Схемы фазовой автоподстройки частоты

We use cookies. Read the Privacy and Cookie Policy

9.27. Введение

Система фазовой автоподстройки частоты (ФАПЧ) — это весьма важный и полезный узел, выпускаемый в виде отдельной интегральной схемы многими изготовителями. ФАПЧ содержит фазовый детектор, усилитель и генератор, управляемый напряжением (ГУН), и представляет собой сочетание в одном корпусе аналоговой и цифровой техники. Мы рассмотрим в дальнейшем применение ФАПЧ для тонального декодирования, демодуляции AM- и ЧМ-сигналов, умножения частот, частотного синтеза, импульсной синхронизации сигналов от шумящих источников (например, магнитной ленты) и восстановления «чистых» сигналов.

Существует традиционное предубеждение против ФАПЧ, связанное отчасти со сложностью реализации ФАПЧ на дискретных компонентах, а отчасти с сомнениями относительно ее надежной работы. С появлением недорогих и простых в применении устройств ФАПЧ первое препятствие для их широкого применения было преодолено. При правильном проектировании и корректном применении устройства ФАПЧ становятся такими же надежными элементами схемы, как операционные усилители или триггеры. На рис. 9.67 показана классическая схема ФАПЧ.

Рис. 9.67. Схема фазовой автоподстройки частоты.

Фазовый детектор — устройство, которое осуществляет сравнение двух входных частот, и формирует выходной сигнал, пропорциональный их фазовой разности (если, например, частоты различаются, то на выходе появится периодический сигнал на разностной частоте). Если fвх не равна fГУН, то отфильтрованный и усиленный сигнал фазовой ошибки будет воздействовать на частоту ГУН, изменяя ее в направлении fвх. При нормальных условиях ГУН быстро производит «захват» частоты fвх, поддерживая постоянный фазовый сдвиг по отношению к входному сигналу.

Поскольку отфильтрованный выходной сигнал фазового детектора является сигналом постоянного тока, а управляющий входной сигнал ГУН — мерой входной частоты, совершенно очевидно, что ФАПЧ можно применять для ЧМ-детектирования и тонального декодирования (используемое при цифровой передаче по телефонным линиям). Выходной сигнал ГУН — это сигнал местной частоты, равной fвх, таким образом, ГУН выдает чистый опорный сигнал, который может содержать шумы. Поскольку выходной сигнал ГУН может иметь любую форму (треугольную, синусоидальную и т. п.), это позволяет формировать, допустим, синусоидальный сигнал, синхронизированный с последовательностью входных импульсов.

В одном из часто встречающихся применений ФАПЧ между выходом ГУН и фазовым детектором включают счетчик по модулю n, обеспечивая, таким образом, умножение входной эталонной частоты fвх. Это — идеальный метод генерации импульсов синхронизации на частотах, кратных частоте сетевого напряжения, для интегрирующих АЦП (двухстадийных и с уравновешиванием заряда) с полным подавлением помех на сетевой частоте и ее гармониках. Подобные схемы являются основными при построении частотных синтезаторов.

Компоненты ФАПЧ. Фазовый детектор. Существуют два основных типа фазовых детекторов, которые иногда называют тип 1 и тип 2. Фазовый детектор типа 1 предназначен для работы с аналоговыми сигналами или цифровыми сигналами прямоугольной формы, а детектор типа 2 — для работы по логическим переходам (фронтам). Типичным представителем детекторов типа 1 является детектор 565 (линейный), а детектор КМОП 4096 можно отнести и к тому, и к другому типу. Самым простым фазовым детектором является детектор типа 1 (цифровой), который представляет собой простой вентиль ИСКЛЮЧАЮЩЕЕ ИЛИ (рис. 9.68).

Рис. 9.68. Фазовый детектор (тип 1), выполненный по схеме Исключающее ИЛИ.

