4.4. Общая математическая модель целостной и целой системы
Для каждого конкретного применения системной философии необходима своя общая модель целостной и целой системы, с помощью которой можно разработать методики выполнения условий системной философии – ее Принципов, правил, Законов, постулатов целостного метода. Построение такой модели производится путем объединения необходимых для данного случая моделей процессов и структур деятельности с помощью общей математической модели в виде алгебраической системы. Рассматриваемая в данном разделе общая математическая модель целостной системы[111] представляет собой, по сути ядро общей модели целостной и целой системы. Для удобства и краткости рассмотрения мы будем рассматривать данную модель в аспекте системной технологизации.
• Элементы и элементарные процессы. Процесс системной технологизации является ключевым процессом общественного производства и для индустриального и для постиндустриального общества. Для формализации этого процесса необходимо решить задачу построения математической модели общей системы, которая может быть эффективно использована при системной технологизации любых систем, независимо от того, к какому виду ресурсов относится изделие или продукт системы (управленческое решение, знания и умения обученных специалистов и т.д.), какими конкретными способами оно изготавливается, какими функциями времени и состояния системы описываются преобразования ресурсов (как изготавливается станок, формируются знания и умения обучаемых, как вырабатывается управленческое решение и т. д.). Разработка комплекса технологических способов и средств воздействия на перерабатываемые ресурсы с целью изготовления изделия для конкретных систем с использованием предлагаемых моделей – это вопросы прикладного исследования в каждом конкретном варианте системной технологизации. Основа для такой разработки – метод системной технологии и его приложения, изложена в других разделах данной работы.
• В любой системе, если ее трактовать как технологическую систему, содержатся человеко-машинные элементы, каждый из которых может реализовать некоторую элементарную часть системного технологического процесса изготовления изделия системы (напр., элементарный процесс изготовления детали прибора). Этому элементарному процессу соответствует некоторая элементарная цель (напр., обеспечить параметры детали прибора).
Элемент системы реализует достижение одной и только одной элементарной цели. Если его расчленить (например, отделить токаря от токарного станка или преподавателя – от аудитории), то он не может реализовать процесс достижения элементарной цели в данной системе.
Кроме этого, в системе должны быть реализованы процессы складирования и транспортирования (процессы коммуникаций) перерабатываемых ресурсов, обеспечивающие взаимодействия между человеко-машинными элементами системы во времени (склад) и в пространстве (транспорт). Понятия склада и транспорта двойственны. Транспорт это «склад на колесах», «динамический склад» и к его функционированию предъявляются требования в виде ограничений по времени. Склад это «статический транспорт» и к его функционированию предъявляются требования в виде пространственных ограничений (например, по объему запасов).
Для реализации элементарных процессов взаимодействия системе необходимы элементы взаимодействия. Элемент взаимодействия обеспечивает взаимодействие между двумя и только между двумя элементами системы. Также, как и элемент системы, он не может быть расчленен на части, способные обеспечить элементарный процесс взаимодействия в данной системе.
В результате можно заключить, что технологическая система содержит два вида элементов. Первый вид – основной целенаправленный элемент, обеспечивающий основной процесс изготовления изделия (знания, товара, услуги), ради которого, собственно и создается система. Этот элемент мы называем, как «элемент системы». Второй вид – коммуникационный, транспортно-складской, дополнительный элемент, для обеспечения взаимодействия между основными целенаправленными элементами. Необходимость в нем появляется по той причине, что элементы системы требуют организации взаимодействия во времени (так как их функционирование «расписано во времени») и в пространстве (так как они имеют разные пространственные координаты). Этот элемент мы называем, как «элемент взаимодействия».
• Сформируем, на основе изложенного, «элементарную часть» математической модели общей системы S. Математическую модель системы определим в теоретико-множественных терминах. Такой подход позволит применять наименее структурированные и наиболее широко понимаемые понятия, на основе которых можно применять метод системной технологии, наделив элементы множеств и отношения между ними конкретными свойствами.
