайне разреженных слоев атмосферы, в которых он движется? Должны ли для этого находиться на спутнике какие-нибудь приборы, измеряющие плотность воздуха и сообщающие результаты своих измерений на землю?

Нет, необходимости в таких приборах в этом случае, к счастью, нет.[47] Задача может быть решена и без них. Для этого, как указывалось выше, требуются лишь тщательные наблюдения за движением спутника: он сам снова становится измерительным прибором. Все дело в том сопротивлении, которое оказывает спутнику воздух, в котором он движется.

Как известно, воздух оказывает сопротивление всякому движущемуся в нем телу. Это так называемое аэродинамическое сопротивление зависит от плотности воздуха, оно тем больше, чем больше эта плотность. Конечно, спутники движутся в самых верхних, крайне разреженных слоях атмосферы, где плотность ничтожно мала, но все же и этот воздух оказывает сопротивление движению спутника, правда, сопротивление очень небольшое. Измеряя это сопротивление, можно довольно точно определить плотность земной атмосферы на огромных высотах.

Но разве возможно измерить аэродинамическое сопротивление спутника в его полете по орбите? На первый взгляд это представляется еще гораздо более трудной задачей, чем непосредственное измерение плотности воздуха. Ведь для измерения этого сопротивления при испытаниях самолетов или их моделей в аэродинамических трубах служат специальные высокоточные аэродинамические весы, самописцы и другие приборы. Что же заменит их в данном случае?

Вот тут-то и появляется на сцену сам спутник как высокочувствительный измерительный прибор. Дело в том, что орбита спутника очень чутко реагирует на его скорость, даже ничтожное изменение скорости ощутительно изменяет орбиту. Поэтому точные измерения орбиты позволяют судить об изменении скорости движения спутника, а значит, и о величине воздушного сопротивления, которая, как указывалось выше, прямо пропорциональна плотности воздуха.

Кстати, в значительной мере именно из-за этого использования аэродинамического сопротивления спутника для определения плотности атмосферы в ее верхних слоях первому советскому спутнику была придана шаровая форма. Аэродинамическое сопротивление шара изучено лучше, чем других тел. Кроме того, как бы шар ни вертелся в полете, он все равно остается шаром. А представьте себе спутник в виде цилиндра. Летит такой цилиндр вокруг Земли и при этом поворачивается то одним боком, то другим. Ведь так и обстояло дело, например, со вторым советским спутником, яркость которого, как и яркость ракеты-носителя первого спутника, менялась в полете. Но понятно, что каждому положению цилиндра будет соответствовать свое сопротивление. Как же тут разобраться, какова истинная величина этого сопротивления, чтобы по ней определить плотность воздуха? Тут можно сильно ошибиться…

Как же должно влиять на орбиту искусственного спутника сопротивление атмосферы? Хорошо известно, что сопротивление воздуха мешает полету самолета, тормозит его. Если бы на самолете не было двигателя, то скорость его полета под действием этого сопротивления непрерывно уменьшалась бы. Значит, и скорость спутника должна постепенно уменьшаться, ведь на спутнике нет двигателя, который мог бы восстановить потерю скорости. Но в действительности скорость спутника, как показали наблюдения за первыми советскими спутниками, не только не уменьшается, а непрерывно возрастает!

Чем же объяснить этот парадокс, это кажущееся противоречие?

Оно объясняется тем, что, как и следовало ожидать, все-таки существует «двигатель», вызывающий этот неожиданный рост скорости спутника. Таким двигателем является Земля, сила ее тяготения. Как только скорость спутника под влиянием воздушного сопротивления оказывается меньшей, чем это требуется для полета по данной орбите, он под действием притяжения к Земле начинает двигаться по другой орбите. Новая орбита отличается от исходной, главным образом, высотой своего апогея — она уменьшается; высота перигея тоже уменьшается, но неизмеримо медленнее. Значит, эллипс становится менее вытянутым, он приближается к кругу. Средняя же скорость спутника по всей орбите не только не уменьшается, но даже возрастает — сказывается снижение спутника, его падение в поле земного тяготения (в то же время максимальная скорость спутника, то есть его скорость в перигее, при таком торможении спутника уменьшается, что очень важно для посадки межпланетного корабля, о которой будет идти речь в главе 17).

Чем сильнее влияет воздушное сопротивление на движение спутника, тем значительнее его снижение и больше рост средней скорости движения. В итоге же уменьшается период обращения спутника вокруг Земли — и потому, что уменьшается проходимый за каждое обращение путь, и потому, что свой путь спутник проходит с большей скоростью. Наблюдая за тем, как уменьшается период обращения спутника, можно судить о величине воздушного сопротивления и, значит, о плотности воздуха на тех высотах, где движется спутник.

Именно из-за воздушного сопротивления оказалась различной судьба первого советского спутника и его ракеты-носителя. Вначале, когда спутник был вытолкнут из ракеты-носителя, он ушел вперед километров на тысячу. Однако потом, под действием воздушного сопротивления, значительно большего для ракеты-носителя[48] ракета начала постепенно нагонять спутник. Примерно через 5 дней она уже догнала спутник и стала все быстрее удаляться от него, приближаясь вместе с тем к Земле. Когда спутник совершил 500 оборотов вокруг Земли, то ракета-носитель обогнала его уже на целых два оборота, совершив за это же время 502 оборота. 2 декабря 1957 года ракета-носитель обогнала спутник уже на 12 оборотов — она сделала 900 оборотов, тогда как спутник — 888 оборотов вокруг Земли. Вслед за этим ракета-носитель вошла в наиболее плотные слои атмосферы и через два месяца после запуска перестала существовать — отдельные оплавленные части ее упали на территории Аляски и западного побережья США. Спутник же по-прежнему продолжал полет вокруг земного шара и 9 декабря завершил 1000-й оборот вокруг него, пройдя путь в 43,2 миллиона километров. Он прекратил свое существование примерно через месяц после гибели ракеты-носителя, 4 января 1958 года, совершив за 3 месяца 1400 оборотов вокруг Земли и пройдя путь около 60 миллионов километров.

Падение спутника сквозь наиболее плотные нижние слои атмосферы, когда он из-за аэродинамического нагрева раскаляется докрасна, превращаясь в болид, разрушаясь и частично испаряясь, представляет исключительно большой интерес для науки. Ведь недалек тот момент, когда не только искусственные спутники совершат посадку на Землю, но и отправится в полет первый межпланетный корабль с людьми на борту, а он, естественно, должен совершить безопасную посадку при возвращении на Землю. Вот почему так важны наблюдения за спутником в последние часы его существования: наука извлекает пользу и из самой гибели созданного людьми искусственного небесного тела. К сожалению, эта задача очень сложна, и до сих пор тщательно проследить за падением спутников не удалось.