На рисунке показана зависимость выходного напряжения от разности фаз при использовании фильтра низких частот и прямоугольного входного колебания со скважностью 50 %. Фазовый детектор типа 1 (линейный) имеет аналогичную зависимость выходного напряжения от фазовой разности, хотя его схема представляет собой «четырехквадрантный умножитель», известный также под названием «балансный смеситель». Фазовые детекторы этого типа, обладающие высокой линейностью, находят широкое применение в синхронном детектировании, которое мы рассмотрим в разд. 15.15.

Фазовый детектор типа 2 обладает чувствительностью только по отношению к расположению фронтов сигнала и входного сигнала ГУН, как показано на рис. 9.69.

Рис. 9.69. Фазовый детектор (тип 2) опережения — отставания, работающий «по фронтам».

Схема фазового компаратора генерирует выходные импульсы либо отставания, либо опережения в зависимости от того, когда появляются логические переходы выходного сигнала ГУН, после или до переходов опорного сигнала соответственно. Ширина этих импульсов равна промежутку времени между соответствующими фронтами, как показано на рисунке. Во время действия этих импульсов выходная схема либо отводит, либо отдает ток, а в промежутках между импульсами находится в разомкнутом состоянии, формируя зависимость между выходным напряжением и разностью фаз, показанную на рис. 9.70.

Рис. 9.70.

Процесс абсолютно не зависит от скважности импульсов на входе в отличие от ситуации с рассмотренным ранее фазовым компаратором типа 1. Другой привлекательной особенностью этого фазового детектора является то, что импульсы на выходе полностью исчезают, когда два сигнала засинхронизированы. Это означает, что на выходе отсутствуют «пульсации», которые вызывают периодическую фазовую модуляцию в контуре, как это имеет место при использовании фазового детектора типа 1.

Сравним свойства фазовых детекторов двух основных типов.

Существует еще одно различие между этими двумя типами фазовых детекторов. Детектор типа 1 всегда генерирует выходное колебание, которое в дальнейшем должно фильтроваться с помощью фильтра контура регулирования (более подробно обсудим это позже). Таким образом, ФАПЧ с фазовым детектором типа 1 содержит контурный фильтр, работающий как фильтр нижних частот, сглаживающий логический выходной сигнал полной амплитуды. В таком контуре всегда присутствует некоторая остаточная пульсация и, следовательно, периодические фазовые изменения. В тех схемах, где ФАПЧ используется для умножения или синтеза частот, к выходному сигналу добавляются еще и «боковые полосы фазовой модуляции» (см. разд. 13.18).

Фазовый детектор типа 2, наоборот, генерирует выходные импульсы только тогда, когда между опорным сигналом и сигналом ГУН имеется фазовая разность. Поскольку в противном случае выход фазового детектора выглядит как разомкнутая цепь, конденсатор контурного фильтра работает как элемент запоминания напряжения, поддерживая напряжение, сохраняющее требуемую частоту ГУН. Если опорный сигнал «уходит» по частоте, то фазовый детектор генерирует последовательность коротких импульсов, заряжая (или разряжая) конденсатор до нового напряжения, необходимого для того, чтобы вновь вернуть ГУН в синхронизм.

Генераторы, управляемые напряжением. Важным компонентом ФАПЧ является генератор, частотой которого можно управлять, используя выходной сигнал фазового детектора. Некоторые ИМС ФАПЧ содержат ГУН (например, линейный элемент 565 и КМОП-элемент 4046). Кроме того, имеются отдельные ИМС ГУН, перечисленные в табл. 5.4. Интересный класс ГУН составляют элементы с синусоидальным выходом (8038, 2206 и т. п.), поскольку они позволяют генерировать чистое синусоидальное колебание, засинхронизированное с входным колебанием «страшного» вида. Следует упомянуть еще один класс ГУН, — «преобразователи напряжения в частоту», которые обычно проектируются с оптимальной линейностью; они имеют, как правило, скромную максимальную частоту (до 1 МГц) и вырабатывают импульсы с логическими уровнями (см. разд. 5.15).

Следует помнить о том, что частота ГУН не ограничивается скоростью срабатывания логических схем. Можно, например, использовать радиочастотные генераторы, настраиваемые с помощью варактора (диод с изменяемой емкостью) (рис. 9.71).

