Глава 11. Емкость
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Объяснить, что такое емкость.
• Знать, в каких единицах измеряется емкость.
• Знать различные типы конденсаторов.
• Уметь определить общую емкость последовательной и параллельной цепей.
• Дать объяснение постоянной времени RC и ее связи с емкостью.
Емкость позволяет сохранять энергию в электростатическом поле. Емкость существует всегда, когда два проводника разделены изолятором.
В этой главе рассматривается емкость и ее применения в цепях постоянного тока. Более подробно емкость рассмотрена в главе 15.
11-1. ЕМКОСТЬ
Емкость — это способность устройства хранить электрическую энергию в электростатическом поле. Конденсатор — это устройство, которое обладает определенной емкостью. Конденсатор состоит из двух проводников, разделенных изолятором (рис. 11-1).
Рис. 11-1. Конденсатор состоит из двух обкладок (проводников), разделенных диэлектриком (изолятором).
Проводники называются обкладками, а изолятор — диэлектриком. На рис. 11-2 даны схематические изображения конденсаторов.
Рис. 11-2. Схематическое обозначение конденсаторов.
Когда источник тока подсоединен к конденсатору, ток течет до тех пор пока конденсатор не зарядится. Конденсатор заряжается избытком электронов на одной обкладке (отрицательный заряд) и дефицитом электронов на другой обкладке (положительный заряд).
Диэлектрик предотвращает перемещение электронов между обкладками. Как только конденсатор зарядится, ток прекращается. Напряжение на конденсаторе равно напряжению источника тока.
Заряженный конденсатор может быть отключен от источника тока и использован как источник энергии. Однако как только конденсатор теряет энергию, напряжение на нем резко падает. В цепи постоянного тока конденсатор после начальной зарядки работает как разомкнутая цепь.
Разомкнутая цепь — это цепь с бесконечным сопротивлением.
Предупреждение: так как конденсатор при отключении от источника тока может удерживать потенциал источника тока достаточно долго, обращайтесь со всеми конденсаторами, как с заряженными. Никогда не касайтесь обоих выводов конденсатора рукой до тех пор, пока не разрядите его путем закорачивания выводов. Конденсатор в цепи может удерживать потенциал неопределенно долго, если у него нет пути для разряда.
Количество энергии, сохраняемой в конденсаторе, пропорционально размеру конденсатора. Конденсаторы, используемые в учебных лабораториях, обычно малы и наносят небольшой удар током при разряде через тело. Однако если конденсатор большой и заряжен высоким напряжением, его удар может быть смертельным. С заряженными конденсаторами следует обращаться так же, как и с любыми другими источниками тока.
Основной единицей измерения емкости является фарада (Ф). Фарада — это такая емкость, которая может сохранить 1 кулон заряда при напряжении на конденсаторе 1 вольт.
Фарада слишком большая единица для обычных целей, и поэтому обычно используются микрофарады (мкФ) и пикофарады (пФ). Для обозначения емкости используется буква С.
1 микрофарада = 0,000001 или 1/1000 000 фарады,
1 пикофарада = 0,000000000001 или 1/1000000000000 фарады
11-1. Вопросы
1. Что такое емкость?
2. Нарисуйте схематическое изображение емкости.
3. Какие предосторожности необходимо соблюдать при работе с конденсаторами?
4. В каких единицах измеряется емкость?
5. Какие единицы обычно используются для обозначения емкости конденсаторов?
11-2. КОНДЕНСАТОРЫ
На емкость конденсатора влияют четыре фактора:
1. Площадь обкладок
2. Расстояние между обкладками.
3. Тип диэлектрического материала.
4. Температура.
Конденсаторы бывают постоянные и переменные. Постоянный конденсатор имеет определенное значение емкости, которое не может быть изменено. Емкость переменного конденсатора можно изменять, изменяя либо расстояние между обкладками (подстроечный конденсатор), либо перекрытие между двумя наборами пластин (переменный конденсатор).