Понятно, что для всех наблюдений, связанных с измерениями орбиты спутника, эти измерения должны быть очень точными. Но даже при наличии подобных измерений получение нужных результатов весьма не простое дело. Так, например, задача определения плотности воздуха на больших высотах по скорости снижения спутника гораздо сложнее, чем описано выше. Ведь при этом приходится учитывать, что причиной снижения спутника может быть не только воздушное сопротивление, но и другие явления, например так называемое приливное действие Земли. Необходимо считаться также с давлением солнечных лучей на спутник. Примерный расчет показывает, что при круговой орбите на высоте 500 километров это давление примерно сравнивается по величине с аэродинамическим сопротивлением, оказываемым спутнику разреженной атмосферой, в которой он движется. Давление солнечного излучения может тормозить спутник, а может и создавать небольшую движущую силу — в зависимости от того, как избрана орбита спутника. По проекту, разработанному во Франции, использование солнечного давления на небольшой искусственный спутник с такой высотой круговой орбиты может полностью компенсировать различные тормозящие действия на спутник и, следовательно, сделать продолжительность жизни спутника практически неограниченной. Конечно, создать подобный «тысячелетний» спутник можно и простым увеличением высоты орбиты.

Наблюдатели Пулковской обсерватории Академии наук СССР готовы отметить момент пролета спутника. Для удобства наблюдений телескопические трубки AT-I снабжены зеркалом, в котором отражается сравнительно большой участок неба. Это позволяет смотреть вниз, а не вверх.

Снимок ракеты-носителя первого советского спутника, сделанный 10 октября 1957 года в Пулковской обсерватории с помощью короткофокусного астрографа. Разрыв светящегося следа ракеты сделан для определения момента пролета. Звезды на снимке вышли в виде коротких черточек, а не точек, что объясняется длительностью выдержки при съемке.

Чтобы точно установить закон движения спутника по орбите, необходимы тщательные определения положения спутника на небе в каждый данный момент. Наблюдению за движением спутников у нас в стране уделено большое внимание. Основная роль при этом возложена на специальные станции наблюдения, организованные в разных пунктах страны. Станции снабжены специальными телескопическими широкоугольными трубками, с помощью которых создаются «оптические барьеры» на небе. Трубки располагаются по прямой перпендикулярно ожидаемому направлению полета спутника, а иногда также и по меридиану. Момент пересечения спутником этой невидимой прямой, фиксируемый одним из наблюдателей, отмечается с помощью точных часов. Чтобы облегчить такие же наблюдения, ведущиеся многими астрономами-любителями, по радио каждый час передаются сигналы точного времени.

Исключительно большое значение имеют фотографические наблюдения за спутниками, доступные не только специальным обсерваториям, но и каждому любителю, обладающему фотоаппаратом. Четкие снимки пролетающего спутника в виде яркой полоски, пересекающей небо, с отметкой времени пролета (например, путем разрыва этой полоски перекрыванием объектива) могут принести особенно большую пользу.

Но, конечно, ограничиться только оптическими наблюдениями нельзя. Ведь большую часть суток пролетающий в небе спутник невидим. Поэтому очень важны радиолокационные наблюдения, осуществляемые с помощью особых, весьма сложных установок, так называемых радиолокационных телескопов.

Однако подобные установки еще весьма немногочисленны. Вот почему важно было создать спутник не «пассивный», а «активный», способный передавать на Землю и сообщения о своем местонахождении на небе, и, если можно, другие важные сведения. Как известно, уже первый советский спутник был именно «активным» спутником.

На первом советском спутнике были установлены две передающие радиостанции, работавшие на волнах длиной 7,5 и 15 метров. Вот почему этот спутник был снабжен двумя парами усов-антенн длиной 2,4–2,9 метра. На нем были установлены также и источники электрического тока, необходимые для работы радиостанций. В течение трех недель весь мир слушал сигналы этих станций. Их удавалось принимать на расстоянии до 10 тысяч километров от спутника.

Работа радиостанций на спутнике имела огромное значение и для изучения электрического потолка земной атмосферы — ионосферы. Ведь до сих пор ее изучение осуществлялось с помощью радиоволн, которые излучались с поверхности Земли и отражались различными слоями ионосферы; по характеру этого отражения можно было судить о свойствах ионосферы. Самые отдаленные слои ионосферы удавалось «прощупывать» таким образом лишь с трудом, а может быть, и вовсе не удавалось — по существу, не было известно, где находится верхняя граница ионосферы. Спутник дал возможность посылать радиосигналы из разных точек ионосферы и из областей, лежащих выше нее.

Ценность радиозондирования ионосферы значительно увеличивалась тем, что спутник излучал радиоволны двух различных частот. Накопленные за время работы раций первого спутника сведения, а также сведения, полученные в результате запуска второго и третьего спутников, будут подвергнуты тщательному изучению и помогут не только установить свойства ионосферы, но и улучшить на этой основе дальнюю радиосвязь. Они будут иметь также большое значение при решении проблем радиосвязи с будущими межпланетными кораблями. Еще большее значение для этой цели имеет, конечно, ценнейший опыт, полученный при приеме сигналов радиостанций первой советской космической ракеты, ставшей спутником Солнца. Ведь это были сигналы первого настоящего межпланетного корабля!

При приеме на слух посылаемые первым спутником радиосигналы казались совершенно одинаковыми короткими звуками «пип-пип» (посылаемые спутником сигналы имели вид телеграфных посылок длительностью 0,3 секунды с паузами такой же продолжительности). Однако в действительности чередующиеся с паузами посылки были вовсе не одинаковы. Иногда они становились длиннее, иногда короче. Это вызывалось тем, что на основные сигналы постоянной частоты и длительности накладывались другие сигналы — зашифрованные показания установленных на спутнике приборов.

Принятые земными наблюдательными станциями сигналы спутника записывались и затем расшифровывались. Такая система передачи показаний приборов называется радиотелеметрической. С ее помощью регистрировались, в частности, давление и температура азота, заполняющего шаровидный спутник.

Первый советский искусственный спутник Земли.

Но зачем же в спутнике находился азот?

Прежде всего, он создавал давление внутри герметического шара-спутника. Легко видеть, что это необходимо и для работы приборов спутника, и для уменьшения толщины его стенок. Но не менее важна и вторая роль азота: она связана с регулированием температурного режима спутника.