Рис. 9.71.

Продвигаясь в соответствии с этой идеей еще на один шаг, можно было бы даже использовать такой элемент, как отражательный клистрон, — микроволновый (гигагерцевый) генератор, с электрической настройкой за счет изменения напряжения на отражателе. Разумеется, ФАПЧ, использующая такие генераторы, потребует радиочастотный фазовый детектор.

Зависимость частоты от управляющего напряжения ГУН, используемого в ФАПЧ, может не обладать высокой линейностью, однако в случае большой нелинейности коэффициент усиления в контуре будет изменяться в соответствии с частотой сигнала и придется обеспечивать больший запас устойчивости.

9.28. Проектирование ФАПЧ

Замыкание контура регулирования. Фазовый детектор вырабатывает сигнал ошибки, соответствующий фазовому рассогласованию между входным и опорным сигналами. Частотой ГУН можно управлять, подавая на его вход соответствующее напряжение. Казалось бы, что здесь можно поступить также, как и в любом другом усилителе с обратной связью, вводя контур регулирования с некоторым коэффициентом передачи; мы поступали точно также в схемах с операционными усилителями.

Однако имеется одно существенное отличие. Ранее, регулируемая с помощью обратной связи величина совпадала с величиной, измеряемой с целью формирования сигнала ошибки или была по крайней мере ей пропорциональна. В усилителе напряжения, например, мы измеряли выходное напряжение и соответствующим образом подстраивали входное. В системах ФАПЧ осуществляется интегрирование; мы измеряем фазу, а регулируем частоту, но фаза является интегралом от частоты. За счет этого в контуре регулирования появляется фазовый сдвиг 90°.

Такой интегратор, включенный в контур обратной связи, существенным образом влияет на работу схемы — дополнительное запаздывание по фазе на 90° на частотах, где коэффициент усиления равен единице, вызывает возникновение самовозбуждения. Простое решение заключается в том, чтобы не включать в контур компоненты, которые дают дополнительное запаздывание по фазе, по крайней мере на тех частотах, где коэффициент усиления близок к единице. В конце концов операционные усилители имеют запаздывание по фазе 90° на большинстве частот своего диапазона, однако они превосходно работают. Это — один из подходов и он приводит к тому, что называется «контуром первого порядка». Блок-схема в этом случае выглядит точно также, как ранее приведенная блок-схема ФАПЧ без фильтра нижних частот.

Хотя контуры первого порядка во многих ситуациях очень удобны, они не обладают необходимыми свойствами «маховика», которые позволяют генератору, управляемому напряжением, сглаживать помехи и флуктуации входного сигнала. Более того, контур первого порядка не сохраняет постоянным фазовое соотношение между опорным сигналом и сигналом ГУН, так как выход фазового детектора непосредственно управляет ГУН. В «контур второго порядка» вводится дополнительная фильтрация на низкой частоте с целью предотвращения неустойчивости. Такой контур обладает свойством «маховика» и, кроме того, уменьшает «диапазон захвата» и увеличивает время захвата. К тому же, как будет показано ниже, при использовании фазовых детекторов типа 2 контур второго порядка гарантирует фазовую синхронизации при нулевой разности фаз между опорным сигналом и сигналом ГУН. Практически во всех системах применяют контуры второго порядка, поскольку в большинстве применений система ФАПЧ должна обеспечивать малые флуктуации фазы выходного сигнала, а также обладать некоторыми свойствами памяти или «маховика». Контуры второго порядка могут иметь высокий коэффициент передачи на низких частотах, что обеспечивает повышенную устойчивость (по аналогии с достоинствами высокого коэффициента усиления в усилителях с обратной связью). Вернемся к делу и рассмотрим применение ФАПЧ на примерах.

9.29. Пример разработки: умножитель частоты

Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты стабильного низкочастотного (допустим, 1 Гц) сигнала на целое число n; число n можно задавать в цифровом виде, т. е. вы получаете гибкий источник сигналов, которым можно управлять даже с помощью компьютера.