Примем, что: система – это множество упорядоченных элементов системы, осуществляемых ими элементарных процессов и причинно-следственных отношений между ними. Упорядочение элементов и «физическая» реализация причинно-следственных отношений в виде элементов взаимодействия производится в соответствии с выбранной технологией достижения цели, которая связана с изготовлением изделия системы. Элементы и элементарные процессы неделимы в смысле достижения цели системы.
Элементарным процессом достижения цели в назовем процесс достижения одной и только одной элементарной цели, в ? В?. Здесь В? — множество всех элементарных процессов достижения цели, используемых в данной системе.
Целенаправленным элементом системы или просто элементом системы а назовем часть системы, осуществляющую один и только один элементарный процесс достижения цели, а ? А?, Здесь А? — множество всех элементов, которые используются для построения данной системы. В А? допускается «рождение» – появление новых элементов и «смерть» – выбытие элементов.
Элементарным процессом взаимодействия d назовем процесс взаимодействия между определенными двумя и только между этими двумя элементарными процессами достижения цели системы, d ? D?. Здесь D? – множество всех элементарных процессов взаимодействия в системе.
Элементом взаимодействия е назовем элемент, предназначенный для осуществления одного и только одного элементарного процесса взаимодействия, е ? Е?. Здесь Е? – множество всех элементов взаимодействия, которые используются для построения данной системы. В Е? также допускается «рождение» и «смерть» элементов. Иногда удобно будет считать, что элементы е содержат ключ, имеющий только два логических состояния: «взаимодействие разрешено» и «взаимодействие исключено»; это может облегчить описание перехода от одного варианта модели системы к другому.
Элементарной целью f0 назовем цель, достигаемую каким-либо одним элементарным процессом достижения цели, f0 ? F?. Здесь F? – множество множеств целей системы S, соответствующих всем возможным изделиям и продуктам системы (и их модификациям); множество SF? — множество всех потенциально возможных продуктов (изделий) системы и их модификаций. Множество F ? F? соответствует одному из изделий SF системы S. Надо отметить, что в большинстве своем технологические системные процессы по замыслу строятся, как процессы поочередного достижения цели систем «по частям». Например, по отдельности изготавливаются детали и блоки прибора. Соединение их в прибор, т.е. в систему-изделие, приводит к достижению цели, которая не может быть описана, как математическая функция с аргументами в виде элементарных целей (с помощью «дерева целей», напр.) и описывается только понятием целого: свойства прибора, (достижение которых было целью данной технологии), как целого «больше», чем любая комбинация свойств частей прибора, как элементов целого.
Будем рассматривать только тот случай, когда все множества A?, B?,D?, E?, F?, S? конечны. Пересечение каждой пары множеств А?, В?, D?, Е?, F?, S? представляет собой конечное пустое множество.
• Модель полной системы. Полной системой S назовем совокупность взаимосвязанных элементов a ? A, е ? Е (A ? A?, E ? E?) и осуществляемых ими элементарных процессов в ? В, d ? D (B ? В? D ? D?), предназначенную для достижения цели F, связанной с выпуском определенного изделия (продукта) SF, SF ? SF?, F ? F?.
Модель полной системы (математическую модель полной системы) S определим, как конечную алгебраическую систему
S= < { A, В, D, Е }, W, ? >,
состоящую из множества-носителя {А, B, D, Е}, множества операций W={W1, W2, …, Wl } и множества предикатов ?={?1, ?2, …, ?r}.
Для описания всех необходимых взаимосвязей в модели системы (4.4.1) используем два множества: W? и ??. Множество W? является множеством всех операций, используемых при анализе и синтезе всех моделей S из множества S?. Множество операций W используется для определенной модели S. Множество S? – это множество моделей системы S, причем каждая модель S отражает одну технологию изготовления одного изделия, выпуска одного продукта (или его модификации). Множество W? может содержать теоретико-множественные операции объединения, пересечения и другие.
Множество ?? содержит предикаты, используемые для описания отношений на множествах-носителях всех моделей системы. Множество главных предикатов ? содержит предикаты ?1-?r, определяющие отношения связи на {A, В, D, E}, которые должны соответствовать цели F изготовления «изделия SF», F ? F?, SF ? SF?. Переход от модели системы S для одной технологии изготовления изделия к модели другой технологии осуществляется путем замены одной совокупности A,B,D,E,W,? на другую. Используя эти совокупности для технологий изготовления всех изделий, можно составить множество S? всех моделей S данной системы, S ? S?..