Двигаясь по своей орбите, спутник то нагревался палящими лучами Солнца, то замерзал, когда для него наступало «солнечное затмение», то есть когда он попадал в конус земной тени. Температура спутника при таких переходах может измениться более чем на 200–250 °C. Может быть, это было бы и не страшно для металлического шара, но заведомо недопустимо для различного научного оборудования, размещенного внутри шара. Поэтому возникла острая необходимость регулировать температуру спутника.

Записанные радиосигналы первого советского спутника. Как видно, они не совсем одинаковые.

Задача эта оказалась очень нелегкой и, главное, совершенно новой — ведь еще никому до сих пор не приходилось регулировать температуру какого-нибудь… небесного тела. А спутник является как раз именно таким телом, его температура определяется лучистым теплообменом с окружающим пространством. Поэтому поверхности спутника были приданы определенные свойства в отношении поглощения и излучения лучистого тепла. Но этого мало. При тепловых расчетах спутника приходилось учитывать и выделение тепла внутри него, как это имеет место, допустим, внутри земного шара. Только Земля подогревается изнутри теплом радиоактивного распада калия, урана и других веществ, а спутник — теплом, выделяющимся в результате работы установленного на нем научного оборудования и радиостанций.

Продолжая эту аналогию между Землей и нашим искусственным спутником, можно было бы указать и еще некоторые сходства и различия. Так, в отличие от Земли, мчащейся в безвоздушном пространстве, спутник движется в земной атмосфере, хоть и очень разреженной. Это заставляет учитывать и некоторое количество тепла, которое спутник получает в результате трения о воздух. С другой стороны, Земля обладает замечательным механизмом для выравнивания температуры по всей ее поверхности — атмосферой. Такой атмосферы спутник лишен. Впрочем, почему лишен?

Вот тут-то мы и встречаемся со второй функцией азота, заполняющего спутник. Если нельзя создать атмосферу, окружающую спутник, то почему бы не устроить ее… внутри спутника? Ведь подобная атмосфера тоже может выравнивать температуру на спутнике. И вот наш спутник приобретает азотную «атмосферу». Но если мы еще пока не в силах управлять ветрами в земной атмосфере и только мечтаем об этом, то никто не мешает нам организовать «ветры» в азотной атмосфере спутника наилучшим образом, чтобы приборы внутри спутника находились в наиболее благоприятных условиях. Вот почему азот в спутнике циркулирует по заданным путям с помощью специальных устройств. Это тоже была нелегкая задача.

Глядя на модель первого советского спутника — блестящий металлический шарик с усами антенн, — впервые показанную на Всесоюзной промышленной выставке, не просто было представить себе все трудности, которые пришлось преодолеть при его создании, все проблемы, которые пришлось решить. Но, конечно, самая большая, самая главная трудность заключалась в том, чтобы доставить этот скромный на вид и такой замечательный по существу шарик на его головокружительную орбиту. Для этого мало было даже создать невиданную, не существующую нигде за рубежом сверхвысотную ракету. Нужно было научиться управлять ракетой так, чтобы она прочертила в мировом пространстве точно предопределенный ей путь.

Долгие месяцы, если не годы, рассчитывали бы ученые этот путь, если бы не прибегли к помощи совершенных электронных счетных машин, — без них такие расчеты были бы вряд ли возможны. Сколько самых различных обстоятельств и влияний пришлось учитывать при выполнении этих расчетов! И вот ракета взлетела. Одно — два неучтенных обстоятельства, выходящая за рамки допустимой производственная погрешность, ничтожная неточность в работе, одна из сотен возможных случайностей — и весь огромный труд пойдет насмарку, ракета не выйдет на заданную орбиту.

Ведь стоит ошибиться в величине конечной скорости ракеты на заданной высоте орбиты на два — три десятка метров в секунду — это при скорости-то в 8 километров в секунду! — и высота спутника над Землей изменится на добрую сотню километров. На столько же изменит положение орбиты спутника и ничтожное, в один градус, изменение направления конечной скорости вверх или вниз. Мы уже не говорим о таких ошибках, которые приводят к гибели ракеты…

Запуск первого советского спутника удалось осуществить сразу, без каких бы то ни было репетиций, и он полностью подтвердил все предварительные расчеты ученых, показал безупречную работу всех двигателей, механизмов, устройств, приборов. Ракета вышла абсолютно точно на заданный курс, спутник стал обращаться вокруг Земли по строго указанной ему орбите. Это поистине блестящий, невиданный успех советской науки и техники!

Конечно, второму советскому спутнику было намного легче — ведь дорожка в Космос была уже проторена, второй раз — не первый! Но зато ему было и много трудней. Достаточно вспомнить хотя бы о том, что он весил в 6 раз больше — только вес его оборудования превосходил полтонны. И вместе с тем забрался этот спутник почти на тысячу километров выше. Но, пожалуй, самое большое его отличие от первого спутника заключается в количестве установленного научного оборудования. Второй спутник — это уже целая научно-исследовательская лаборатория в Космосе.

Все научное оборудование второго спутника установлено непосредственно на ракете-носителе, а не на особом шаровидном спутнике. Это объясняется, главным образом, тем, что задача определения плотности воздуха на больших высотах уже не являлась здесь основной, так что второй спутник мог быть и не шаровым. С другой стороны, расположить все научное оборудование второго спутника в шаре было практически невозможно, такой шар получился бы несоразмерно большим. Вместе с тем, чтобы увеличить срок жизни второго спутника, его орбита была повышена, да и, как оказалось, даже на меньших высотах, соответствующих полету первого спутника, срок жизни ракеты-носителя достаточно велик.

На втором спутнике имелся и шар, похожий на шаровидный первый спутник. В этом шаре были расположены радиостанции с источниками питания, различные измерительные приборы, система циркуляции газа. Радиостанции спутника работали на волнах 7,5 и 15 метров, но на этот раз передачи на волне 15 метров велись, как и раньше, в виде телеграфных посылок длительностью 0,3 секунды с такими же паузами, тогда как станция на волне 7,5 метра излучала сигнал непрерывно. Большая мощность радиопередатчиков позволяла принимать их сигналы на расстояниях до 15 тысяч километров, а в некоторых случаях эти сигналы обходили даже вокруг земного шара.