Можно использовать ФАПЧ в более прозаических системах, например, для того чтобы генерировать тактовую частоту, синхронизированную с некоторой другой эталонной частотой, которая уже имеется в приборе. Предположим, что мы хотим получить тактовые сигналы частотой 61440 Гц для двухстадийного АЦП. Такая частота обеспечивает производительность 7,5 измерений в секунду, причем на первой стадии (подъеме) потребуется 4096 периодов синхронизации (напомним, что в двухстадийном преобразовании используется постоянный временной интервал) и на второй стадии (разряд постоянным током) может потребоваться до 4096 периодов. Уникальная особенность схемы ФАПЧ заключается в том, что тактовую частоту 61440 кГц можно засинхронизировать с сетевой частотой 60 Гц (61440 = 60x1024), полностью подавив тем самым помехи на частоте 60 Гц, которые, как мы уже обсуждали в разд. 9.21, присутствуют на любом сигнальном входе преобразователя.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на n (рис. 9.72).

Рис. 9.72. Блок-схема умножителя частоты.

На этой схеме для каждого функционального блока указан коэффициент передачи. Это понадобится нам для проведения расчетов по устойчивости. Обратите особое внимание на то, что фазовый детектор преобразует фазу в напряжение, а ГУН — напряжение в производную фазы по времени (т. е. частоту). Отсюда важное следствие — если фазу в самой нижней части схемы рассматривать как переменную, то ГУН будет действовать как интегратор. Фиксированное входное напряжение рассогласования приводит к линейно возрастающему фазовому рассогласованию на выходе ГУН. Фильтр нижних частот и делитель на n имеют коэффициенты передачи меньше единицы.

Устойчивость и фазовые сдвиги. На рис. 9.73 показаны диаграммы Боде, с помощью которых можно оценить устойчивость ФАПЧ второго порядка. ГУН работает как интегратор с характеристикой 1/f и запаздывающим фазовым сдвигом 90° (т. е. его характеристика пропорциональна 1/fω, а конденсатор заряжается от источника тока). Для того чтобы иметь приличный запас по фазе (разность между 180° и фазовым сдвигом на частоте, при которой общий коэффициент передачи контура равен 1), в фильтр нижних частот последовательно с конденсатором включают резистор для того, чтобы приостановить спад характеристики на некоторой частоте (с причудливым названием «нуль»).

Комбинация этих двух характеристик дает показанную на рисунке характеристику контура. До тех пор пока спад коэффициента передачи контура будет составлять 6 дБ/октава (в области единичного коэффициента передачи), контур будет устойчив. Это делается с помощью фильтра нижних частот по типу «опережение — отставание» с соответствующим образом выбранными свойствами (точно также, как компенсация опережения-отставания в операционных усилителях). Дальше вы увидите, как это делается.

Рис. 9.73. Диаграммы Боде ФАПЧ.

Расчет коэффициента передачи. На рис. 9.74 приведена схема ФАПЧ для синтезатора частоты 61440 Гц. Фазовый детектор и ГУН входят в состав КМОП ИМС ФАПЧ 4046. В этой схеме мы использовали вариант фазового детектора с запуском по фронту (в ИМС 4046 имеются оба варианта).

Рис. 9.74. Применения умножителя ФАПЧ для формирования тактовых сигналов, синхронных с частотой сети переменного тока.

Его выходной сигнал вырабатывается двумя КМОП-транзисторами, которые формируют насыщенные импульсы с уровнями UCC или 0 В. Фактически, это выход с тремя состояниями, как было изложено выше, поскольку он находится в состоянии высокого импеданса, за исключением интервала времени, когда действует импульс фазового рассогласования.

Минимальная и максимальная частоты ГУН, соответствующие управляющим напряжениям 0 В и UCC, устанавливаются подбором величин R1, R2 и С1 согласно некоторым схемным характеристикам. Выбранные нами величины показаны на рисунке. Следует отметить, что ИМС 4046 страдает «хроническим заболеванием» — повышенной чувствительностью к напряжению питания, поэтому проверяйте характеристики по паспортным данным. Остальные компоненты контура выбираются по стандартным для ФАПЧ процедурам.