• В модели (4.4.1) для конкретной реализации системы S, значение предиката ?j ? ? равно 1 (истинно), если взаимосвязи между элементами множества-носителя соответствуют выбранной технологии изготовления изделия. Множество главных предикатов ? описывает взаимосвязи, необходимые для конкретной реализации S. Минимально необходим, независимо от природы системы, набор предикатов, устанавливающих такое подмножество отношений взаимосвязи, которое можно представить связным подграфом, без петель, покрывающим все вершины графа отношений. Кроме того, с помощью элементов множества ? и введения дополнительных предикатов можно описать различные технологические маршруты изготовления узлов и блоков, сборки изделия, подготовки документов, разработки проектов, изготовления управленческого решения и т.д. Переход от модели изготовления изделия F к модели для изготовления другого изделия осуществляется путем замены множества главных предикатов ? на другое. Реализовать необходимые переходы от одной модели к другой можно установлением набора состояний «взаимодействие разрешено» и «взаимодействие исключено» в элементах е ? Е.
• В процессе формирования конкретной модели системы используются операции множества W (напр. при декомпозиции системы), состав которого определяется в зависимости от задач анализа и синтеза системы. Во многих важных приложениях достаточно, если множество-носитель образуете с W решетку или алгебру Кантора.
Формирование конкретной модели системы с определенным набором элементов из {A, B, D, E} и множества ? может производиться следующим образом. Будем считать, что множества A?, B?, D?, E? определены, как наборы элементов, пригодных для всех возможных конкретных реализаций S.
Вначале устанавливается некоторое отношение на множестве B?, т.е. выбираются и упорядочиваются процессы b ? В, B ? B?. Тем самым упорядочивается набор элементарных процессов достижения цели, который должен обеспечить системный процесс достижения цели, для реализации которого, в данном случае, нужна система S. Одновременно устанавливается необходимость обеспечения взаимодействий для пар процессов из В?, определяются требования к элементарным взаимодействиям со стороны каждого процесса b, b ? В?.
Затем устанавливается отношение на паре множеств В?, A?, определяются и упорядочиваются основные элементы из А?, обеспечивающие выбранный набор процессов из В?, А ? А?, В ? В?.
Параллельно устанавливается некоторое отношение на паре множеств В?, D? и определяется набор элементарных процессов взаимодействия d? D, D ? D?, обеспечивающих взаимодействие между элементарными процессами b, b ? В. При этом, для учета ограничений на элементарные процессы d ? D со стороны элементов множества А, устанавливается отношение на паре A, D.
И, наконец, устанавливаются отношения на паре D?, Е?, позволяющие сформировать набор элементов е ? Е, E ? E?, которые войдут в данную реализацию системы. Для учета ограничений на элементы е ?Е со стороны элементов множеств А и В должны быть установлены соответствующие отношения на парах А, Е и В, D.
• В процессе формирования модели конкретной реализации S описанная последовательность многократно повторяется и образует, в конечном счете, системный процесс достижения цели (модель которого описана в разделе 4.2) в некоторой системе-субъекте по созданию системы S. В качестве ресурсов выступают описания возможностей использования различных видов ресурсов для достижения некоторой глобальной цели, поставленной перед создаваемой системой; в качестве методов выступают описания различных процессов, которые можно реализовать для достижения цели.
Вначале описывается глобальная цель создания системы (этап 1), затем возможные виды ресурсов для построения элементов системы (этап 2), далее – процессы использования ресурсов (этап 3), которые можно реализовать в системе и ограничения (этап 4), накладываемые на цель, ресурсы, процессы. Затем выбирается конкретный процесс использования ресурсов для достижения цели (этап 7), процесс апробируется (этап 5), оценивается (этап 6). Если не возникает необходимости создания системы, то найденный процесс используется для достижения глобальной цели. Но в большинстве случаев оказывается, что имеющиеся ресурсы позволяют достичь глобальную цель только в виде процесса последовательного достижения ряда частных целей. Поэтому на следующих циклах производится преобразование глобальной цели в систему F локальных (на уровне подсистем) и, далее, элементарных целей (на уровне элементов) (этап 1); тогда этапы 2,3,4 будут заключаться в создании системы S на множествах элементов из имеющихся ресурсов и элементарных процессов с учетом ограничений, этапы 5,6,7 будут заключаться в анализе вариантов конкретной реализации системы. В результате на некотором уровне элементарности будут сформированы множества типа {А, B, D, Е}, описывающие модели конкретных реализаций системы для различных целей, соответствующих различным возможным изделиям и продуктам системы.