Спереди, на силовой раме, предназначенной для крепления научной аппаратуры, была установлена «солнечная лаборатория» спутника для исследования коротковолнового солнечного излучения — ультрафиолетового и рентгеновского. О том, что Солнце испускает, кроме видимого света, и такие лучи, стало известно только в последние годы в результате исследований, произведенных с помощью высотных ракет. Эти коротковолновые лучи могут быть обнаружены лишь на огромных высотах, куда залетают ракеты. На меньших высотах и у земли такие лучи в солнечном спектре не обнаруживаются, они полностью поглощаются вышележащими слоями атмосферы; земной поверхности достигают лишь наиболее длинноволновые ультрафиолетовые лучи, непосредственно примыкающие к фиолетовой части спектра. Объясняется это тем, что коротковолновое излучение Солнца обладает чрезвычайно большой активностью и потому вступает во взаимодействие с верхними слоями атмосферы, вызывая ионизацию молекул воздуха. Ученые считают, что коротковолновое ультрафиолетовое излучение Солнца (большая часть этого излучения испускается атомами водорода в хромосфере Солнца и соответствует длине волны 1215 ангстрем) и рентгеновское излучение солнечной короны (так называемые мягкие рентгеновские лучи с длиной волны 3-100 ангстрем) являются главной причиной образования ионосферы.

Схема устройства второго советского искусственного спутника Земли.

Хотя общая энергия коротковолнового излучения Солнца очень мала сравнительно с энергией излучаемого им видимого света, однако оно оказывает исключительно большое влияние на земную атмосферу. Уже одно это делает чрезвычайно ценным его изучение. С другой стороны, коротковолновое излучение рождается малоизученными внешними слоями солнечной атмосферы — хромосферой и короной, что только усиливает интерес к нему. Наконец, установлено, что усиление солнечной активности, связанное с появлением так называемых хромосферных вспышек, неизменно приводит к интенсивным процессам в ионосфере, результатом которых являются, в частности, нарушения радиосвязи. Это делает особенно важным как с теоретической, так и с практической точек зрения согласованное изучение ионосферных процессов, солнечной активности и коротковолнового солнечного излучения. Именно для этих целей более всего подходит «солнечная лаборатория» на спутнике, работающая параллельно с земными станциями «службы Солнца».

«Солнечная лаборатория» спутника состояла из трех одинаковых приборов, так называемых фотоумножителей. Три прибора нужны были для того, чтобы один из них был всегда направлен на Солнце при вращении спутника (приборы были расположены под углом 120° друг к другу). Энергия солнечного излучения, проникающего в фотоумножитель, преобразовывалась в электрические сигналы, интенсивность которых была пропорциональна этой энергии; затем сигналы усиливались, зашифровывались и передавались земным наблюдательным станциям радиотелеметрической системой спутника.

Но как добиться, чтобы в фотоумножители поступало излучение только одной длины волны или хотя бы узкого диапазона длин волн? Для этого перед фотоумножителями были установлены вращающиеся диски с окошками разного рода — из тонких металлических и органических пленок, а также из специальных оптических материалов. Каждое из таких окошек-фильтров пропускало волны только определенного диапазона длин. Понятно, что вращение дисков было согласовано со всей системой регистрации показаний прибора, чтобы точно знать, интенсивность какого диапазона излучения измеряется.

Внешний вид второго советского искусственного спутника Земли (защитный конус снят).

На эту автоматику была возложена и еще одна задача — экономия электроэнергии, потребляемой прибором. Зачем расходовать энергию, такую драгоценную на спутнике, на работу прибора, если в него не попадают солнечные лучи? Чтобы избежать этого, питание прибора включалось только в том случае, если в один из трех фотоумножителей попадали солнечные лучи. Это осуществлялось с помощью фотосопротивлений, то есть таких электрических сопротивлений, величина которых изменяется при облучении их светом; они и сигнализировали автоматике, что в прибор попадают солнечные лучи.

Как видите, «солнечная лаборатория» была скромной по размерам, но очень «хитрой» по устройству.

Не менее «хитрой» была и лаборатория, предназначенная для исследования загадочных посланцев Вселенной — космических лучей. Она была смонтирована непосредственно на корпусе ракеты-спутника, как и многие другие приборы и аппаратура.

«Солнечная лаборатория» второго советского спутника.

Если коротковолновое излучение, изучавшееся первой «лабораторией», рождается внешними слоями солнечной атмосферы, то космические лучи, изучавшиеся второй «лабораторией», являются отзвуками каких-то неизвестных пока еще процессов гигантской силы, происходящих где-то в глубинах Космоса. Но одно их роднит — и те и другие не достигают земной поверхности, «гибнут» в атмосфере; кроме того, по крайней мере часть космических лучей каким-то образом, несомненно, связана и с Солнцем.

Изучение космических лучей дает возможность науке проникнуть в тайны процессов, происходящих в глубинах Космоса, может быть, далеко за пределами солнечной системы. Что это за процессы, результатом которых являются потоки частиц колоссальной энергии, не достижимой пока в лаборатории никакими другими методами? Каков состав этих вестников Вселенной, по которому можно судить о химическом составе самой Вселенной? Каким воздействиям подвергаются космические лучи на своем далеком пути? Вот только часть вопросов, которые могут быть прояснены в результате исследований «космической лаборатории» спутника.

Эта «лаборатория» представляла собой два одинаковых прибора для подсчета космических частиц; установлены приборы так, что их оси расположены во взаимно-перпендикулярных направлениях. Как только через один из счетчиков проходит космическая частица, обладающая электрическим зарядом, в счетчике возникает искра. Специальное радиотехническое устройство счетчика, работающее на полупроводниковых электронных «лампах» — триодах, сейчас же регистрирует эту искру. Когда число подсчитанных частиц достигает определенного значения, «лаборатория» посылает об этом радиосигнал на Землю. Так эта «лаборатория» сделала возможным определение интенсивности космических лучей, то есть числа космических частиц, проходящих через счетчик в секунду.

Но как измерить энергию отдельных космических частиц, как установить распределение всего потока частиц по энергиям, то есть энергетический спектр частиц? Для этого необходим какой-то сепаратор частиц, делящий их на группы по величине энергии так же, как сепаратор в виде вращающегося диска с разными окошками служил для разделения коротковолновых лучей по длине волны в «солнечной лаборатории». Но какими должны быть фильтры перед счетчиками космических частиц, если они пронизывают толстенные слои металла, оказывающиеся для них совершенно «прозрачными»? Задача оказалась бы, вероятно, совершенно неразрешимой, если бы не гигантский естественный сепаратор, который, к счастью для исследователей, предупредительно приготовила для них природа.