После того как необходимый диапазон ГУН выбран, остается лишь произвести расчет фильтра нижних частот. Это очень ответственная часть. Начнем с того, что выпишем составляющие коэффициента передачи контура, учитывая каждую компоненту (табл. 9.7 и рис. 9.72).

Придерживайтесь одних и тех же единиц измерения; не переходите с f на ω, или, что еще хуже, с герц на килогерцы. Нам осталось определить только Кф. Сделаем это, записав общее выражение для коэффициента передачи контура, но не забывая, что ГУН — это интегратор,

Yвых = U2KГУНdt

Общий коэффициент передачи контура равен

Теперь наступает этап выбора частоты, на которой коэффициент передачи контура должен проходить через единицу. Идея заключается в том, что частота единичной передачи выбирается достаточно высокой, чтобы контур мог должным образом отслеживать изменения входной частоты, но и достаточно низкой, чтобы обеспечить свойства «маховика» и сглаживать помехи и скачки входного сигнала.

Например, система ФАПЧ, предназначенная для демодуляции входных ЧМ-сигналов или декодирования последовательностей высокоскоростных тональных сигналов, должна иметь высокое быстродействие (для входных ЧМ-сигналов полоса пропускания контура должна соответствовать входному сигналу, т. е. равняться максимальной частоте модуляции, а для декодирования тональных сигналов время отклика должно быть меньше, чем продолжительность тонального сигнала). С другой стороны, контур, предназначенный для генерации фиксированной частоты, кратной некоторой стабильной и медленно меняющейся входной частоте, должен иметь низкую частоту единичной передачи. Это позволит уменьшить фазовый шум на выходе и сделать систему ФАПЧ нечувствительной к шумам и выбросам на входном сигнале. Будут едва заметны даже кратковременные пропадания входного сигнала, поскольку напряжение, запоминаемое на конденсаторе фильтра, заставит ГУН продолжать формирование той же самой выходной частоты.

В данном случае мы выбрали частоту единичной передачи f2, равной 2 Гц или 12,6 рад в секунду. Это значительно ниже опорной частоты и вряд ли можно ожидать, что реальные отклонения сетевой частоты превысят эту величину (следует учитывать, что электроэнергия вырабатывается крупными генераторами с огромной механической инерцией). По негласному правилу точку излома характеристики фильтра нижних частот (ее «нуль») следует выбрать на частоте по крайней мере в 3–5 раз ниже, чтобы обеспечить достаточный запас по фазе. Вспомните, что фазовый сдвиг простой RC-цепи меняется от 0 до 90° в диапазоне частот от 0,1 до 10 относительно частоты — 3 дБ («полюс»), при которой сдвиг равен 45°. Выберем частоту нуля f1 равной 0,5 Гц, или 3,1 рад/с (рис. 9.75).

Рис. 9.75.

Точка излома f1 определяет постоянную времени R4C2R4C2 = 1/2πf1. Попробуем взять С2 = 1 мкФ и R4 = 330 кОм. Осталось лишь выбрать R3 так, чтобы коэффициент передачи контура был равен 1 на частоте f2. Полученный результат: R3 = 4,3 МОм.

Упражнение 9.5. Покажите, что при выбранных компонентах фильтра единичный коэффициент передачи контура получается действительно на частоте f2 = 2 Гц.

Иногда параметры фильтра могут оказаться не совсем подходящими и вам придется подстраивать их или смещать частоту единичной передачи. Полученные значения соответствуют ФАПЧ на КМОП-элементах (типовой входной импеданс ГУН составляет 1012 Ом). Для ФАПЧ на биполярных транзисторах (например, типа 4044) возможно потребуется согласование импедансов с помощью внешнего операционного усилителя.