• В соответствии с принципом системности можно определить, в данном случае, что создаваемая система S является системой-объектом S0, система целей F, описывающая изделие системы, является системой-результатом SF Для моделирования системы-объекта и системы-результата должна использоваться одна модель общей системы (4.4.1).
Таким образом, предлагаемый подход позволяет проводить исследование F и S по отдельности, учитывая отношения взаимосвязи, которые устанавливает между ними создающая система – субъект Sc.
Отношения взаимосвязи, которые установятся в результате, между элементами систем F и S, обозначим через ?i и ?i-1, I ? {A, B, D, E}.
• Модели F и S и множества A, B, D, E описывают ряд взаимосвязей, которые некоторая создающая система устанавливает для конкретной реализации S. Так, отношение взаимосвязи ?, ? ? A ? B, описывает тот факт, что каждый элемент системы аi, ai ? A, реализует один и только один элементарный процесс достижения цели bi, bi ? В. В свою очередь, отношение а-1 описывает взаимосвязи такого вида: элементарный процесс достижения цели bi ? B, реализуется одним элементом ai ?A. Аналогичным образом описываются все остальные взаимосвязи.
• Модели процесса и структуры. В общем случае каждому элементу ai из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ? D, через которые ai воздействует на другие элементы множества А. Каждому элементу aj из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ? D, через которые aj подвергается воздействию других элементов из А. Пересечение Di ? Dj = Dij множество элементарных процессов взаимодействия, через которые ai воздействует на aj (для упрощения в дальнейшем примем, что Dij — одноэлементные множества: Dij = {dij}). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов Ei, Ej, Eij, обеспечивающие, соответственно, множества процессов взаимодействия Di, Dj, Dij. Будем считать, что главным предикатам ?1-?r соответствуют отношения ?A, ?B, ?D, ?E строгого частичного порядка и отношения ?, ?-1, ?, ?-1, ?, ?-1, ?, ?-1, ?AF, ?-1AF, ?-1BF, ?DF, ?-1DF, ?EF, ?-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.
• Сформируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов ?; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения ?, ?, ?, ?, ?в, и, соответственно, ?-1, ?-1, ?-1, ?-1, ?-1в. Для описания взаимосвязи с F выберем отношение ? вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ?1 + ?r описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.
• Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его также полным системным процессом) — это множество взаимосвязанных элементарных процессов:
P = < {B, D}, W, ?p >; ?р ? ?.
Структура С системы S (назовем ее также полной системной структурой) — это множество взаимосвязанных элементов системы:
С = < {A, E}, W, ?c >; ?с ? ?.
• В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D. Следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (4.4.2) и (4.4.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (4.4.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур ?р и ?с, ?р ? ?с. Далее, любая операция из Wc, например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, Wp = Wc. Но так как Wp ? Wc, Wc ? W и W | {Wp ? Wc} = ?, то Wp = Wc = W. Итак, доказана следующая
Теорема 4.4.1. Для модели системы S модели процесса Р и структуры С изоморфны.
• Модели полных, основных и дополнительных системных объектов. На основе (4.4.1)-(4.4.3) сформулируем следующий результат.
Теорема 4.4.2. Модель полной системы S – это совокупность моделей процесса Р и структуры С:
S = < P,C,?(?),?(?-1),?(?),?(?-1)>
• Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Рa и системного процесса взаимодействия Ре. Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс Pа, минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению Pa. Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели Pa при «передаче» предмета труда от одного элементарного процесса достижения цели вi к некоторому другому элементарному процессу достижения цели вj. Обозначим это допустимое изменение ?d — изменение результатов некоторого элементарного процесса вi при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу вj. Множество этих изменений обозначим ?d, т.е. ?d ? ?d. Отсюда вытекает следующая теорема.
Теорема 4.4.3. Каждый элементарный процесс взаимодействия d, d ? D, между некоторыми двумя элементарными процессами достижения цели вi и вj (вi, вj ? В) объединяет в себе собственно элементарный процесс взаимодействия d0 и элементарный процесс обеспечения ограничения ?d:
d = { d0, ?d }; d0 ? D0; ?d ? ?d; D = { D0, ?d }.
Системный процесс взаимодействия Рe, в свою очередь, реализуется в системе элементами взаимодействия е. Но элементарные процессы взаимодействия d, которые ими реализуются, не могут быть объединены в системный процесс взаимодействия Pе без участия элементарных процессов достижения цели в. Участие элементарных процессов достижения цели в в процессе Pe (аналогично учету участия элементарных процессов d в процессе Pa) должно быть учтено введением ограничений ?в на изменение характеристик элементарных процессов взаимодействия при «переходе» через некоторый элементарный процесс из В («обеспечение взаимодействия между элементарными взаимодействиями»). Множество этих ограничений обозначим ?в, т.е. ?в ? ?в.
Отсюда следует
Теорема 4.4.4. Каждый элементарный процесс в, в ? В, реализуемый элементом а ? А, объединяет в себе собственно элементарный процесс достижения цели в0 и элементарный процесс обеспечения ограничения ?в:
в = {в0, ?в }; в0 ? В0; ?в ? ?в, В = { В0, ?в }.
Пересечения D0 ? ?d и В0 ? ?в не обязательно пустые множества.
Полученные результаты и наличие взаимнооднозначных соответствий между элементами множеств А и В, а также между элементами множеств Е и D, соответственно, позволяют сформулировать следующую теорему.
Теорема 4.4.5. Элементы а и е разложимы на части, реализующие части процессов в и d:
а = {а0, ?a}; а0 ? A0; ?a ? ?a; А = {A0, ?a};
e = { e0, ?е }; e0 ? E0; ?е ? ?e; E= { E0, ?e};
В качестве обобщения сформулируем следующий результат.
Теорема 4.4.6. Элементы а, е (а ? А, е ? Е) и элементарные процессы в, d (в ? В, d ? D) в модели системы S разложимы на части, образующие структуры Ca, Ce и процессы Рa, Ре основной Sa и дополнительной Sе систем.
Следуя доказанному, сформулируем следующие результаты.
Системный процесс достижения цели Рa представит собой объединения элементарных процессов достижения цели в0 и процессов обеспечения ограничений на допустимое изменение результатов элементарных процессов достижения цели ?d при передаче результатов одного элементарного процесса достижения цели к другому. Отсюда следует, что
Модель основного системного процесса Рa имеет вид:
Рa = < { B0, ?d }, W, ?p >.
Системный процесс взаимодействия, в свою очередь, представит собой объединение элементарных процессов взаимодействия dо и процессов обеспечения ограничений на допустимое изменение характеристик взаимодействия ?в при «передаче взаимодействия» через процессы достижения цели. Отсюда следует, что
Модель дополнительного системного процесса Ре имеет вид:
Ре =< { D0, ?a }, W, ?p >.
Следуя (4.4.7) и (4.4.8), можно сформулировать следующие определения структур.
Модель основной системной структуры Ca имеет вид:
Ca = < { A0, ?e }, W, ?c >.
Модель дополнительной системной структуры Сe имеет вид:
Сe = < {?a, E0 }, W, ?c >.
• Исходя из (4.4.4), где доказано, что система – это объединение процесса и структуры, определим основную и дополнительную системы.
Модель основной системы Sa имеет вид:
Sa = <{Pa, Ca }, W, ?>; Sa = <{A0, B0, ?d, ?e}, W,?>
Модель дополнительной системы Se имеет вид:
Se= <{Pe, Ce}, W, ?>; Se = <{?a, ?в, D0, E0}, W, ?>
Другими словами, полная система S — это объединение полного системного процесса Р и полной системной структуры С, основная система Sa — это объединение системного процесса достижения цели Pa и структуры для его реализации Сa, а дополнительная система Se — это объединение системного процесса взаимодействия Pe и структуры для его реализации Ce.
На основании этого можно получить следующие модели:
C = < {A0, ?a, E0, ?e,}, W, ?c >,
P = < {В0, ?в, D0, ?d }, W, ?р >.
В полученных математических моделях разделены полные, основные и дополнительные системные объекты: системы, процессы, структуры, элементы и элементарные процессы.
• Элементарная система, элементарная структура и элементарный процесс. Элементы а, е представляют собой, по сути, элементарные структуры, а в сочетании с элементарными процессами они образуют элементарные системы – элементарные целенаправленные системы sa и элементарные системы взаимодействия se:
sa= < {а, b }, ?, ?, ?0 >; sa = < a ? b, ?, ?0 >;
se= < { e, d }, ?, ?, ?0 >; se = < e ? d, ?, ?0 >.
Каждая i-ая система sai образует с некоторой системой seij элементарную полную систему sij, реализующую элементарную часть системного процесса достижения цели (т.е. реализующую преобразование предмета труда, начиная от момента поступления его на вход элемента аi и кончая моментом поступления его на вход элемента aj):
sij=sai ? seij; sij= <{ai, bi, eij, dij}, wi, wij, фi, фij >,
где wi, wij, фi, фij определяют операции и отношения на множестве-носителе системы sij, напр., операции ?, ? и отношения ?, ? и др. Число систем sij равно числу элементов aj, со входами которых соединен выход элемента ai.
Цель fij, реализуемая системой sij, будет состоять из двух компонентов: цели fi, описывающей изменение параметров перерабатываемого ресурса в целенаправленной части sai системы sij и изменения ?ijfi происходящего во взаимодействующей части seij при транспортировании или складировании предмета труда до момента поступления на вход aj :
fij = { fi, ?ijfi }
Очевидно, что система sij имеет общую часть sai с каждой системой sik.
Теорема 4.4.7. Система sij разложима на cистемы: основную целенаправленную saij и дополнительную seij:
sij= saij ? seij;
saij= < { ai0, bi0, ?еij, ?aij }, wj, wy, фi, фij >;
seij = < {?ai, ?вi, dij0, eij0 }, wj, wy, фi, фij >.
Справедливость (4.4.16) очевидна из предыдущего изложения.
Теорема 4.4.8. Модели полной, основной и дополнительной систем S, Sa, Sе представляют собой теоретико-множественные объединения элементарных систем sij, sаij, sеij:
S = < ? sij, W, ? >;
Sa = <? sаij, W, ? >;
Se = <? sеij, W, ?>.
• В результате теоретико-множественного объединения sij, sаij, sеij сформируются множества-носители систем S, Sa, Se и, кроме того, объединение множества операций и отношений W' и ?', определенных на элементарных системах:
S = < { А, В, D, Е }, W', ?', W0, ?0 >,
Sa = < { A0, B0, ?d, ?e }, W', ?', W0, ?0 >,
Se = < {?a, ?в, D0, E0 }, W', ?', W0, ?0 >.
Множества операций W0 и предикатов ?0 формируются в процессе создания систем S, Sa, Se из элементарных систем: вводится отношение порядка ?, определяется набор предикатов и соответствующие отношения на множестве-носителе, отвечающие выбранным предикатам и т.д. В результате формируются множества W и ? систем S, Sа, Se: W=W' ? W0, ? = ?' ? ?0 и модели S, Sа, Se приводятся к виду (4.4.1).
• Изоморфизм и декомпозиция моделей. Изоморфизмом системы S на системы Sа, Se и др. будет взаимнооднозначное отображение множества-носителя системы S на множества-носители систем Sа, Se и др., сохраняющее главные операции и предикаты модели (4.4.1).