Прибор для исследования космического излучения, установленный на втором советском спутнике.

Лайка в герметической кабине перед установкой ее на спутник.

Природным сепаратором космических частиц является… Земля. Ведь она представляет собой огромный магнит и, значит, отклоняет электрически заряженные космические частицы к полюсам. Чем меньше энергия частицы, тем сильнее сказывается на ней действие магнитного поля Земли, то есть тем сильнее частица отклоняется к полюсу. Вдали от полюсов, у экватора, можно встретить лишь те космические частицы, энергия которых очень велика. Каждой географической широте соответствует свое минимальное значение энергии космических частиц, способных проникать через «барьер» магнитного поля Земли. Поэтому об энергетическом спектре космических частиц можно судить по распределению их в зависимости от географической (точнее — геомагнитной) широты.

Спутник является, очевидно, идеальным устройством для такого исследования, так как он быстро перемещается на большие расстояния по широте. Конечно, это касается только спутников с орбитой, близкой к меридиональной, какими и являются советские спутники. Вот почему «лаборатория» космических частиц второго советского спутника позволяет определить так называемый широтный эффект, то есть установить распределение космических частиц по их энергиям.

Были на спутнике и другие «лаборатории», занимавшиеся исследованием различных физических явлений. Но, пожалуй, наибольший интерес во всем мире вызвала «биологическая лаборатория»: цилиндрический контейнер с подопытным животным — собачкой Лайкой. Впервые в истории живое существо провело многие часы в полете в мировом пространстве.

Внешний вид третьего советского искусственного спутника Земли.

Понятно, какое огромное значение имели наблюдения за поведением первого межпланетного путешественника — Лайки. Ведь космический полет связан со многими трудностями и опасностями для астронавтов. Тут и инерционные перегрузки при взлете ракеты, связанные с многократным увеличением веса путешественников; и последующая полная потеря веса, когда наступает состояние так называемой динамической невесомости, связанное с прекращением работы двигателя ракеты и начавшимся свободным падением ее на Землю; и вредное действие коротковолнового излучения Солнца; и смертельно опасные космические лучи; и еще многое другое.[49] И, как это было уже не раз в истории науки, человек послал в разведку по неизведанным опасным путям, на этот раз в Космос, своего верного друга — собаку. Будет вполне заслуженно, если у ног астронавта на гранитном постаменте будущего памятника первым межпланетным путешественникам будет лежать их боевой разведчик — небольшая собачка Лайка.

Специальные чувствительные устройства — датчики — регистрировали все основные функции жизнедеятельности Лайки: работу сердца, легких, работу системы кровообращения и другие. Сигналы датчиков преобразовывались радиотелеметрической системой спутника в радиосигналы и передавались на Землю.

Но, конечно, этим задача «биологической лаборатории» не ограничивалась. Ее механические «сотрудники» должны были, в отличие от других «лабораторий» спутника, обеспечить все условия жизни своей подопечной. Создателям спутника пришлось подумать о снабжении Лайки свежим воздухом и удалении продуктов ее дыхания, об утолении голода и жажды, о поддержании заданного давления и температуры и еще о многом другом. Это были очень нелегкие задачи.

Второй советский спутник был намного сложнее и совершеннее первого. Но в еще большей степени он уступал в совершенстве третьему спутнику.

Дело не только в значительно большем весе научного оборудования, установленного на третьем спутнике, — он равнялся 968 килограммам вместо 508 килограммов на втором спутнике. Неизмеримо шире стал круг научных задач, решение которых оказалось возможным возложить на третий спутник. Так что если второй спутник мы назвали научной лабораторией в Космосе, то третий спутник по праву может быть назван целым научно-исследовательским институтом. Если бы для всех исследований, которые осуществлял третий спутник, на нем находился штат научных сотрудников, то вокруг Земли обращалось бы по орбите спутника здание внушительных размеров. Сократить это здание до размеров спутника, имеющего длину 3,57 метра и наибольший диаметр 1,73 метра, удалось только потому, что автоматические «сотрудники» этого космического института занимали ничтожно мало места. Этому в большой степени способствовало исключительно широкое применение полупроводников в научном оборудовании спутника.

Создание третьего спутника представляет собой пример блестящего решения задачи комплексной механизации и автоматизации, которая сейчас стоит перед всей нашей промышленностью. А ведь создать полностью автоматизированный научно-исследовательский институт, да еще находящийся в суровых условиях мирового пространства, — задача не менее трудная, чем сооружение автоматического цеха или даже завода.

Схема установки научной аппаратуры на третьем советском спутнике.

На третьем спутнике автоматы осуществляли самые различные функции. Основную роль играли, конечно, приборы, выполнявшие разнообразные научные наблюдения и измерения. Приборы были как бы станками этого автоматизированного предприятия в Космосе. Чего только не измеряли приборы спутника!

На третьем спутнике снова имелась «лаборатория» по изучению космических лучей, но только значительно более совершенная, чем на втором спутнике. В частности, на этот раз она была приспособлена для поисков пока еще никогда не обнаруженной компоненты космических лучей — именно фотонов, квантов гамма-излучения. Открытие фотонов в космических лучах, которое ожидают многие ученые, означало бы крупнейший скачок вперед в изучении Вселенной, так как позволило бы безошибочно установить источник космического излучения. Ведь фотоны, в отличие от других компонентов космических лучей, представляющих собой электрически заряженные частицы, не отклоняются от прямолинейного пути в электрических и магнитных полях. Кроме того, аппаратура третьего спутника была специально рассчитана на выяснение и другого крайне важного для исследования космических лучей вопроса — она позволяла детально изучить тяжелую компоненту этих лучей, то есть наличие в них ядер наиболее тяжелых атомов.

Имелась на третьем спутнике и «солнечная лаборатория», но в отличие от такой же лаборатории второго спутника она была предназначена для исследования не коротковолнового (ультрафиолетового и рентгеновского) излучения Солнца, а его корпускулярного излучения, то есть того потока частиц вещества, который оно испускает. Таким образом, эта «лаборатория» спутника позволяла осветить один из наименее изученных вопросов, связанных с деятельностью Солнца, оказывающей столь большое влияние на процессы в земной атмосфере.

Но этими двумя «лабораториями» список «научных подразделений» третьего спутника вовсе не ограничивался. Он включал комплекс других «лабораторий», превращавших спутник в чрезвычайно ценную геофизическую наблюдательную станцию в Космосе.