Емкость прямо пропорциональна площади обкладок.
Например, увеличение площади обкладок в два раза в те же два раза увеличивает емкость, если, конечно, все другие факторы остаются неизменными.
Емкость обратно пропорциональна расстоянию между обкладками. Другими словами, если обкладки раздвинуть, величина электрического поля между ними уменьшится.
Способность конденсаторов сохранять электрическую энергию зависит от электростатического поля между обкладками и искажения электронных орбит в диэлектрическом материале. Степень этого искажения зависит от природы диэлектрического материала и определяется его диэлектрической постоянной. Диэлектрическая постоянная — это мера эффективности материала как диэлектрика. Эта постоянная сравнивает способность материала к искажению электронных орбит и сохранению энергии в электрическом поле со способностью воздуха, диэлектрическая постоянная которого равна 1. Бумага имеет диэлектрическую постоянную от 2 до 3; слюда — от 5 до 6; а титан — от 90 до 170.
Температура конденсатора из всех четырех факторов имеет наименьшее значение. Для большинства приложений общего назначения рассматривать ее нет необходимости.
Конденсаторы бывают различных типов и конструкций в соответствии с требованиями электронной промышленности. Электролитические конденсаторы обладают большой емкостью при малых размерах и весе (рис. 11-3).
Рис. 11-3. Электролитические конденсаторы.
Электролитические конденсаторы состоят из двух металлических обкладок из фольги, разделенных тонкой материей или другим гигроскопическим материалом, насыщенным химической пастой, называемой электролитом.
Электролит является хорошим проводником и служит частью отрицательной обкладки. Диэлектрик образуется окислением положительной обкладки. Слой окисла является тонким и хорошим изолятором. Электролитический конденсатор является поляризованным, имеет положительный и отрицательный выводы. При включении электролитического конденсатора в цепь должна соблюдаться полярность.
Бумажные и пластиковые конденсаторы сконструированы как рулоны фольги, разделенной диэлектриком (рис. 11-4).
Рис. 11-4. Бумажные и пластиковые конденсаторы
Бумажный диэлектрик имеет меньшее сопротивление, чем пластиковая диэлектрическая пленка, но пластиковая пленка в настоящее время используется чаще. Пластиковая пленка позволяет нанести металлическую пленку прямо на нее. Это уменьшает расстояние между обкладками, и в результате конденсатор получается компактнее.
Керамические дисковые конденсаторы популярны вследствие того, что их производство обходится очень дешево (рис. 11-5). Они используются в качестве емкостей от 0,1 микрофарады и меньше. Керамический материал является диэлектриком. Это выносливые, надежные конденсаторы для широкого применения.
Рис. 11-5. Керамические дисковые конденсаторы.
Переменные конденсаторы также имеют различные размеры и формы (рис. 11-6). Переменные конденсаторы бывают выравнивающие, подстроечные и настроечные. Выравнивающие и подстроечные конденсаторы должны настраиваться специалистом. Настроечные конденсаторы могут настраиваться пользователем.
Рис. 11-6. Переменные конденсаторы.
Подобно резисторам и катушкам индуктивности, конденсаторы могут соединяться последовательно, параллельно и последовательно-параллельно. Последовательное соединение конденсаторов эффективно увеличивает толщину диэлектрика. Это уменьшает общую емкость, так как емкость обратно пропорциональна расстоянию между обкладками. Общая емкость последовательно соединенных конденсаторов вычисляется подобно общему сопротивлению параллельно соединенных резисторов:
1/СT = 1/С1 + 1/С2 + 1/С3 +… + 1/Сn
Когда конденсаторы различной емкости соединяются последовательно, наименьший конденсатор заряжается до наивысшего напряжения.
Параллельное соединение конденсаторов эффективно увеличивает площадь обкладок. Это приводит к тому, что общая емкость равна сумме отдельных емкостей:
СT = С1 + С2 + С3 +… + Сn
11-2. Вопросы
1. Какие четыре фактора влияют на емкость конденсатора?