В этом примере для упрощения фильтра мы использовали фронтовой (типа 2) фазовый детектор. На практике возможно это и не самое лучшее решение для ФАПЧ, синхронизированной с сетевой частотой 60 Гц, поскольку сигналы с частотой 60 Гц содержат сравнительно высокий уровень шума. При тщательном выборе аналоговой входной схемы (например, после фильтра нижних частот включить триггер Шмитта) можно добиться хорошей работы схемы; в противном случае следует использовать фазовый детектор типа 1 со схемой ИСКЛЮЧАЮЩЕЕ ИЛИ.

Метод проб. Для некоторых людей искусство схемотехники заключается в том, чтобы подбирать компоненты фильтра до тех пор, пока контур не заработает. Если вы относитесь к их числу, то мы вынуждены просить вас пересмотреть свои взгляды. Мы представили детальный расчет контура ФАПЧ потому, что, как мы подозреваем, плохая репутация ФАПЧ — это следствие как раз такого подхода. Тем не менее не можем удержаться, чтобы не дать совет фанатикам метода проб и ошибок: R3C2 определяет время сглаживания контура, a R4/R3 — демпфирование, т. е. отсутствие перегрузки при скачкообразном изменении частоты. Можете начинать с R4 = 0,2R3.

Формирование тактовых импульсов для видеотерминала. Другим полезным применением высокочастотного генератора, синхронизированного с сетевой частотой 60 Гц, является формирование видеосигналов для буквенно-цифрового терминала компьютера. Стандартная скорость смены изображения в терминалах составляет 30 кадров в 1 с. Если отсутствует точная синхронизация частоты синхроимпульсов по вертикали и сетевой частоты, то в связи с неизбежными сетевыми наводками изображение будет испытывать медленную «боковую качку». Система ФАПЧ превосходно решает эту проблему. Высокочастотный ГУН (около 15 МГц) синхронизируется заранее определенной частотой, кратной 60 Гц; путем деления этой тактовой частоты можно последовательно сформировать точки каждого отображаемого символа, число символов в каждой строке и число строк, в каждом кадре.

9.30. Захват и слежение в системе ФАПЧ

Очевидно, что, войдя в синхронизм, система будет в нем оставаться до тех пор, пока входной сигнал не выйдет за пределы допустимого диапазона сигналов обратной связи. Интересно знать, как система ФАПЧ входит в синхронизм в первый раз. Ведь начальное частотное рассогласование вызывает появление периодического выходного сигнала на фазовом детекторе разностной частоты. После фильтра нижних частот этот сигнал уменьшается до медленно меняющихся колебаний небольшой амплитуды, но никак не является хорошим постоянным сигналом рассогласования.

Процесс захвата. Ответ на этот вопрос не так уж и прост. Контур первого порядка всегда будет синхронизироваться, поскольку там отсутствует ослабление сигнала рассогласования на низкой частоте. Синхронизация контура второго порядка зависит от типа фазового детектора и полосы пропускания фильтра нижних частот. Кроме того, фазовый детектор по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ (типа 1) имеет ограниченный диапазон захвата, зависящий от постоянной времени фильтра (это обстоятельство можно использовать, если вы хотите сделать систему ФАПЧ, синхронизация которой происходит в пределах определенного частотного диапазона).

Процесс захвата происходит следующим образом: когда сигнал фазового рассогласования приближает частоту ГУН к опорной частоте, его изменения становятся более медленными и наоборот. Сигнал рассогласования поэтому является асимметричным и меняется более медленно в той части цикла, в течение которой fГУН ближе подходит к fоп. В результате появляется ненулевая средняя компонента, т. е. постоянная компонента, которая и вводит ФАПЧ в синхронизм. Если внимательно посмотреть на управляющее напряжение ГУН в процессе захвата, то можно увидеть что-то похожее на сигнал, показанный на рис. 9.76. Последний всплеск на этом сигнале имеет весьма интересную причину. Даже в том случае, когда частота ГУН достигает требуемого значения (об этом можно судить по правильному управляющему напряжению ГУН), в системе не обязательно происходит захват (из-за несоответствия фазы). Это и может быть причиной всплеска. Каждый процесс захвата индивидуален и каждый раз он выглядит по-разному!

Рис. 9.76.

Полоса захвата и слежения. При использовании фазового детектора по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ (тип 1) полоса захвата ограничена постоянной времени фильтра нижних частот. В этом есть определенный смысл, так как, если различие по частоте велико, сигнал рассогласования будет ослабляться фильтром настолько, что контур никогда не сможет осуществить захват. Очевидно, что увеличение постоянной времени фильтра уменьшает полосу захвата, так как это приводит к пониженному коэффициенту передачи контура. Оказывается, что фронтовой фазовый детектор не имеет подобного ограничения. Полоса слежения для обоих типов детекторов определяется диапазоном управляющих напряжений ГУН.

9.31. Некоторые примеры применения систем ФАПЧ

Мы уже упоминали об использовании ФАПЧ для умножения частот. Целесообразность такого применения, как это следует из рассмотренного примера, настолько очевидно, что сомнений в применении ФАПЧ не должно быть. В простых умножителях (например, для генерации более высокой тактовой частоты в цифровых системах) не возникает никаких проблем, связанных с помехами на опорном сигнале, поэтому здесь можно использовать системы первого порядка.

Рассмотрим еще несколько примеров применения ФАПЧ, интересных с точки зрения разнообразия областей использования.

Детектирование ЧМ-сигналов. При частотной модуляции кодирование информации осуществляется путем изменения частоты несущего сигнала пропорционально изменению информационного сигнала. ЧМ и другие виды модуляции мы рассмотрим в гл. 13 более подробно. Существуют два метода восстановления информации из модулированного сигнала с помощью фазовых детекторов или систем ФАПЧ. Под термином «детектирование» мы будем понимать процесс демодуляции.

Самым простым методом является синхронизация системы ФАПЧ приходящим сигналом. Напряжение, управляющее частотой ГУН, пропорционально входной частоте и, следовательно, является требуемым модулирующим сигналом (рис. 9.77).

Рис. 9.77. ЧМ-дискриминатор с ФАПЧ.

Полосу пропускания фильтра в такой системе можно сделать достаточно широкой для того, чтобы пропустить модулирующий сигнал, т. е. время реакции ФАПЧ должно быть меньше, чем минимальное время отклонения восстанавливаемого сигнала. Как показано в гл. 13, сигнал, используемый в ФАПЧ, не должен быть реально передаваемым колебанием; он может быть сигналом «промежуточной частоты» (ПЧ), формируемым в приемной системе с помощью смесителя при преобразовании. Для того чтобы избежать в этом методе ЧМ-детектирования искажений на звуковых частотах, следует обеспечить высокую линейность ГУН.

Второй метод ЧМ-детектирования использует фазовый детектор, но не в составе контура ФАПЧ. Принцип реализации этого метода показан на рис. 9.78.

Рис. 9.78. Квадратурное ЧМ-детектирование.

Входной сигнал и его копия со сдвинутой фазой подаются на фазовый детектор, который вырабатывает некоторое входное напряжение. Фазосдвигающая схема должна быть так хитроумно сделана, чтобы фазовый сдвиг линейно зависел от частоты в диапазоне входных частот (это достигается обычно с помощью резонансных LC-схем). Выходное напряжение будет зависеть, таким образом, от входной частоты. Этот метод называют «двойным балансным квадратурным ЧМ-детектированием». Он применяется во многих ИМС усилителей/детекторов промежуточной частоты (например, САЗ 189).

Детектированием АМ-сигналов. Требуется: способ формирования выходного сигнала, пропорционального мгновенной амплитуде высокочастотного сигнала. Обычно используется выпрямление (рис. 9.79).

Рис. 9.79. АМ-детектирование.

На рис. 9.80 показан весьма своеобразный метод на основе ФАПЧ («гомодинный прием»).

Рис. 9.80. Гомодинное детектирование.

ФАПЧ вырабатывает прямоугольные сигналы с частотой, совпадающей с модулированной несущей. С помощью умножения входного сигнала на это прямоугольное колебание формируется выпрямленный двухполупериодный сигнал; остается только пропустить его через фильтр нижних частот для того, чтобы удалить остатки несущей и выделить огибающую. Если в системе ФАПЧ используется фазовый детектор по схеме ИСКЛЮЧАЮЩЕГО ИЛИ, то выходной сигнал сдвигается на 90° относительно опорного сигнала. В связи с этим на пути сигнала к умножителю следует ввести фазовый сдвиг 90°.

Синхронизация импульсов и восстановление сигнала. При цифровой передаче сигналов по каналу связи передается битовая последовательность, содержащая информацию. Информационные сигналы могут быть по своей природе цифровыми или аналоговыми сигналами, представленными в цифровом виде, как, например, в «импульсно-кодовой модуляции» (ИКМ, см. разд. 13.20). Очень похожей ситуацией является декодирование цифровой информации, считываемой с магнитной ленты или диска. В обоих случаях могут появляться помехи и изменения частоты следования импульсов (например, за счет растягивания ленты), поэтому желательно иметь чистый сигнал синхронизации на той же частоте, что и считываемые информационные сигналы. Система ФАПЧ будет работать здесь превосходно. Фильтр нижних частот исключил бы только дрожание и помехи на входной синхронизирующей последовательности, но медленные изменения скорости ленты остались бы.

В качестве другого примера синхронизации сигналов можно взять схему из разд. 8.31, в которой для получения превосходного синусоидального сигнала используется точный сигнал «60 Гц», сформированный цифровым способом (в действительности его частота находится где-то между 50 и 70 Гц). Для того чтобы преобразовать прямоугольное колебание в синусоидальное мы использовали в этой схеме 6-звенный фильтр нижних частот Баттерворта. Здесь заманчиво было бы использовать ИМС ГУН с синусоидальным выходным сигналом (например, ИМС 8038), работающей синфазно с точным прямоугольным сигналом. Это гарантировало бы постоянную амплитуду синусоидального сигнала, обеспечило широкий диапазон изменения частоты и позволило бы избавиться от «дрожания» на выходе умножителя частоты.

LC-генератор. На рис. 9.81 показан пример системы ФАПЧ, в которой использован LC-генератор и цифровое сравнение по фазе на более низкой частоте.

Рис. 9.81. ФАПЧ с варакторной настройкой.

При этом потребовался стабильный прецизионный источник частоты 14,4 МГц, работающий синхронно с задающим генератором 10 МГц. Варактор (настроечный диод, см. разд. 5.18) осуществляет точную настройку LC-генератора на полевом транзисторе в соответствии с выходным сигналом фазового детектора типа 2 (`НС4046). Обратите внимание на то, что диапазон настройки варактора 18–30 пФ (от 5 до 1 В соответственно) обеспечивает изменение параллельной емкости LC-цепи в пределах 2 пФ (от 8,2 до 10 пФ), что дает диапазон настройки ±0,5 % частоты генератора. Мы намеренно сделали диапазон настройки узким для того, чтобы обеспечить хорошую стабильность генератора.

Частоты опорного и выходного сигналов с помощью цифровых средств делятся до частоты 400 кГц, на которой фазовый детектор работает лучше. Заметьте, что для преобразования синусоидального сигнала в сигнал с логическими уровнями используется вентиль типа `НС со смещением на логическом пороге с помощью резистора обратной связи большого номинала. Обратите внимание также на выходную ступень обычного эмиттерного повторителя (с ограничением по току), предназначенную для работы на 50-омный кабель, как показано на рис. 9.42. При настройке схемы ферритовый сердечник генератора подстраивается до получения полного размаха на выходе фильтра фазового детектора.

Фирма Motorola выпускает прекрасную серию недорогих ИМС «ФАПЧ-синтезатор частоты» МС145145-59, которые содержат фазовые детекторы типа 2 и делители по модулю n и для входного и для опорного сигналов; оба делителя программируются, точность 14 разрядов и более. Держите эти схемы на примете на тот случай, когда вам потребуется синтезировать какие-нибудь необычные частоты.