Так, на спутнике были установлены приборы (ионные ловушки), позволявшие впервые в истории науки непосредственно измерить концентрацию заряженных частиц в ионосфере, что должно сыграть исключительно важную роль в понимании происходящих в ней процессов. Другие приборы (масс-спектрометры) также впервые позволяли определить химический состав ионосферы. Точнейшие манометры измеряли давление и плотность атмосферы на огромных высотах — до сих пор эти измерения надежно осуществлялись с помощью ракет лишь до высот порядка 100 километров.

Остроумные и тонкие приборы спутника — флюксметры, опять-таки впервые в истории науки, осуществляли измерения с целью установить наличие и характер электростатических полей на большом расстоянии от Земли, разрешить ряд связанных с этими полями загадок, интригующих в настоящее время науку. В частности, эти измерения должны помочь ответить на вопрос о причинах возникновения большой, в сотни тысяч вольт, разности электрических потенциалов между положительно заряженным земным шаром и отрицательно заряженной атмосферой.

Очень велики надежды, которые ученые всего мира связывают с установленными на третьем спутнике магнитометрами. Задачей этих приборов является изучение магнитного поля Земли на большом расстоянии от нее, что должно помочь раскрыть тайну образования такого поля, а также установить характер его изменений, оказывающих столь большое влияние на поведение компаса, распространение радиоволн и др. Установка магнитометров на спутнике оказалась связанной с очень большими трудностями, зато теперь наша страна оказалась обладательницей не только единственного в мире специального морского судна для магнитных измерений — шхуны «Заря», но и столь же уникального космического «судна».

Вряд ли можно переоценить и значение установленных на спутнике приборов (пьезодатчиков), позволяющих определить число и энергию микрометеоритов — мельчайших небесных камешков, в огромном числе населяющих солнечную систему и врывающихся в земную атмосферу со скоростью до 70 километров в секунду. Эти исследования важны и для понимания ряда атмосферных процессов и, естественно, для будущего астронавтики.

Питание электроэнергией всех этих и других приборов и устройств спутника осуществлялось не только от совершенных аккумуляторных батарей, как на первых двух спутниках, но и с помощью солнечных батарей. Кремниевые полупроводниковые пластины превращали энергию солнечных лучей непосредственно в электрический ток. Главное назначение солнечной электростанции спутника заключалось, конечно, в проверке ее работоспособности в условиях космического полета. Кому не ясно, как заинтересована в этом астронавтика!

Сложным и многообразным было и радиооборудование третьего спутника. Тут и коротковолновая передающая станция «Маяк», непрерывно излучающая телеграфные посылки на волне 15 метров и предназначенная для того, чтобы в наблюдениях за спутником могли принять участие тысячи радиолюбителей всего мира; и радиотелеметрическая аппаратура, преобразующая показания всех приборов спутника в радиосигналы для передачи их на Землю; и специальная радиоаппаратура для измерения координат спутника, то есть местонахождения его в пространстве.

Немалую роль среди «вспомогательных служб» спутника играли устройства, поддерживавшие заданный температурный режим внутри него. Многочисленное оборудование спутника сделало эту задачу более трудной, чем для первых спутников. Поэтому, помимо прежних мер, вроде обеспечения циркуляции азотной «атмосферы» спутника, на третьем спутнике был применен и новый метод, впрочем, предложенный еще Циолковским. Спутник был снабжен поворотными жалюзи с электроприводом, способными то открываться, то закрываться, что изменяло свойства поверхности спутника в отношении поглощения и излучения тепла. Эти автоматические «истопники» спутника поддерживали в нем нужную температуру.

Как же осуществлялось управление всем сложным хозяйством спутника, требующим, как мы видели, самого разнообразного вмешательства? Эта роль была поручена специальному «мозгу» спутника — особому электронному программно-временному устройству. В нужные моменты оно включало и выключало приборы, открывало или закрывало створки жалюзи, «запоминало» показания приборов, а затем «выдавало» их наземным наблюдательным станциям, выполняло различные другие функции.

Каковы же итоги научных исследований, осуществленных с помощью первых советских спутников?

Полная обработка всех результатов проведенных исследований потребует значительного времени и труда больших коллективов ученых. Придется расшифровать сотни и тысячи различных показаний, переданных со спутников, подвергнуть анализу тысячи данных наземных наблюдений за ними. В этой работе будут использованы многочисленные электронно-счетные машины.

Но кое-какие важные выводы можно сделать уже сейчас. Запуск советских искусственных спутников Земли, несомненно, оправдал себя — он дал науке материалы неоценимого научного значения. Все теоретические расчеты и предположения советских ученых полностью подтвердились, научное оборудование спутников работало безупречно. Это является замечательным достижением передовой советской науки и вместе с тем всей мировой науки.

Уменьшение периода обращения первого советского спутника по измерениям, произведенным с помощью радиотелескопа Кембриджской обсерватории (Англия). Точки — данные измерений.

Главные наблюдения, связанные с первым советским спутником, относились к измерениям его орбиты, как и орбиты его ракеты-носителя. Прежде всего это касалось измерений периода обращения этих искусственных небесных тел. Первоначально они имели общий период обращения, равный 96,2 минуты. Затем из-за действия воздушного сопротивления и по другим причинам он стал уменьшаться. С течением времени уменьшение периода обращения становилось все более быстрым. Так, за месяц, с 9 октября по 9 ноября 1957 года, период обращения спутника уменьшился с 96 минут до 94,72 минуты, то есть на 77 секунд, а период обращения ракеты-носителя — с 96 минут до 93,48 минуты, то есть на 151 секунду. Это значит, что период обращения спутника уменьшался за этот месяц в среднем на 2,57 секунды в сутки, а ракеты-носителя — на 5 секунд в сутки. К концу же месяца, то есть 9 ноября, уменьшение периода обращения спутника составляло уже 2,94 секунды в сутки, а ракеты-носителя — 9,24 секунды в сутки.

Это ускоренное уменьшение периода обращения первого советского спутника можно проиллюстрировать, например, графиком, построенным по данным радионаблюдений Кембриджской радиоастрономической обсерватории в Англии. График построен для периода с 8 по 22 октября и отчетливо показывает все более быстрый темп снижения периода обращения спутника по времени.

Уменьшению периода обращения соответствовало и все более быстрое снижение спутника и ракеты-носителя, то есть уменьшение высоты апогея их орбит. В начале движения высота апогея спутника и ракеты-носителя была общей и составляла 947 километров. К 9 ноября высота апогея спутника составляла 810 километров, а ракеты-носителя — 695 километров. Через 58 дней после запуска ракета-носитель перестала существовать, пролетев примерно 39 миллионов километров и сделав 900 оборотов вокруг земного шара. Спутник же прекратил свое существование 4 января 1958 года, сделав примерно на 500 оборотов вокруг Земли больше, чем ракета-носитель, и пройдя на 20 миллионов километров больший путь.