2. Каковы преимущества электролитических конденсаторов?
3. Как иначе называются переменные конденсаторы?
4. По какой формуле определяется общая емкость последовательной цепи?
5. По какой формуле определяется общая емкость параллельной цепи?
11-3. ПОСТОЯННАЯ ВРЕМЕНИ ЦЕПИ RC
Постоянная времени цепи RC отражает соотношение между временем, сопротивлением и емкостью. На рис. 11-7 изображена RC цепь.
Рис. 11-7. Цепь, используемая для определения постоянной времени RC.
Время, необходимое для заряда и разряда конденсатора прямо пропорционально величине сопротивления и емкости. Постоянная времени цепи определяет время, требуемое для того, чтобы конденсатор зарядился до 63,2 % от величины приложенного напряжения или разрядился на 63,2 % от этой величины. Постоянная времени определяется следующей формулой:
t = RC,
где
t — время в секундах, R — сопротивление в омах, С — емкость в фарадах.
ПРИМЕР: Чему равна постоянная времени цепи, состоящей из конденсатора емкостью в 1 микрофараду и резистора величиной 1 МОм?
Дано:
С = 1 мкФ; R = 1 МОм
t =?
Решение:
t = RC
t = (1000000)(0,000001)
t = 1 сек.
Постоянная времени цепи не равна времени, требуемого для полного заряда или разряда конденсатора. Рис. 11-8 показывает, сколько постоянных времени требуется для полного заряда и разряда конденсатора. Заметим, что для полного заряда или разряда конденсатора требуется время, примерно в пять раз большее постоянной времени цепи.
Рис. 11-8. График зависимости заряда и разряда конденсатора от времени.
11-3. Вопросы
1. Что такое постоянная времени цепи RC?
2. Как определяется постоянная времени цепи RC?
3. Сколько постоянных времени цепи требуется для полного заряда или разряда конденсатора?
4. Конденсаторы емкостью 1 мкФ и 0,1 мкФ соединены последовательно. Чему равна полная емкость цепи?
5. Конденсатор емкостью 0,015 мкФ заряжен до 25 вольт. Чему будет равно напряжение на нем через 25 миллисекунд после подсоединения к его выводам резистора 2 МОм?
РЕЗЮМЕ
• Емкость — это способность сохранять электрическую энергию в электростатическом поле.
• Конденсатор состоит из двух проводников, разделенных изолятором.
• Схематическое обозначение постоянного конденсатора следующее:
• Схематическое обозначение переменного конденсатора следующее:
• Единицей измерения емкости является фарада (Ф).
• Поскольку фарада — это большая единица, обычно используются микрофарады (мкФ) и пикофарады (пФ).
• Емкость обозначается буквой С.
• На емкость влияют следующие факторы:
а. Площадь обкладок конденсатора.
б. Расстояние между обкладками.
в. Тип диэлектрического материала
г. Температура.
• Конденсаторы бывают следующих типов: электролитические, бумажные, пластиковые и керамические.
• Емкость последовательно соединенных конденсаторов вычисляется по следующей формуле:
1/СT = 1/С1 + 1/С2 + 1/С3 +… + 1/Сn
• Емкость параллельно соединенных конденсаторов вычисляется по следующей формуле:
СT = С1 + С2 + С3 +… + Сn
• Постоянная времени цепи RC определяется формулой:
t = RC.
Для полного заряда или разряда конденсатора требуется время, примерно в пять раз больше постоянной времени цепи.
Глава 11. САМОПРОВЕРКА
1. Где в конденсаторе сохраняется заряд?
2. Четыре конденсатора с емкостями 1,5 мкФ, 0,05 мкФ, 2000 пФ и 25 пФ соединены последовательно. Чему равна полная емкость цепи?
3. Четыре конденсатора с емкостями 1,5 мкФ, 0,05 мкФ, 2000 пФ и 25 пФ соединены параллельно. Чему равна полная емкость цепи?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК