Помехи: экранирование и заземление 

We use cookies. Read the Privacy and Cookie Policy

«Шум» в виде мешающего сигнала, т. е. наводки сети, сигналов, приходящих по связям с источником питания и путям заземления, на практике может иметь более важное значение, чем рассматривавшийся ранее внутренний шум. Эти мешающие сигналы могут быть уменьшены до незаметных значений (в отличие от теплового шума) путем правильного размещения и конструирования схем. В упорных случаях можно включать комбинацию из фильтрации на линиях входа и выхода, тщательно продуманного расположения заземления, а также дорогостоящую электростатическую и магнитную экранировку. В ближайших разделах мы попытаемся осветить эту темную область искусства схемотехники.

7.23. Помехи

Сигнал помехи может попасть в электронный прибор по входам, линий питания или по линиям ввода и вывода сигнала. Помехи могут попасть в схему и через емкостную связь с проводами (электростатическая связь-наиболее серьезный эффект для точек схемы с большим полным сопротивлением) или через магнитную связь с замкнутыми контурами внутри схемы (независимо от уровня полного сопротивления), или электромагнитную связь с проводами, работающими как небольшие антенны для электромагнитных волн. Любой из этих механизмов может передавать сигнал из одной части схемы в другую. И наконец, токи сигнала в одной части могут влиять на другую часть схемы при падении напряжения на путях заземления и линиях питания.

Исключение помех. Для решения этих часто встречающихся вопросов борьбы с помехами придумано много эффективных приемов. Однако следует помнить, что все эти приемы направлены на уменьшение сигнала (или сигналов) помехи, редко когда помеха уничтожается совсем. Поэтому имеет смысл повысить уровень сигнала просто для увеличения отношения сигнал/шум. Кроме того, надо ясно представлять себе, что внешние условия могут быть в смысле помех очень разными - прибор, который безукоризненно работает на стенде, может вести себя безобразно на том месте, для которого он предназначен. Перечислим некоторые внешние условия, которых следует избегать: а) соседство радио- и телестанций (РЧ-помехи), б) соседство линий метро (импульсные помехи и «мусор» в линии питания), в) близость высоковольтных линий (радиопомехи, шипение), г) близость лифтов и электромоторов (всплески в линии питания), д) здания с регуляторами освещения и отопления (всплески в линии питания), е) близость оборудования с большими трансформаторами (магнитные наводки) и ж) особенно близость электросварочных аппаратов (наводки всех видов неимоверной силы). При сем прилагается ряд советов, технических приемов и заклинаний из области черной магии.

Сигналы, связанные через входы, выходы и линии питания. В борьбе с шумами, идущими по линии питания, лучше всего комбинировать линейные РЧ-фильтры и подавители переходных процессов в линии переменного тока. Этим способом можно добиться ослабления помех на 60 дБ при частотах до нескольких сот килогерц, а также эффективного подавления повреждающих всплесков.

С входами и выходами дело сложнее из-за уровней полного сопротивления и потому, что надо обеспечить прохождение полезных сигналов, которые могут иметь тот же частотный диапазон, что и помехи. В устройствах типа усилителей звуковых частот можно использовать фильтры нижних частот на входе и на выходе (многие помехи от близлежащих радиостанций попадают в схему через провода громкоговорителя, выполняющие роль антенн). В других ситуациях необходимы, как правило, экранированные провода. Провода с сигналами низкого уровня, в частности при высоком уровне полного сопротивления, всегда нужно экранировать. То же относится к внешнему корпусу прибора.

Ёмкостная связь. Внутри прибора сигналы могут прекрасно проходить всюду путем электростатической связи: в какой-нибудь точке в приборе происходит скачок сигнала 10 В и на расположенном рядом входе с большим полным сопротивлением произойдет тот же симпатичный скачок. Что тут можно сделать? Лучше всего уменьшить емкость между этими точками, нарушителями порядка (разнеся их), добавить экран (цельнометаллический футляр или даже металлическая экранирующая оплетка исключает этот вид связи), придвинуть провода вплотную к плате заземления (которая «глотает» электростатические пограничные поля, в огромной степени ослабляя связь) и, если возможно, снизить полное сопротивление насколько удастся. Входы операционного усилителя в отличие от выходов легко подхватывают помеху. Более подробно об этом см. далее.

Магнитная связь. К сожалению, низкочастотные магнитные поля не ослабляются существенно металлической экранировкой. Проигрыватель, магнитофон, микрофон или другая чувствительная схема, расположенная вблизи большого силового трансформатора, будет иметь очень большие наводки сетевой частоты. Лучший способ борьбы с этим явлением — следить, чтобы каждый замкнутый контур внутри схемы имел минимальную площадь, и стараться, чтобы схема не имела проводов в виде петли. Эффективны в борьбе с магнитной наводкой витые пары, так как площадь каждого витка мала, а сигналы, наведенные в следующих друг за другом витках, компенсируются.

При работе с сигналами очень низкого уровня, или устройствами, очень чувствительными к магнитным наводкам (головки магнитофонов, катушки индуктивности, проволочные сопротивления), может оказаться желательным магнитное экранирование. «Экраны из мю-металла» выпускаются в виде готовых форм или гибких листов. Если внешнее магнитное поле велико, то лучше всего применять экран из материала с высокой магнитной проницаемостью, окруженный экраном с низкой магнитной проницаемостью (например, из обычного железа) для того, чтобы предотвратить магнитное насыщение внутреннего экрана. Конечно, наиболее простым решением часто является удаление мешающего источника магнитного поля. Иногда бывает необходимо убирать большие силовые трансформаторы, так сказать, с переднего края. Тороидальные трансформаторы имеют меньшую величину излучаемого магнитного поля по сравнению с обычными прямоугольными.

Радиочастотные помехи. Наводки радиочастоты могут быть очень коварными, поскольку невинная на взгляд часть схемы может работать как эффективный резонансный контур с огромным резонансным пиком. Кроме общего экранирования, желательно все провода делать как можно короче и избегать образования петель, в которых может возникнуть резонанс. Если речь идет об очень высоких частотах, то тут могут помочь ферритовые кольца-бусины. Классической ситуацией паразитного приема высоких частот является пара шунтирующих конденсаторов (один танталовый, другой дисковый керамический), что часто рекомендуется для улучшения шунтирования питания. Такая пара образует отличный паразитный настроенный контур где-то в области от ВЧ до СВЧ (от десятков до сотен мегагерц), да еще и самовозбуждающийся (при наличии усиления)!

7.24. Сигнальное заземление

Провода заземления и заземленные экраны могут доставить много неприятностей, и по этому поводу существует много недоразумений. В двух словах сущность проблемы такова: ток (о котором мы забыли), протекая по линии заземления, может возбудить сигнал, который воспринимает другая часть схемы, сидящая на том же проводе заземления. Часто делают «Мекку» заземления — это точка, в которой сходятся все линии заземления схемы, но это-решение в лоб; при мало-мальском понимании сути проблемы вы сможете в большинстве ситуаций найти более разумное решение.

Обычные ошибки заземления. Общая ситуация представлена на рис. 7.67.

Рис. 7.67. Схема заземления для сигналов низкого уровня. а — правильно; б — неправильно.

В одном приборе находятся усилитель низкого уровня и мощный усилитель (драйвер) с большим потребляемым током. Первая схема сделана правильно: оба усилителя присоединены непосредственно к измерительным выводам стабилизатора напряжения питания, поэтому падение напряжения I·R на проводах, идущих к мощному каскаду, не оказывает влияния на напряжение питания усилителя низкого уровня. К тому же ток нагрузки, проходя на землю, не появляется на входе низкого уровня; вообще, никакой ток не идет по проводу заземления входа усилителя низкого уровня к схемной «Мекке» (в качестве которой может быть выбрано соединение с корпусом возле входного коаксиального разъема BNC).

Во второй схеме имеются две грубые ошибки. Флуктуации напряжения питания, порожденные токами нагрузки каскада высокого уровня, отражаются на напряжении питания каскада низкого уровня. Если входной каскад имеет недостаточно высокий коэффициент ослабления флуктуации питания, то это может привести к возникновению автоколебаний. Дальше и того хуже: ток нагрузки, возвращаясь к источнику питания, вызывает флуктуации потенциала на «земле» корпуса по отношению к заземлению источника питания. Входной каскад оказывается привязанным к этой «переменной земле», а это, очевидно, плохо.

Мораль состоит в том, что надо следить, где протекают большие токи сигнала, и смотреть, чтобы вызываемые ими падения напряжения не влияли на вход. В некоторых случаях разумно отделить источник питания от каскада низкого уровня небольшой RС-цепью (рис. 7.68). В особо трудных случаях с развязкой источника питания можно попробовать в цепь питания каскада низкого уровня поставить стабилитрон или трехвыводной стабилизатор для дополнительной развязки.

7.25. Межприборное заземление

Идея главной точки заземления внутри одного прибора хороша, но что делать, если сигнал идет из одного прибора в другой и у каждого из них свое представление о «земле»? Рекомендуем несколько предложений.

Сигналы высокого уровня. Если сигналы имеют напряжение несколько вольт или это логические сигналы высокого уровня, то просто соедините то, что нужно, и забудьте об этом (рис. 7.69).

Источник напряжения (обозначен между двумя заземлениями) представляет собой разность потенциалов между двумя выводами линий питания в одной и той же комнате или (что хуже) в разных комнатах здания. Эта разность потенциалов состоит частично из напряжения, наведенного от сети, гармоник частоты сети, радиочастотных сигналов (силовые линии питания — хорошая антенна), разных всплесков и прочего «мусора». Если ваши сигналы достаточно велики, то со всем этим вы можете жить.

Малые сигналы и длинные линии. Для малых сигналов такая ситуация нетерпима, и вам придется сделать некоторые усилия, чтобы ее улучшить. Несколько идей для этой цели содержит рис. 7.70.

Рис. 7.70. Цепи заземления с экранированными кабелями для сигналов низкого уровня.

На первой схеме коаксиальный экранированный кабель присоединен к корпусу и схемному заземлению источника сигнала, но изолирован от корпуса приемника (используйте изолированный разъем BNC Bendix 4890-1 или Amphenol 31-010). Благодаря дифференциальному усилителю для буферизации входного сигнала подавляется синфазный сигнал в цепи заземления, выделяющийся на экране. Также полезно подключить резистор с малым сопротивлением и шунтирующий конденсатор на землю для ограничения сдвига «напряжения заземления» и предупреждения повреждений входного каскада. Еще одна схема приемника на рис. 7.70 демонстрирует использование «псевдодифференциального» входного включения для усилительного каскада с одним выходом (это может быть, например, стандартный неинвертирующий ОУ, как по схеме). Сопротивление 10 Ом включенного между общей точкой усилителя и схемной землей резистора достаточно велико (во много раз больше полного сопротивления заземления источника), так что потенциал в этой точке задает опорная земля источника сигнала. Разумеется, любой шум, присутствующий в этом узле схемы, появится также на выходе, однако это становится неважным, если каскад имеет достаточно высокий коэффициент усиления ΚU, поскольку отношение полезного сигнала к шумам заземления увеличивается в ΚU раз. Таким образом, хотя данная схема не является подлинно дифференциальной (обладающей бесконечным КОСС), тем не менее работает она достаточно хорошо (с эффективным КОСС, равным ΚU). Такой прием псевдодифференциального включения с отслеживанием потенциала земли можно использовать также для сигналов низкого уровня внутри самого прибора, когда возникают проблемы с шумами заземления.

Во второй схеме используется экранированная витая пара, экран которой присоединен к корпусу на обоих концах. Это не опасно, так как по экрану сигнал не идет. Дифференциальный усилитель используется, как и раньше, на приемном конце. Если передается логический сигнал, то имеет смысл передавать дифференциальный сигнал (сигнал и его инверсию), как показано на рисунке. Во входных каскадах приемной стороны можно применять обычные дифференциальные усилители или, если очень сильны помехи от земли, специальные «изолированные» усилители (выпускаются фирмами Analog Devices и Burr-Brown). Последние могут работать при киловольтных синфазных сигналах. Также работают оптоэлектронные изолирующие модули, в некоторых случаях — это удобное решение для передачи цифровых сигналов.

На радиочастотах подходящий способ подавления синфазного сигнала на приемном конце дает трансформаторная связь; она также облегчает получить дифференциальный биполярный сигнал на передающем конце. Трансформаторы также популярны в звуковой аппаратуре, хотя они громоздки и ведут к некоторому искажению сигнала.

Для очень длинных кабельных линий (измеряемых милями) полезно принять меры против больших токов в экранах на радиочастотах. Способ достижения этого показан на рис. 7.71.

Рис. 7.71. Схема защиты входа приемника сигналов с очень длинной линии.

Как было показано выше, дифференциальный усилитель работает с витой парой и на него не влияет напряжение экрана. Путем связи экрана через небольшую катушку индуктивности с корпусом удается сохранить малое напряжение постоянного тока, а большие радиочастотные токи исключить. На этой схеме показана также защита от выхода синфазного напряжения за пределы ±10 В.

Хорошая схема защиты многопроводного кабеля, в котором требуется исключить синфазные наводки, показана на рис. 7.72.

Рис. 7.72. Подавление синфазной помехи при пользовании длинным многожильным кабелем.

Так как у всех сигналов эта наводка одна и та же, то единственный провод, подключенный к земле на передающем конце, служит для компенсации синфазных сигналов во всех n проводах сигнала. Просто этот сигнал считывается по отношению к земле на приемном конце и используется как опорный входной сигнал для всех n дифференциальных усилителей, работающих с остальными сигналами.

Приведенные схемы хорошо подавляют синфазные помехи на низких и средних частотах, но против радиочастотных помех они могут оказаться неэффективными из-за низкого КОСС в приемном дифференциальном усилителе. Одной из возможностей здесь оказывается закрутка кабеля целиком вокруг ферритового тора (рис. 7.73).

Это увеличивает последовательную индуктивность кабеля в целом, повышает полное сопротивление синфазному сигналу на высокой частоте и облегчает возможность шунтирования его на дальнем конце парой конденсаторов малой емкости на землю. Эквивалентная схема показывает, почему это происходит без ослабления дифференциального сигнала: у вас есть последовательные индуктивности, включенные в сигнальные линии и экран, но поскольку они образуют трансформатор с единичным отношением числа витков, дифференциальный сигнал не изменяется. Это есть на самом деле «1:1 продольный трансформатор», который описывается в разд. 13.10.

Плавающий источник сигнала. Та же несогласованность напряжений заземления в разных местах проявляется еще более серьезно на входах низкого уровня, поскольку там сигналы очень малы. Примером является головка магнитофона или другой источник сигнала, для которого нужна экранированная сигнальная линия. Если заземлить экран на обоих концах, то разность напряжений заземления появится в качестве сигнала на входе усилителя. Лучше всего отделить экран от заземления в источнике (рис. 7.74).

Изолирующие усилители. Другим решением серьезных проблем, связанных с заземлением, является использование «изолирующего усилителя». Изолирующие усилители — это готовые устройства, предназначенные для передачи аналогового сигнала (с полосой частот, начинающейся с постоянного тока) от схемы с одним опорным уровнем заземления к другой схеме, имеющей совершенно другую землю (рис. 7.75).

Рис. 7.75. Концепция изолирующего усилителя.

На практике в некоторых экзотических ситуациях потенциалы этих «земель» могут отличаться на много киловольт! Применение изолирующих усилителей обязательно в медицинской электронике - там, где электроды прикладываются к телу человека, с тем, чтобы полностью изолировать такие контакты от измерительных схем, запитанных непосредственно от сети переменного тока. В выпускаемых в настоящее время изолирующих усилителях используется один из следующих трех методов:

1. Трансформаторная изоляция (развязка) несущего сигнала высокой частоты, подвергнутого частотной или широтно-импульсной модуляции относительно узкополосным сигналом (с частотой от 0 до 10 кГц или около того), который необходимо изолировать (рис. 7.76).

Рис. 7.76. Изолирующий усилитель AD295 с трансформаторной связью. (Analog Devices).

Этот метод применяется во всех изолирующих усилителях фирмы Analog Devices, а также в ряде устройств фирмы Burr-Brown. Изолирующие усилители с трансформаторной развязкой имеют удобную особенность: питание постоянного тока подается только на одну сторону (передающую или приемную); у всех у них в корпусе встроен преобразователь постоянного напряжения в постоянное напряжение с трансформаторной связью. Усилители такого типа обеспечивают изоляцию до 3,5 кВ и имеют типичную полосу пропускания порядка 2 кГц, хотя некоторые устройства работают с сигналами до 20 кГц.

2. Оптоэлектронная передача сигнала через светодиод на передающем конце и фотодиод на стороне приемника. Типичным примером использования этого метода служит ISO100 фирмы Burr-Brown. Здесь не требуется высокочастотной несущей, поскольку сигналы, будь они даже постоянного тока, можно передавать оптически. Для того чтобы добиться хорошей линейности, Burr-Brown использовала изящный ход: свет от светодиода падает также на второй (согласованный с первым) фотодиод, включенный на передающем конце по схеме обратной связи, так что нелинейности свето- и фотодиода взаимно уничтожаются; см. рис. 7.77. ISO100 требует источников питания на обоих концах, изолирует до 750 В и имеет полосу 60 кГц.

Рис. 7.77. Аналоговый изолирующий усилитель с оптической связью.

3. Изоляция за счет емкостной связи по высокочастотной несущей, модулированной по частоте сигналом, который необходимо изолировать (рис. 7.78).

Рис. 7.78. Изолирующий усилитель с емкостной связью.

Представителями этого метода являются ISO102, ISO106 и ISO122 фирмы Burr-Brown (рис. 7.79).

Рис. 7.79. Изолирующий усилитель ISO106 фирмы Burr-Brown.

(Burr-Brown Corporation).

Здесь нет обратной связи, как и при трансформаторной изоляции, но для большинства моделей нужны источники питания на обоих концах. Это обычно не доставляет трудностей, поскольку у вас, скорее всего, должны быть электронные схемы на обоих концах, генерирующие и использующие сигнал. Если это не так, то вы можете достать изолированный преобразователь постоянного напряжения для использования его в такого рода усилителе. ISO106 обеспечивает изоляцию до 3,5 кВ и имеет полосу пропускания 70 кГц.

Все изолирующие усилители такого рода предназначены для работы с аналоговыми сигналами и обладают умеренной полосой пропускания; стоимость каждого из них лежит в пределах от 25 до 100 долл. Такого же плана проблемы заземления могут возникать и в цифровых схемах, где они решены просто и эффективно: выпускаются изоляторы с оптической связью (оптоизоляторы) с большим выбором полосы (до 10 МГц и более), изолирующие разность потенциалов в несколько киловольт и имеющие низкую стоимость (1–2 долл.). Мы познакомимся с ними в гл. 9.

Защита сигнала. К этому вопросу тесно примыкает защита сигнала — изящный способ уменьшения эффектов входной емкости и утечек при малых сигналах и большом полном сопротивлении. Если вы работаете с сигналами от микроэлектродов или емкостных датчиков с внутренним полным сопротивлением в сотни мегаом, то даже входная емкость в несколько пикофарад может в этом случае совместно с этим сопротивлением образовать фильтр нижних частот со спадом, начинающимся с нескольких герц! К тому же конечное значение сопротивления изоляции в соединительном кабеле легко может на порядки ухудшить рабочие параметры усилителя со сверхнизким током входного сигнала (ток смещения меньше пикоампера) за счет утечек. Обе эти проблемы разрешаются путем использования защитного электрода (рис. 7.80).

Рис. 7.80. Применение «защитного» экрана для увеличения входного полного сопротивления.

Внутренний экран соединен с повторителем; это эффективно исключает токи и резистивных, и емкостных утечек за счет нулевой разности потенциалов между сигнальным проводом и его окружением. Внешний заземленный экран предохраняет от помех защитный электрод; не доставляет хлопот работа повторителя на емкость и утечку между экранами, так как у повторителя малое полное выходное сопротивление. Однако не следует применять этот прием чаще, чем это необходимо; имеет смысл ставить повторитель как можно ближе к источнику сигнала, защищая лишь небольшой отрезок кабеля, соединяющий повторитель и источник. Передавать сигнал после повторителя с его низким выходным полным сопротивлением к отдаленному усилителю можно и по обычному экранированному кабелю. Защиту сигнала мы рассмотрим в разд. 15.08 в связи с микроэлектродами с большим полным сопротивлением.

Влияние на выходные сигналы. Как правило, выходное сопротивление ОУ настолько мало, что не надо заботиться о емкостных наводках на выходной сигнал. Однако в случае наличия высокочастотной или быстропереключающейся помехи основание для беспокойства имеется, особенно если от выходного сигнала требуется более или менее приличная точность. Рассмотрим пример на рис. 7.81.

Рис. 7.81. Схема образования помех от цифровых схем в линейном аналоговом сигнале.

Прецизионный сигнал усиливается с помощью ОУ и проходит через область пространства, содержащую логические элементы с сигналами, дискретно изменяющимися со скоростью нарастания 0,5 В/нс. Выходное полное сопротивление замкнутого ОУ повышается с частотой, достигая значений от 10 до 100 Ом на частоте 1 МГц (см. разд. 7.07). Какой должна быть наибольшая допустимая паразитная емкость связи, если влияние помехи должно быть меньше разрешения аналогового сигнала 0,1 мВ? Удивительный ответ — 0,02 пФ.

Есть несколько решений этого вопроса. Лучше всего держать ваш маленький аналоговый сигнал подальше от скопления быстропереключающихся сигналов. Средней величины конденсатор, шунтирующий выход ОУ (возможно, с небольшим последовательным резистором для обеспечения устойчивости ОУ), может исправить положение, хотя и снизит скорость нарастания. Грубо говоря, конденсатор снижает частоту воспринимаемых помех до такого значения, при котором обратная связь усилителя может их подавить. Несколько сот пикофарад на землю придадут достаточную устойчивость аналоговому сигналу высокой частоты (представьте себе емкостный делитель напряжения). Еще одна возможность — это применить буферный усилитель с низким полным выходным сопротивлением, как LT1010, или мощный ОУ типа LM675. Не пренебрегайте также возможностью использовать экранирование, витые пары и близость к платам заземления для уменьшения влияний.