Второй советский искусственный спутник свой тысячный оборот вокруг Земли завершил к 2 часам ночи 13 января 1958 года. За это время он прошел путь, равный 45,4 миллиона километров, то есть на 2,2 миллиона километров больший, чем путь первого спутника за то же число оборотов. Это легко понять: ведь второй спутник двигался по орбите большего радиуса, на большей высоте над Землей. Даже после тысячи оборотов период обращения второго спутника уменьшился лишь на 3,9 минуты, то есть вместо первоначального в 103,7 минуты стал равным 99,8 минуты. Этот период обращения все еще больше, чем первоначальный период обращения первого спутника. Высота апогея второго спутника уменьшилась за это же время на 370 километров, то есть до 1300 километров. 14 апреля 1958 года второй советский искусственный спутник Земли прекратил свое существование, совершив всего около 2370 оборотов вокруг Земли и пройдя путь более 100 миллионов километров.

Интересно продолжить сравнение траекторий первого и второго спутников.

Первый спутник просуществовал 3 месяца, пройдя всего немногим больше 59 миллионов километров. Когда прошло 3 месяца со дня запуска второго спутника (то есть 3 февраля 1958 года), то оказалось, что пройденный им путь равен… 59,3 миллиона километров и лишь немногим больше пути, пройденного за это же время первым спутником. Значит, средняя скорость движения обоих спутников была почти одинаковой. Зато второй спутник сделал за это время лишь 1312 оборотов вокруг Земли, тогда как первый спутник совершил примерно 1400 оборотов. Понятно, почему так: ведь среднее расстояние второго спутника от Земли больше, чем первого. Когда же и второй спутник завершил 1400-й оборот (9 февраля 1958 года), то его путь удлинился примерно на 6 миллионов километров по сравнению с расстоянием, пройденным за то же число оборотов первым спутником.

Точно так же можно сравнить движение второго и третьего спутников. Третий спутник завершил свой двухтысячный оборот вокруг Земли 8 октября 1958 года, пройдя за 147 суток путь в 92,6 миллиона километров, тогда как второй спутник это же число оборотов совершил за 138 суток (21 марта 1958 года), пройдя путь в 89 миллионов километров. Период обращения третьего спутника уменьшился при этом на 2,15 минуты, а второго спутника — на 9,5 минуты. Высота апогея уменьшилась, соответственно, на 195 и 900 километров. Это объясняется как большей начальной высотой апогея третьего спутника, так и его большей поперечной нагрузкой по сравнению со вторым спутником.

Из-за меньшей поперечной нагрузки ракеты-носителя третьего спутника по сравнению с самим спутником она погибла намного раньше спутника — 3 декабря 1958 года, совершив всего 2907 оборотов вокруг Земли и пройдя путь около 130 миллионов километров. Спутник же прекратил существование 6 апреля 1960 года на 10037 обороте, пройдя за 691 сутки свыше 448 миллионов километров.

Наблюдения за изменением периода обращения спутников позволяют уточнить наши знания о плотности воздуха на огромных высотах. В этом отношении советские ученые накопили уже огромный экспериментальный материал, причем определение плотности велось одновременно несколькими методами, дополняющими друг друга. В настоящее время впервые в истории плотность земной атмосферы уверенно определена до высот 600–800 километров. На этих высотах в одном кубическом сантиметре содержится от 2 до 20 миллионов частиц воздуха, то есть примерно в миллион миллионов раз меньше, чем у поверхности Земли. Плотность воздуха на высотах порядка 200 километров оказалась значительно большей, примерно в 5-10 раз, чем это предполагалось до запуска спутников по данным ракетных исследований. Выше оказалась и температура воздуха.

Представляют интерес наблюдения за вращением орбиты спутников. Как известно, плоскость орбиты из-за сплющенности земного шара медленно вращается относительно земной оси в направлении, противоположном вращению Земли, то есть на запад. Эта прецессия орбиты происходила со скоростью 2,5–3 градуса в сутки. Большая полуось эллиптической орбиты спутников также регрессирует, то есть движется против движения спутников по орбите, но с гораздо меньшей скоростью.

Выше уже упоминалось, что наблюдения за переменным блеском ракеты-носителя первого спутника позволили установить период ее обращения вокруг собственного центра тяжести. Он оказался равным одному — двум оборотам в минуту. Удалось установить, что обращается вокруг оси и сам спутник; такой вывод был получен в результате исследования радиосигналов, излучаемых спутником.

Более точно удалось изучить движение вокруг центра тяжести третьего спутника в связи с тем, что на нем был установлен прибор (магнитометр), с помощью которого можно было довольно точно установить ориентацию спутника в пространстве. Оказалось, что движение спутника довольно сложно — он вращается вокруг продольной оси, делая один оборот примерно за 18 минут, и, кроме того, сама эта ось совершает прецессионное движение вокруг оси, наклоненной к ней под углом 84 градуса, как это происходит с волчком. Период прецессии равен примерно 140 секундам. Следует отметить, что со временем под воздействием главным образом атмосферы и гравитационного поля Земли положение оси прецессии в пространстве изменяется, а скорость вращения в результате взаимодействия с магнитным полем Земли уменьшается.

Очень важным является вывод относительно гораздо меньшей метеоритной опасности для искусственных спутников и межпланетных кораблей, чем это предполагалось. За все время движения спутников был отмечен лишь один случай попадания в них значительного метеорита. Это случилось 6 мая 1958 года с третьим американским спутником: он был пробит метеоритом при прохождении через метеорный поток Акварид. Следует, однако, заметить, что число зарегистрированных столкновений спутников с микрометеоритами очень велико — для третьего спутника оно превосходило 600 в час на 1 квадратный метр его поверхности.

Наблюдения за ионосферой, выполненные во время работы радиостанций спутников, с несомненностью установили наличие волноводных каналов в ионосфере, а также позволили измерить концентрацию электронов на больших высотах, что очень ценно для будущего радиосвязи. Важные сведения получены по наблюдению так называемого эффекта Допплера (изменение частоты колебаний, принимаемых от движущегося излучателя), что также имеет большое научное и практическое значение, в том числе и для астронавигации. В частности, установлено, что с помощью этого эффекта можно с большой точностью измерять координаты спутника, то есть его положение на небе.

Исследования верхней атмосферы Земли, как и произведенные на третьем спутнике измерения ионного состава ионосферы, степени ионизации верхней атмосферы и другие, являются, без сомнения, одним из важнейших результатов исследований, выполненных с помощью искусственных спутников Земли. Они позволяют построить более правильную, чем раньше, модель земной атмосферы, играющей столь большую роль во всей нашей жизни. В частности, установлено, что земная атмосфера простирается на значительно большую (до 2–3 тысяч километров) высоту, чем предполагалось ранее.

«Лаборатория космического излучения» отчетливо установила наличие упоминавшегося выше геомагнитного широтного эффекта. С ее помощью получены новые сведения о магнитном поле Земли на больших высотах.

Особый интерес представляют полученные с помощью спутников и космических ракет сведения о совершенно новом излучении на больших высотах. Судя по предварительным данным, зарегистрированы две различные области с неизвестным ранее излучением. В высоких широтах, равных 55–65° в северном и южном полушариях, советские спутники установили наличие мощного потока заряженных частиц, создающего примерно в двести раз более интенсивное излучение, чем космическое. Такое излучение возникает в результате торможения этих частиц в оболочке спутника. Зона действия излучения представляет собой полое кольцо — ореол, — простирающееся на расстояние до восьми радиусов земного шара от его поверхности. Внутри этого кольца находится другая зона во много раз более мощного излучения, расположенная в экваториальной области. Эта зона обнаружена на высотах более 500-1500 километров как советскими, так и американскими спутниками.

Происхождение обнаруженного ореола излучения еще не совсем ясно. Очевидно, во внешней зоне оно создается главным образом электронами, выброшенными Солнцем, а во внутренней зоне — протонами и электронами, образующимися, как это предполагают ученые, при распаде нейтронов. Эти нейтроны образуются в земной атмосфере под действием космических лучей. Так или иначе, все указанные заряженные частицы оказываются в своеобразной «ловушке», образованной земными магнитными силовыми линиями (вспомните подобные же магнитные «ловушки», используемые советскими учеными в опытах по термоядерным реакциям, о которых говорилось выше). Вновь открытое излучение очень заинтересовало геофизиков, ибо оно может сильно сказаться на проблеме теплового баланса атмосферы и возможностях долгосрочного прогноза погоды. Не менее взволновало оно и астронавтов, так как может потребовать дополнительной экранировки будущих обитаемых спутников Земли, а может быть, и вовсе исключит некоторые наиболее опасные высоты для орбит таких спутников. Возможно, что и будущим межпланетным кораблям придется стартовать из околополярных районов, свободных от опасного ореола излучения и потому представляющих собой как бы распахнутые двери в Космос.

«Биологическая лаборатория» получила исключительно ценные данные о поведении Лайки как под действием инерционных перегрузок при взлете ракеты, так и в условиях невесомости.

Конечно, и третий спутник не является последним. За ним последуют другие, которые будут запущены как в нашей стране, так и за рубежом. Появятся более сложные спутники — с большим количеством приборов, с большим сроком жизни (вплоть до «тысячелетних»), большие по размерам. Диапазон исследований, осуществляемых с помощью спутников, будет непрерывно расширяться.

Крупнейшим шагом вперед будет создание спутников, которые смогут после выполнения своих функций совершить плавную посадку на Землю. Над созданием таких спутников уже работают ученые. Каждому понятно, в чем заключается значение этих «возвращающихся» спутников. Ведь как ни ценны сведения, которые могут сообщать спутники на Землю по радио и даже по телевидению, все же доставка приборов со спутника на Землю намного расширит возможности исследований с их помощью. Достаточно упомянуть хотя бы о пробах воздуха с огромных высот для определения его химического состава, о толстослойных фотографических пластинках, в эмульсии которых оставляют свой след космические частицы, и, конечно, о живых существах, совершивших экспериментальный полет в Космосе. Этот список можно было бы сделать очень длинным. Да и сам спутник, вернувшийся с заатмосферных высот на Землю, был бы неоценимым для науки прибором. Он «рассказал» бы о своих столкновениях с метеоритами и космической пылью, о воздействии на него всяческих излучений, о результатах бомбардировки ионами и электронами, которой он подвергался в космическом пространстве, и о многом другом.

Но, пожалуй, еще более важным является самый процесс посадки спутников, сопряженный с огромными трудностями. Наука еще далеко не до конца представляет себе пути решения этой важнейшей для судьбы астронавтики проблемы. Ведь до тех пор, пока не будет решена задача посадки космического корабля при возвращении на Землю, ни один корабль и не расстанется с Землей.

Ясно, конечно, что сначала подобную посадку должны будут осуществить ракеты без человека. Возможно, что для этого будут использованы специальные высотные ракеты, однако вероятнее всего — искусственные спутники, снабженные крыльями, двигателем и некоторым запасом топлива для перехода в планирующий спиральный полет к Земле и торможения при посадке. Может быть, понадобится и специальный тормозной парашют, подобный применяемым в настоящее время для уменьшения длины пробега скоростных самолетов при посадке, а также для спуска высотных ракет.

Первые «населенные» искусственные спутники с экипажем на борту должны быть значительно более сложными, чем автоматические «беспилотные» спутники. Человеку приходится создавать гораздо более «комфортные» условия, чем приборам и даже Лайке. Прежде всего это касается, конечно, герметической кабины, в которой будет находиться экипаж спутника и которая должна защитить его от всех вредных воздействий мирового пространства.

Впрочем, к решению задачи создания космического летательного аппарата наука и техника будут идти не только через создание автоматических ракет и спутников, способных совершить посадку на Землю. Уже сейчас созданы самолеты с жидкостными ракетными двигателями, способные совершать полеты на высотах 100–150 километров. От этих самолетов до населенных искусственных спутников не дальше, чем от спутников автоматических.

Но венцом усилий в создании искусственных спутников Земли будет постройка постоянного спутника с людьми — целой межпланетной станции.

Однако и в дальнейшем, когда вокруг Земли будут обращаться многие спутники, заселенные людьми, автоматические спутники найдут широкое применение. Такие спутники будут служить радиомаяками для штурманов самолетов и кораблей, прожекторами для освещения городов, ретранслирующими станциями радио- и телевизионных передач, космическими топливохранилищами для межпланетных кораблей.

И только время от времени работники отдела «путевого хозяйства» Службы межпланетных сообщений будут посещать их на своих быстроходных космических кораблях и осматривать все эти небесные тела, созданные человеком и поставленные им себе на службу.