Изоморфизм рассмотрим на графовых моделях систем, процессов, структур. Два графа G1 = G1(V1, H1) и G2= G2(V2, H2) считаются изоморфными, если существует взаимооднозначное отображение такое, что V1 взаимнооднозначно отображается на V2 и H1 взаимнооднозначно отображается на H2, т.е. каждой вершине из V1 соответствует одна и только одна вершина из V2 и наоборот, а каждому ребру из H1 соответствует одно и только одно ребро из H2 и наоборот, каждому ребру из Н2 соответствует одно и только одно ребро из Н1.
Графы процессов и структур определим следующим образом:
G (P) = G (B,D), G(Pa)=G(B0, ?d), G(Pe)= G(?в, D0),
G( C) = G (A, E), G(Ca) = G (A0, ?e), G (Ce)=G(?a, E0).
Сформулируем следующий результат.
Теорема 4.4.9. Графы G(Р), G(С), G(Pa), G(Pe), G(Ca), G(Ce) изоморфны.
Доказательство его следует из очевидного здесь факта: изоморфны между собой множества в каждой тройке множеств: В, В0, ?в; A, Aо, ?a; D, D0, ?d; E, E0, ?e.
Графы систем определим следующим образом, как прямые суммы:
G (S) = G (P) ? G ( C);
G (Sa) = G(Pa) ? G (Ca);
G(Se) = G(Pe) ? G(Ce).
Теорема 4.4.10. Графы G(S), G(Sa), G(Se) изоморфны.
Эти графы изоморфны, так как в соответствии с предыдущим результатом изоморфны их части, не пересекающиеся по вершинам и ребрам.
Графы процесса и структуры также могут быть представлены в виде прямых сумм частей, не пересекающихся по вершинам и ребрам:
G (P) = G(Pa) ? G (Pe); G(C) = G (Ca) ? G(Ce).
В силу этого можно сформулировать
Теорема 4.4.11. Графы G (S), G(Sa), G(Se), G(P), G(C) изоморфны.
• Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы.
При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (4.4.5) – (4.4.7). Описанный способ декомпозиции вполне применим и в сочетании с известными методами.
• Алгоритм применения математических моделей. Рассмотрим на следующих примерах. Итак, в общем случае математические модели системы, процесса, структуры, элемента, элементарной структуры, элементарного процесса состоят из двух частей: одна основная, предназначена для реализации целей создания системы (Sa, Pa, Ca и др.), другая служит для обеспечения процессов взаимодействия в системе (Se, Pe, Ce и др.).
Так, в технологической системе, создаваемой для реализации процессов отбелки хлопчатобумажных тканей, основными элементами а являются реакторы, в которых последовательно происходят процессы пропитки ткани различными растворами. Это процессы b — элементарные процессы достижения целей. Элементы взаимодействия е — это транспортирующие и складирующие элементы, обеспечивающие передачу обрабатываемой ткани от одного процесса пропитки к другому или её хранение до начала следующего процесса, т.е. элементы, обеспечивающие элементарные процессы взаимодействия d во времени и в пространстве.
В тоже время в процессе обработки ткани также необходимо её транспортирование от начала элементарного процесса достижения цели к концу: для этого в основных элементах а, кроме основных частей конструкции а0, обеспечивающих протекание элементарных процессов отбеливания b0, предусматриваются транспортирующие механизмы ?а, обеспечивающие прием ткани от транспорта (склада) на входе процесса, ее перемещение внутри аппарата в соответствии с технологией отбеливания и передачу ткани, прошедшей процесс, на последующие транспортно-складские средства, т.е. обеспечивающие элементарные процессы «взаимодействия между взаимодействиями» ?a.
В транспортно-складских элементах взаимодействия е, в свою очередь, в процессе обеспечения взаимодействия между элементарными процессами отбеливания ткани, происходит изменение белизны ткани ?d, которое не должно превышать некоторого заданного значения, для этого в транспортно-складские элементы необходимо ввести соответствующие части конструкции ?a.
В результате, технологический системный процесс достижения цели – заданной белизны ткани, сложится из элементарных процессов изменения белизны ткани b0 — целенаправленных процессов, происходящих в предназначенных для этого конструкциях а0 и процессов ?d «вынужденного» изменения белизны ткани, которые происходят в транспортно-складских элементах (в них обеспечивается ограничение изменений белизны ткани введением соответствующих частей конструкции ?е). В свою очередь, технологический системный процесс взаимодействия во времени и в пространстве – процесс складирования и транспортирования сложится из элементарных процессов транспортирования и складирования d0 и процессов ?в.
Те же соображения относятся и к структуре С данной технологической системы: часть ее Са, предназначенная для реализации технологического процесса отбеливания Pa сложится из элементов а0 и ?е, обеспечивающих, соответственно, целенаправленные b0 и допустимые ?d изменения белизны ткани, другая часть структуры Се, предназначенная для реализации технологического процесса транспортирования и складирования Ре, сложится из элементов е0 и ?а, обеспечивающих транспортирование и складирование d0 — между элементарными процессами достижения цели и ?в — в ходе этих процессов.
• Если система, создаваемая для преобразования ресурсов (информационных, трудовых и т.д.), должна быть технологизирована, то ее модель должна соответствовать данной математической модели общей системы, принятой в системной технологии. Тогда в ней равнозначными явятся и основная и дополнительная системы. Так, в системах управления должна выделяться основная система, предназначенная для переработки информации с целью выработки управленческих решений, и дополнительная для обеспечения обмена информацией при осуществлении процессов выработки решений. В дополнительной системе осуществляются процессы сбора, хранения, предварительной обработки и доставки информации человеко-машинным элементам основной системы, которые, в свою очередь, осуществляют процессы выработки управления, управленческого решения. Недооценка простых задач дополнительной системы, связанных со складированием и транспортированием информации, приводит к несистемным решениям, отсутствию целостности систем управления, в них не выполняются принципы системности и технологизации. Так при создании промышленного технологического комплекса будет считаться грубейшей ошибкой, если не предусмотреть использование полезных изделий комплекса в сфере производства и потребления, не обеспечив это использование соответствующими средствами транспорта и склада.
В то же время неполное использование изделий систем управления – управленческих решений, является довольно распространенным явлением. Основная причина заключается в том, что при проектировании систем управления внимание было уделено алгоритмам менеджмента, маркетинга, работе на рынке ценных бумаг, оптимизации структуры управления и т.д. Но при этом не рассматривались в полном объеме задачи регулярного оперативного, текущего, перспективного обмена информацией при осуществлении процессов принятия решения и при потреблении управленческого продукта. В существующих моделях систем управления задачи дополнительной системы не рассматриваются самостоятельно. Устранение подобных ошибок возможно на основе построенных математических моделей за счет поочередного и взаимосвязанного исследования полной, основной и дополнительной систем, полного системного процесса, а также системного процесса достижения цели и системного процесса взаимодействия, полной структуры системы, структуры для реализации процесса достижения цели и структуры для реализации процесса взаимодействия.
• На основании полученных результатов можно сформировать ряд процедур, которые должны использоваться при построении конкретных алгоритмов по применению комплекса полученных моделей:
Алгоритм применения математической модели общей системы должен содержать следующие правила и процедуры:
а) рассматривать, в конечном счете, полную систему S с системой целей F. В частности, используя модель системных отношений для S и F, можно проверять условия системности, как условия соответствия моделей системы и её частей соотношениям (4.4.1) – (4.4.18). Процедуры решения отдельных задач анализа и синтеза необходимо проводить с помощью моделей основной Sa и дополнительной Se систем, объединяя затем эти задачи в рамках полной системы;
б) решая задачи на модели основной системы Sа, необходимо поставить и решить задачу контроля дополнительной системы Se, имея в виду ее влияние на элементы и процессы достижения цели. В простейшем случае необходимо установить ограничения на элементы и процессы системы Se;
в) решение задачи на модели дополнительной системы Se необходимо дополнить задачами контроля основной модели Sa, имея в виду ее влияние на элементы и процессы взаимодействия.
• Использование рассматриваемой модели позволяет, напр., решать весь спектр инженеринговых задач построения опережающих решений по развитию производства и управления. Данная модель дает возможность создавать унифицированные и специальные модели бизнес-процесса всей производственной системы, а также бизнес-процессов ее частей, вплоть до ее элементов, элементарных бизнес-процессов и элементарных бизнес-структур анализа и исследований, производства и управления.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК